Update
This commit is contained in:
parent
4f5b891ca2
commit
8f027411c3
@ -18,8 +18,14 @@ Lemma tm_step_palindromic_odd : forall (n : nat) (hd a tl : list bool),
|
||||
tm_step n = hd ++ a ++ tl
|
||||
-> a = rev a
|
||||
-> odd (length a) = true
|
||||
-> length a <> 5.
|
||||
-> length a < 4.
|
||||
Proof.
|
||||
(* end of the lemma *)
|
||||
assert (LEMMA: forall (n : nat) (hd a tl : list bool),
|
||||
tm_step n = hd ++ a ++ tl
|
||||
-> a = rev a
|
||||
-> odd (length a) = true
|
||||
-> length a <> 5).
|
||||
intros n hd a tl. intros H I J.
|
||||
destruct a. easy. destruct a. easy.
|
||||
destruct a. easy. destruct a. easy.
|
||||
@ -87,14 +93,8 @@ Proof.
|
||||
|
||||
simpl. apply not_eq_S. apply not_eq_S. apply not_eq_S.
|
||||
apply not_eq_S. apply not_eq_S. apply Nat.neq_succ_0.
|
||||
Qed.
|
||||
(* end of the lemma *)
|
||||
|
||||
Lemma tm_step_palindromic_odd' : forall (n : nat) (hd a tl : list bool),
|
||||
tm_step n = hd ++ a ++ tl
|
||||
-> a = rev a
|
||||
-> odd (length a) = true
|
||||
-> length a < 4.
|
||||
Proof.
|
||||
intros n hd a tl. intros H I J.
|
||||
|
||||
assert (length a <= 5 \/ 5 < length a). apply Nat.le_gt_cases.
|
||||
@ -104,7 +104,7 @@ Proof.
|
||||
apply Nat.lt_eq_cases in H0. destruct H0. assumption.
|
||||
rewrite H0 in J. inversion J.
|
||||
assert (length a <> 5). generalize J. generalize I. generalize H.
|
||||
apply tm_step_palindromic_odd. rewrite H0 in H1. contradiction H1.
|
||||
apply LEMMA. rewrite H0 in H1. contradiction H1.
|
||||
reflexivity.
|
||||
|
||||
(* main part of the proof:
|
||||
@ -201,6 +201,6 @@ Proof.
|
||||
assert (odd (length v) = true). rewrite H4. reflexivity.
|
||||
generalize H7. generalize H6. generalize H. rewrite H2.
|
||||
rewrite <- app_assoc. rewrite <- app_assoc. rewrite app_assoc.
|
||||
apply tm_step_palindromic_odd. rewrite H4 in H7. contradiction H7.
|
||||
apply LEMMA. rewrite H4 in H7. contradiction H7.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
Loading…
Reference in New Issue
Block a user