This commit is contained in:
Thomas Baruchel 2023-02-01 16:39:17 +01:00
parent 36b7d26757
commit 837884e808

View File

@ -1893,6 +1893,292 @@ Qed.
Lemma xxx :
forall (m n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 6 < length a
-> length a = 2^(Nat.double m)
-> length (hd ++ a) mod (2 ^ (pred (Nat.double m))) = 0
\/ 64 <= length a.
Proof.
intros m n hd a tl. intros H I J.
destruct m. rewrite J in I. inversion I. inversion H1.
destruct m. rewrite J in I. inversion I. inversion H1.
inversion H3. inversion H5. inversion H7.
destruct m. left.
assert (W: length a mod 4 = 0). rewrite J. reflexivity.
assert (
hd = tm_morphism (tm_morphism (firstn (length hd / 4)
(tm_step (pred (pred n)))))
/\ a = tm_morphism (tm_morphism
(firstn (length a / 4) (skipn (length hd / 4)
(tm_step (pred (pred n))))))
/\ tl = tm_morphism (tm_morphism
(skipn (length hd / 4 + Nat.div2 (length a))
(tm_step (pred (pred n)))))).
generalize W. generalize I. generalize H.
apply tm_step_palindromic_even_morphism2.
destruct H0 as [K H0]. destruct H0 as [L M].
assert (V: 3 < n). generalize I. generalize H.
apply tm_step_palindromic_length_12_n.
destruct n. inversion V. destruct n. inversion V. inversion H1.
rewrite K in H. rewrite L in H. rewrite M in H.
rewrite tm_morphism_twice_rev in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_step_lemma in H. rewrite <- tm_step_lemma in H.
rewrite <- tm_morphism_eq in H. rewrite <- tm_morphism_eq in H.
rewrite Nat.pred_succ in H. rewrite Nat.pred_succ in H.
pose (hd' := (firstn (length hd / 4) (tm_step n))).
pose (a' := (firstn (length a / 4) (skipn (length hd / 4) (tm_step n)))).
pose (tl' := (skipn (length hd / 4 + Nat.div2 (length a)) (tm_step n))).
fold hd' in H. fold a' in H. fold tl' in H.
rewrite Nat.pred_succ in K. rewrite Nat.pred_succ in K.
rewrite Nat.pred_succ in L. rewrite Nat.pred_succ in L.
fold hd' in K. fold a' in L.
assert (N: length a = length a). reflexivity. rewrite L in N at 2.
rewrite tm_morphism_length in N. rewrite tm_morphism_length in N.
rewrite Nat.mul_assoc in N. replace (2*2) with 4 in N.
assert (O: length hd = length hd). reflexivity. rewrite K in O at 2.
rewrite tm_morphism_length in O. rewrite tm_morphism_length in O.
rewrite Nat.mul_assoc in O. replace (2*2) with 4 in O.
replace (2^ pred (Nat.double 2)) with (4*2).
rewrite app_length. rewrite N. rewrite O.
rewrite <- Nat.mul_add_distr_l. rewrite Nat.mul_mod_distr_l.
rewrite Nat.mul_eq_0. right. rewrite <- app_length.
assert (U: even (length (hd' ++ a')) = true).
assert (0 < length a').
apply Nat.lt_succ_l in I. apply Nat.lt_succ_l in I.
rewrite N in I.
rewrite <- Nat.mul_1_r in I at 1.
rewrite <- Nat.mul_lt_mono_pos_l in I.
apply Nat.lt_succ_l in I. assumption. apply Nat.lt_0_succ.
generalize H0. generalize H. apply tm_step_palindromic_even_center.
replace (length (hd' ++ a'))
with (2 * Nat.div2 (length (hd' ++ a'))
+ Nat.b2n (Nat.odd (length (hd' ++ a')))).
rewrite <- Nat.negb_even. rewrite U. rewrite Nat.add_0_r.
rewrite Nat.mul_mod. reflexivity. easy. symmetry. apply Nat.div2_odd.
easy. easy. reflexivity. reflexivity. reflexivity.
right. rewrite J. rewrite Nat.double_S. rewrite Nat.double_S.
rewrite Nat.double_S. rewrite Nat.pow_succ_r.
rewrite Nat.pow_succ_r. rewrite Nat.pow_succ_r.
rewrite Nat.pow_succ_r. rewrite Nat.pow_succ_r.
