This commit is contained in:
Thomas Baruchel 2023-12-06 08:10:25 +01:00
parent 78fd497d19
commit 8e9e85bd71

View File

@ -161,80 +161,52 @@ Proof.
Qed.
Lemma subsequence_dec_alt {X: Type}:
(forall x y : X, {x = y} + {x <> y})
-> forall (l s : list X), { exists (t: list bool),
length t = length l /\ s = map snd (filter fst (combine t l)) }
+ { ~ exists (t: list bool),
length t = length l /\ s = map snd (filter fst (combine t l)) }.
Proof.
intro H.
intro l. induction l; intro s. destruct s. left.
rewrite <- subsequence_bools. apply Subsequence_nil_r.
right. rewrite <- subsequence_bools. apply Subsequence_nil_cons_r.
assert (
{ exists (t: list bool),
length t = length l /\ s = map snd (filter fst (combine t l)) }
+ { ~ exists (t: list bool),
length t = length l /\ s = map snd (filter fst (combine t l)) }).
apply IHl.
destruct H0.
rewrite <- subsequence_bools in e.
rewrite <- Subsequence_cons_eq with (a := a) in e.
apply Subsequence_cons_r in e. rewrite subsequence_bools in e.
left; assumption.
destruct s. rewrite <- subsequence_bools in n.
left.
rewrite <- subsequence_bools.
apply Subsequence_nil_r.
assert ({x=a}+{x<>a}). apply H. destruct H0. rewrite e.
destruct IHl with (s := s); [ left | right ];
rewrite <- subsequence_bools;
rewrite Subsequence_cons_eq. rewrite subsequence_bools. assumption.
rewrite subsequence_bools. assumption.
right. intro I.
destruct I. destruct H0. destruct x0.
symmetry in H1.
apply nil_cons in H1. contradiction H1.
destruct b.
inversion H1. rewrite H3 in n0. easy.
apply n. exists x0; split; inversion H0; easy.
Qed.
Theorem Subsequence_dec {X: Type}:
(forall x y : X, {x = y} + {x <> y})
-> forall (l s : list X), { Subsequence l s } + { ~ Subsequence l s }.
Proof.
intro H. intros l s.
assert (
{ exists (t: list bool),
length t = length l /\ s = map snd (filter fst (combine t l)) }
+ { ~ exists (t: list bool),
length t = length l /\ s = map snd (filter fst (combine t l)) }).
apply subsequence_dec_alt. assumption. destruct H0.
rewrite <- subsequence_bools in e. left. assumption.
right. intro I. apply subsequence_bools in I. apply n in I. contradiction I.
intro H. intro l. induction l; intro s. destruct s. left.
apply Subsequence_nil_r. right. apply Subsequence_nil_cons_r.
assert ({ Subsequence l s} + { ~ Subsequence l s }).
apply IHl. destruct H0.
rewrite <- Subsequence_cons_eq with (a := a) in s0.
apply Subsequence_cons_r in s0. rewrite subsequence_bools in s0.
left. rewrite subsequence_bools. assumption.
destruct s. left. apply Subsequence_nil_r.
assert ({x=a}+{x<>a}). apply H. destruct H0. rewrite e.
destruct IHl with (s := s); [ left | right ];
rewrite Subsequence_cons_eq. assumption. assumption.
right. intro I. rewrite subsequence_bools in I.
destruct I. destruct H0. destruct x0.
symmetry in H1. apply nil_cons in H1. contradiction H1.
destruct b. inversion H1. rewrite H3 in n0. easy.
apply n. rewrite subsequence_bools. exists x0; split; inversion H0; easy.
Qed.
(** * Various general properties
*)
Theorem subsequence_id {X: Type} :
forall u : list X, subsequence u u.
Theorem Subsequence_id {X: Type} :
forall u : list X, Subsequence u u.
Proof.
intro u. apply subsequence_eq_def_3.
induction u. easy. exists nil. exists u.
split; easy.
intro u. induction u. easy. exists nil. exists u. split; easy.
Qed.
Theorem subsequence_app {X: Type} :
forall l1 s1 l2 s2 : list X,
subsequence l1 s1 -> subsequence l2 s2 -> subsequence (l1++l2) (s1++s2).