Update
This commit is contained in:
parent
57df938818
commit
9c7d6b156f
@ -507,7 +507,7 @@ Proof.
|
|||||||
contradiction H5. assumption.
|
contradiction H5. assumption.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Theorem subsequence_reverse {X: Type} :
|
Theorem subsequence_rev {X: Type} :
|
||||||
forall (u v: list X), subsequence u v <-> subsequence (rev u) (rev v).
|
forall (u v: list X), subsequence u v <-> subsequence (rev u) (rev v).
|
||||||
Proof.
|
Proof.
|
||||||
assert (MAIN: forall (u v: list X),
|
assert (MAIN: forall (u v: list X),
|
||||||
@ -546,6 +546,20 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Theorem subsequence_map {X Y: Type} :
|
||||||
|
forall (u v: list X) (f: X -> Y),
|
||||||
|
subsequence u v -> subsequence (map f u) (map f v).
|
||||||
|
intros u v. generalize u. induction v; intros u0 f.
|
||||||
|
intro. apply subsequence_nil_r. intro H.
|
||||||
|
apply subsequence_eq_def_3.
|
||||||
|
apply subsequence_eq_def_1 in H. apply subsequence_eq_def_2 in H.
|
||||||
|
destruct H. destruct H. destruct H.
|
||||||
|
exists (map f x). exists (map f x0). split.
|
||||||
|
rewrite <- map_cons. rewrite <- map_app. rewrite H. reflexivity.
|
||||||
|
apply subsequence_eq_def_2. apply subsequence_eq_def_1.
|
||||||
|
apply IHv. apply subsequence_eq_def_3. assumption.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user