rewrite Nat.pow_succ_r. rewrite Nat.mul_assoc.
rewrite Nat.mul_assoc. rewrite Nat.mul_assoc.
rewrite Nat.mul_assoc. rewrite Nat.mul_assoc.
replace (2*2*2*2*2*2) with 64. rewrite <- Nat.mul_1_r at 1.
rewrite <- Nat.mul_le_mono_pos_l. rewrite Nat.le_succ_l.
rewrite <- Nat.neq_0_lt_0. apply Nat.pow_nonzero. easy.
apply Nat.lt_0_succ. reflexivity.
apply le_0_n. apply le_0_n. apply le_0_n.
apply le_0_n. apply le_0_n. apply le_0_n.
Qed.
destruct m. left.
assert (K: length a mod 4 = 0). rewrite J. reflexivity.
assert (L: length hd mod 4 = 0).
generalize K. generalize I. generalize H.
apply tm_step_palindromic_length_12_prefix.
assert (M: hd = tm_morphism (tm_morphism (firstn (length hd / 4)
(tm_step (pred (pred n)))))
/\ a = tm_morphism (tm_morphism
(firstn (length a / 4) (skipn (length hd / 4)
(tm_step (pred (pred n))))))
/\ tl = tm_morphism (tm_morphism
(skipn (length hd / 4 + Nat.div2 (length a))
(tm_step (pred (pred n)))))).
generalize K. generalize I. generalize H.
apply tm_step_palindromic_even_morphism2.
destruct M as [N O]. destruct O as [O P].
rewrite N in H. rewrite O in H. rewrite P in H.
(*
rewrite tm_morphism_twice_rev in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
*)
pose (hd' := (firstn (length hd / 4) (tm_step (pred (pred n))))).
pose (a' := (firstn (length a / 4) (skipn (length hd / 4) (tm_step (pred (pred n)))))).
pose (tl' := (skipn (length hd / 4 + Nat.div2 (length a)) (tm_step (pred (pred n))))).
fold hd' in H. fold a' in H. fold tl' in H.
Lemma tm_step_palindromic_power2_even :
forall (m n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 6 < length a
-> length a = 2^(Nat.double m)
-> length (hd ++ a) mod (2 ^ (pred (Nat.double m))) = 0
<-> (length (hd ++ a) / 4) mod (2^(pred (Nat.double (pred m)))) = 0.
Proof.
intros m n hd a tl. intros H I J.
Lemma xxx :
forall m : nat,
(forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 6 < length a
-> length a = 2^(Nat.double m)
-> length (hd ++ a) mod (2 ^ (pred (Nat.double m))) = 0)
-> (forall (n' : nat) (hd' a' tl' : list bool),
tm_step n' = hd' ++ a' ++ (rev a') ++ tl'
-> 6 < length a'
-> length a' = 2^(Nat.double (S m))
-> length (hd' ++ a') mod (2 ^ (pred (Nat.double (S m)))) = 0).
Proof.
intro m. intro IH.
intros n hd a tl. intros H I J.
rewrite tm_step_palindromic_power2_even with (n := n) (tl := tl).
rewrite <- pred_Sn.
destruct m. rewrite J in I. inversion I. inversion H1.
inversion H3. inversion H5. inversion H7.
assert (W: (length a) mod 4 = 0).
rewrite Nat.double_S in J. rewrite Nat.pow_succ_r in J.
rewrite Nat.double_S in J. rewrite Nat.pow_succ_r in J.
rewrite Nat.mul_assoc in J.
replace (2*2) with 4 in J. rewrite J.
rewrite <- Nat.mul_mod_idemp_l. reflexivity.
easy. reflexivity. apply le_0_n. apply le_0_n.
assert (
hd = tm_morphism (tm_morphism (firstn (length hd / 4)
(tm_step (pred (pred n)))))
/\ a = tm_morphism (tm_morphism
(firstn (length a / 4) (skipn (length hd / 4)
(tm_step (pred (pred n))))))
/\ tl = tm_morphism (tm_morphism
(skipn (length hd / 4 + Nat.div2 (length a))
(tm_step (pred (pred n)))))).
generalize W. generalize I. generalize H.
apply tm_step_palindromic_even_morphism2.
destruct H0 as [K H0]. destruct H0 as [L M].
assert (V: 3 < n). generalize I. generalize H.
