Update
This commit is contained in:
parent
bc7d6d57b0
commit
77c78b24d5
@ -168,7 +168,10 @@ Lemma xxx :
|
|||||||
tm_step n = hd ++ a ++ a ++ tl
|
tm_step n = hd ++ a ++ a ++ tl
|
||||||
-> a = rev a
|
-> a = rev a
|
||||||
-> 0 < length a
|
-> 0 < length a
|
||||||
-> length a <= 4 \/ 11 = 42 \/ 17 = 55.
|
-> length a <= 4
|
||||||
|
\/ (exists m, length a = 2 ^ m /\
|
||||||
|
length (hd ++ a) mod 2 ^ pred (Nat.double (Nat.div2 (S m))) = 0)
|
||||||
|
\/ length a = 3 * 2^(pred (Nat.log2 (length a))).
|
||||||
Proof.
|
Proof.
|
||||||
intros n hd a tl. intros H I J.
|
intros n hd a tl. intros H I J.
|
||||||
destruct n. assert (length (tm_step 0) = length (tm_step 0)). reflexivity.
|
destruct n. assert (length (tm_step 0) = length (tm_step 0)). reflexivity.
|
||||||
@ -197,4 +200,8 @@ Proof.
|
|||||||
assert (length (hd ++ a) mod 2^(pred (Nat.double (Nat.div2 (S x0)))) = 0).
|
assert (length (hd ++ a) mod 2^(pred (Nat.double (Nat.div2 (S x0)))) = 0).
|
||||||
generalize H3. generalize H0. generalize H.
|
generalize H3. generalize H0. generalize H.
|
||||||
apply tm_step_palindrome_power2.
|
apply tm_step_palindrome_power2.
|
||||||
|
right. left. exists x0. split; assumption.
|
||||||
|
- right. right. rewrite H0. rewrite Nat.mul_cancel_l.
|
||||||
|
rewrite Nat.log2_mul_pow2. rewrite Nat.add_1_r.
|
||||||
|
rewrite Nat.pred_succ. reflexivity. lia. lia. lia.
|
||||||
|
Qed.
|
||||||
|
Loading…
Reference in New Issue
Block a user