This commit is contained in:
Thomas Baruchel 2023-10-25 13:22:47 +02:00
parent 4373d958b2
commit 9b6597366b

74
src/subsequences.v Normal file
View File

@ -0,0 +1,74 @@
Require Import Nat.
Require Import PeanoNat.
Require Import List.
Import ListNotations.
Definition subsequence (l s : list nat) :=
exists (l1: list nat) (l2 : list (list nat)),
length s = length l2
/\ l = l1 ++ flat_map (fun e => (fst e) :: (snd e)) (combine s l2).
Definition subsequence2 (l s : list nat) :=
exists (t: list bool),
length t = length l /\ s = map snd (filter fst (combine t l)).
Theorem subsequence_eq_def : forall l s, subsequence l s <-> subsequence2 l s.
Proof.
intro l. induction l.
(* first part of the induction *)
intro s. unfold subsequence. unfold subsequence2.
split. exists nil. split. reflexivity. simpl.
destruct H. destruct H. destruct H.
assert (x = nil). destruct x. reflexivity. simpl in H0.
apply nil_cons in H0. contradiction H0. rewrite H1 in H0.
simpl in H0. assert (combine s x0 = nil).
destruct (combine s x0). reflexivity. simpl in H0.
apply nil_cons in H0. contradiction H0.
destruct x0. destruct s. reflexivity. simpl in H.
apply PeanoNat.Nat.neq_succ_0 in H. contradiction H.
destruct s. reflexivity. simpl in H2.
symmetry in H2. apply nil_cons in H2. contradiction H2.
exists nil. exists nil. destruct s. simpl. easy.
destruct H. destruct H.
assert (x = nil). destruct x. reflexivity. simpl in H.
apply PeanoNat.Nat.neq_succ_0 in H. contradiction H.
rewrite H1 in H0. simpl in H0.
symmetry in H0. apply nil_cons in H0. contradiction H0.
(* second part of the induction *)
intro s. destruct s. unfold subsequence. unfold subsequence2. split.
exists (repeat false (S (length l))). rewrite repeat_length.
split. easy. simpl.
assert (forall u,
(nil: list nat)
= map snd (filter fst (combine (repeat false (length u)) u))).
intro u. induction u. reflexivity. simpl. assumption. apply H0.
exists (a::l). exists (nil). simpl. split; try rewrite app_nil_r; reflexivity.
destruct H. destruct H. destruct H.
assert (x0 = nil). symmetry in H. apply length_zero_iff_nil in H.
assumption. rewrite H1 in H0. simpl in H0.
Example test1: subsequence [1;2;3;4;5] [1;3;5].
Proof.
unfold subsequence.
exists [].
exists [[2];[4];[]]. simpl. easy.
Qed.
Example test2: subsequence [1;2;3;4;5] [2;4].
Proof.
unfold subsequence.
exists [1].
exists [[3];[5]]. simpl. easy.
Qed.