Update
This commit is contained in:
parent
1fb8dd5022
commit
89ffb25a40
63
thue-morse.v
63
thue-morse.v
@ -994,14 +994,65 @@ Lemma tm_step_next_range2_neighbor' : forall (n k : nat),
|
||||
nth_error (tm_step (S n)) (k + 2^n)
|
||||
= nth_error (tm_step (S n)) (S k + 2^n).
|
||||
Proof.
|
||||
intros n k. intros H.
|
||||
(* Part 1: preamble *)
|
||||
assert (I := H). apply Nat.lt_succ_l in I.
|
||||
assert (nth_error (tm_step n) k <> nth_error (tm_step (S n)) (k + 2^n)).
|
||||
generalize I. apply tm_step_next_range2''.
|
||||
assert (nth_error (tm_step n) (S k) <> nth_error (tm_step (S n)) (S k + 2^n)).
|
||||
generalize H. apply tm_step_next_range2''.
|
||||
assert (K: S k + 2^n < 2^(S n)). simpl. rewrite Nat.add_0_r.
|
||||
rewrite <- Nat.add_succ_l. rewrite <- Nat.add_lt_mono_r. apply H.
|
||||
assert (J := K). rewrite Nat.add_succ_l in J. apply Nat.lt_succ_l in J.
|
||||
|
||||
(* Part 2 *)
|
||||
assert (nth_error (tm_step n) k = Some (nth k (tm_step n) false)).
|
||||
generalize I. rewrite <- tm_size_power2. apply nth_error_nth'.
|
||||
assert (nth_error (tm_step n) (S k) = Some (nth (S k) (tm_step n) false)).
|
||||
generalize H. rewrite <- tm_size_power2. apply nth_error_nth'.
|
||||
assert (nth_error (tm_step (S n)) (k + 2 ^ n) =
|
||||
Some (nth (k + 2^n) (tm_step (S n)) false)).
|
||||
generalize J. rewrite <- tm_size_power2. rewrite <- tm_size_power2.
|
||||
apply nth_error_nth'.
|
||||
assert (nth_error (tm_step (S n)) (S k + 2 ^ n) =
|
||||
Some (nth (S k + 2^n) (tm_step (S n)) false)).
|
||||
generalize K. rewrite <- tm_size_power2. rewrite <- tm_size_power2.
|
||||
apply nth_error_nth'.
|
||||
rewrite H2. rewrite H3. rewrite H4. rewrite H5.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
(* Part 3 *)
|
||||
destruct (nth k (tm_step n) false).
|
||||
destruct (nth (S k) (tm_step n) false).
|
||||
destruct (nth (k + 2 ^ n) (tm_step (S n)) false).
|
||||
destruct (nth (S k + 2 ^ n) (tm_step (S n)) false).
|
||||
easy.
|
||||
rewrite H2 in H0. rewrite H4 in H0. contradiction H0. reflexivity.
|
||||
destruct (nth (S k + 2 ^ n) (tm_step (S n)) false).
|
||||
rewrite H3 in H1. rewrite H5 in H1. contradiction H1. reflexivity.
|
||||
easy.
|
||||
destruct (nth (k + 2 ^ n) (tm_step (S n)) false).
|
||||
destruct (nth (S k + 2 ^ n) (tm_step (S n)) false).
|
||||
rewrite H2 in H0. rewrite H4 in H0. contradiction H0. reflexivity.
|
||||
easy.
|
||||
destruct (nth (S k + 2 ^ n) (tm_step (S n)) false).
|
||||
easy.
|
||||
rewrite H3 in H1. rewrite H5 in H1. contradiction H1. reflexivity.
|
||||
destruct (nth (S k) (tm_step n) false).
|
||||
destruct (nth (k + 2 ^ n) (tm_step (S n)) false).
|
||||
destruct (nth (S k + 2 ^ n) (tm_step (S n)) false).
|
||||
rewrite H3 in H1. rewrite H5 in H1. contradiction H1. reflexivity.
|
||||
easy.
|
||||
destruct (nth (S k + 2 ^ n) (tm_step (S n)) false).
|
||||
easy.
|
||||
rewrite H2 in H0. rewrite H4 in H0. contradiction H0. reflexivity.
|
||||
destruct (nth (k + 2 ^ n) (tm_step (S n)) false).
|
||||
destruct (nth (S k + 2 ^ n) (tm_step (S n)) false).
|
||||
easy.
|
||||
rewrite H3 in H1. rewrite H5 in H1. contradiction H1. reflexivity.
|
||||
destruct (nth (S k + 2 ^ n) (tm_step (S n)) false).
|
||||
rewrite H2 in H0. rewrite H4 in H0. contradiction H0. reflexivity.
|
||||
easy.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma tm_step_add_range2_neighbor : forall (n m k : nat),
|
||||
|
Loading…
Reference in New Issue
Block a user