Update
This commit is contained in:
parent
2b0a214352
commit
82bc79b245
@ -223,21 +223,12 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Theorem Subsequence_trans {X: Type} :
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Theorem subsequence_trans {X: Type} :
|
|
||||||
forall (l1 l2 l3: list X),
|
forall (l1 l2 l3: list X),
|
||||||
subsequence l1 l2 -> subsequence l2 l3 -> subsequence l1 l3.
|
Subsequence l1 l2 -> Subsequence l2 l3 -> Subsequence l1 l3.
|
||||||
Proof.
|
Proof.
|
||||||
intros l1 l2 l3. intros H I.
|
intros l1 l2 l3. intros H I. apply Subsequence_bools.
|
||||||
apply subsequence_eq_def_3. apply subsequence_eq_def_2.
|
apply Subsequence_flat_map in H. apply Subsequence_bools in I.
|
||||||
apply subsequence_eq_def_1 in I.
|
|
||||||
destruct H. destruct H. destruct H. destruct I. destruct H1.
|
destruct H. destruct H. destruct H. destruct I. destruct H1.
|
||||||
exists (
|
exists (
|
||||||
(repeat false (length x)) ++
|
(repeat false (length x)) ++
|
||||||
@ -301,12 +292,11 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma subsequence_length {X: Type} :
|
Theorem Subsequence_length {X: Type} :
|
||||||
forall (u v: list X), subsequence u v -> length v <= length u.
|
forall (u v: list X), Subsequence u v -> length v <= length u.
|
||||||
Proof.
|
Proof.
|
||||||
intros u v. generalize u. induction v; intro u0; intro H. apply Nat.le_0_l.
|
intros u v. generalize u. induction v; intro u0; intro H. apply Nat.le_0_l.
|
||||||
apply subsequence_eq_def_1 in H. apply subsequence_eq_def_2 in H.
|
destruct H. destruct H. destruct H.
|
||||||
destruct H. destruct H. destruct H. apply subsequence_eq_def_3 in H0.
|
|
||||||
apply IHv in H0. simpl. apply Nat.le_succ_l. rewrite H.
|
apply IHv in H0. simpl. apply Nat.le_succ_l. rewrite H.
|
||||||
rewrite app_length. apply Nat.lt_lt_add_l.
|
rewrite app_length. apply Nat.lt_lt_add_l.
|
||||||
rewrite <- Nat.le_succ_l. simpl. rewrite <- Nat.succ_le_mono.
|
rewrite <- Nat.le_succ_l. simpl. rewrite <- Nat.succ_le_mono.
|
||||||
@ -314,6 +304,11 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Theorem subsequence_eq {X: Type} :
|
Theorem subsequence_eq {X: Type} :
|
||||||
forall (u v: list X),
|
forall (u v: list X),
|
||||||
subsequence u v -> subsequence v u -> u = v.
|
subsequence u v -> subsequence v u -> u = v.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user