Update
This commit is contained in:
parent
5253fb526d
commit
9aa2a2c6cd
@ -1819,7 +1819,7 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma tm_step_palindromic_power2_even :
|
Lemma tm_step_palindromic_power2_even_alpha :
|
||||||
forall (m n : nat) (hd a tl : list bool),
|
forall (m n : nat) (hd a tl : list bool),
|
||||||
tm_step n = hd ++ a ++ (rev a) ++ tl
|
tm_step n = hd ++ a ++ (rev a) ++ tl
|
||||||
-> 6 < length a
|
-> 6 < length a
|
||||||
@ -1892,7 +1892,7 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma tm_step_palindromic_power2_even' :
|
Lemma tm_step_palindromic_power2_even_beta :
|
||||||
forall (m n : nat) (hd a tl : list bool),
|
forall (m n : nat) (hd a tl : list bool),
|
||||||
tm_step n = hd ++ a ++ (rev a) ++ tl
|
tm_step n = hd ++ a ++ (rev a) ++ tl
|
||||||
-> 6 < length a
|
-> 6 < length a
|
||||||
@ -1981,7 +1981,7 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Theorem xxx :
|
Theorem tm_step_palindromic_power2_even :
|
||||||
forall (m n : nat) (hd a tl : list bool),
|
forall (m n : nat) (hd a tl : list bool),
|
||||||
tm_step n = hd ++ a ++ (rev a) ++ tl
|
tm_step n = hd ++ a ++ (rev a) ++ tl
|
||||||
-> 6 < length a
|
-> 6 < length a
|
||||||
@ -1992,7 +1992,7 @@ Proof.
|
|||||||
assert (E: length (hd ++ a) mod (2 ^ (pred (Nat.double m))) = 0
|
assert (E: length (hd ++ a) mod (2 ^ (pred (Nat.double m))) = 0
|
||||||
\/ 2^6 <= length a).
|
\/ 2^6 <= length a).
|
||||||
generalize J. generalize I. generalize H.
|
generalize J. generalize I. generalize H.
|
||||||
apply tm_step_palindromic_power2_even'.
|
apply tm_step_palindromic_power2_even_beta.
|
||||||
|
|
||||||
destruct m. rewrite J in I. inversion I. inversion H1.
|
destruct m. rewrite J in I. inversion I. inversion H1.
|
||||||
destruct m. rewrite J in I. inversion I. inversion H1.
|
destruct m. rewrite J in I. inversion I. inversion H1.
|
||||||
@ -2011,7 +2011,7 @@ Proof.
|
|||||||
contradiction H8. apply Nat.lt_1_2.
|
contradiction H8. apply Nat.lt_1_2.
|
||||||
- intros n tl a I J hd H E. assert (E' := E).
|
- intros n tl a I J hd H E. assert (E' := E).
|
||||||
destruct E as [E0 | E1]. assumption.
|
destruct E as [E0 | E1]. assumption.
|
||||||
rewrite tm_step_palindromic_power2_even with (n := n) (tl := tl).
|
rewrite tm_step_palindromic_power2_even_alpha with (n := n) (tl := tl).
|
||||||
rewrite <- pred_Sn.
|
rewrite <- pred_Sn.
|
||||||
|
|
||||||
|
|
||||||
@ -2090,7 +2090,7 @@ Proof.
|
|||||||
apply IHm with (n := n) (tl := tl').
|
apply IHm with (n := n) (tl := tl').
|
||||||
assumption. assumption. assumption.
|
assumption. assumption. assumption.
|
||||||
generalize Y. generalize Y'. generalize H.
|
generalize Y. generalize Y'. generalize H.
|
||||||
apply tm_step_palindromic_power2_even'.
|
apply tm_step_palindromic_power2_even_beta.
|
||||||
easy. reflexivity. reflexivity.
|
easy. reflexivity. reflexivity.
|
||||||
assumption. assumption. assumption.
|
assumption. assumption. assumption.
|
||||||
Qed.
|
Qed.
|
||||||
|
Loading…
Reference in New Issue
Block a user