apply tm_step_palindromic_length_12_n.
destruct n. inversion V. destruct n. inversion V. inversion H1.
rewrite K in H. rewrite L in H. rewrite M in H.
rewrite tm_morphism_twice_rev in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_morphism_app in H. rewrite <- tm_morphism_app in H.
rewrite <- tm_step_lemma in H. rewrite <- tm_step_lemma in H.
rewrite <- tm_morphism_eq in H. rewrite <- tm_morphism_eq in H.
rewrite Nat.pred_succ in H. rewrite Nat.pred_succ in H.
pose (hd' := (firstn (length hd / 4) (tm_step n))).
pose (a' := (firstn (length a / 4) (skipn (length hd / 4) (tm_step n)))).
pose (tl' := (skipn (length hd / 4 + Nat.div2 (length a)) (tm_step n))).
fold hd' in H. fold a' in H. fold tl' in H.
rewrite Nat.pred_succ in K. rewrite Nat.pred_succ in K.
rewrite Nat.pred_succ in L. rewrite Nat.pred_succ in L.
fold hd' in K. fold a' in L.
assert (N: length a = length a). reflexivity. rewrite L in N at 2.
rewrite tm_morphism_length in N. rewrite tm_morphism_length in N.
rewrite Nat.mul_assoc in N. replace (2*2) with 4 in N.
assert (O: length hd = length hd). reflexivity. rewrite K in O at 2.
rewrite tm_morphism_length in O. rewrite tm_morphism_length in O.
rewrite Nat.mul_assoc in O. replace (2*2) with 4 in O.
rewrite app_length. rewrite N. rewrite O.
rewrite <- Nat.mul_add_distr_l. rewrite <- app_length.
rewrite Nat.mul_comm. rewrite Nat.div_mul.
apply IH with (n := n) (tl := tl'). assumption.
replace (2^ pred (Nat.double 2)) with (4*2).
rewrite app_length. rewrite N. rewrite O.
rewrite <- Nat.mul_add_distr_l. rewrite Nat.mul_mod_distr_l.
rewrite Nat.mul_eq_0. right. rewrite <- app_length.
assert (U: even (length (hd' ++ a')) = true).
assert (0 < length a').
apply Nat.lt_succ_l in I. apply Nat.lt_succ_l in I.
rewrite N in I.
rewrite <- Nat.mul_1_r in I at 1.
rewrite <- Nat.mul_lt_mono_pos_l in I.
apply Nat.lt_succ_l in I. assumption. apply Nat.lt_0_succ.
generalize H0. generalize H. apply tm_step_palindromic_even_center.
Lemma tm_step_palindromic_even_morphism2 :
forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 6 < length a
-> (length a) mod 4 = 0
-> hd = tm_morphism (tm_morphism (firstn (length hd / 4)
(tm_step (pred (pred n)))))
/\ a = tm_morphism (tm_morphism
(firstn (length a / 4) (skipn (length hd / 4)
(tm_step (pred (pred n))))))
/\ tl = tm_morphism (tm_morphism
(skipn (length hd / 4 + Nat.div2 (length a))
(tm_step (pred (pred n))))).
rewrite Nat.double_S.
replace (pred (S (S (Nat.double m)))) with (S (S (pred (Nat.double m)))).
rewrite Nat.pow_succ_r. rewrite Nat.pow_succ_r. rewrite Nat.mul_assoc.
replace (2*2) with 4.
Lemma tm_step_palindromic_power2_even :
forall (m n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 6 < length a
-> length a = 2^(Nat.double m)
-> length (hd ++ a) mod (2 ^ (pred (Nat.double m))) = 0
<-> (length (hd ++ a) / 4) mod (2^(pred (Nat.double (pred m)))) = 0.
Lemma tm_step_palindromic_power2_even :
forall (m n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 6 < length a
-> length a = 2^(Nat.double m)
-> length (hd ++ a) mod (2 ^ (pred (Nat.double m))) = 0
Lemma xxx :
forall (m n k : nat) (hd a tl : list bool),
@ -2048,6 +2334,7 @@ Proof.
rewrite app_length. rewrite N. rewrite O.
rewrite <- Nat.mul_add_distr_l. rewrite Nat.mul_mod_distr_l.
rewrite Nat.mul_eq_0. right. rewrite <- app_length.
apply IHm.
Lemma tm_step_palindromic_power2_even :