This commit is contained in:
Thomas Baruchel 2023-01-11 09:03:32 +01:00
parent 776e7a4d6d
commit 76efd13e3e

View File

@ -263,7 +263,7 @@ Qed.
Lemma tm_step_consecutive_identical_length' :
forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ tl -> length a > 4
tm_step n = hd ++ a ++ tl -> 4 < length a
-> exists (b c : list bool) (d : bool), a = b ++ [d;d] ++ c.
Proof.
intros n hd a tl. intros H I.
@ -282,78 +282,36 @@ Proof.
Qed.
Lemma tm_step_consecutive_identical_length :
forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ tl -> length a = 5
-> exists (b c : list bool) (d : bool), a = b ++ [d;d] ++ c.
Lemma tm_step_square_size_3 : forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ a ++ tl -> length a = 3
-> a = true::false::true::nil \/ a = false::true::false::nil.
Lemma tm_step_odd_square : forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ a ++ tl -> odd (length a) = true -> length a < 4.
Proof.
intros n hd a tl. intros H I.
destruct a.
- inversion I.
- destruct b.
+ left. destruct a. inversion I. destruct b.
* assert (J: a = false::nil). destruct a. inversion I.
destruct b.
assert (K: tm_step n = hd ++ [true] ++ [true] ++ [true]
++ a ++ [true] ++ [true] ++ [true] ++ a ++ tl).
rewrite H. apply app_inv_head_iff.
replace (true::true::true::a) with ([true] ++ [true] ++ [true] ++ a).
rewrite <- app_assoc. apply app_inv_head_iff.
rewrite <- app_assoc. apply app_inv_head_iff.
rewrite <- app_assoc. apply app_inv_head_iff. apply app_inv_head_iff.
rewrite <- app_assoc. apply app_inv_head_iff.
rewrite <- app_assoc. apply app_inv_head_iff.
rewrite <- app_assoc. reflexivity. reflexivity.
apply tm_step_cubefree in K. contradiction K. reflexivity.
simpl. apply Nat.lt_0_1. simpl in I. apply Nat.succ_inj in I.
apply Nat.succ_inj in I. apply Nat.succ_inj in I.
rewrite length_zero_iff_nil in I. rewrite I. reflexivity.
assert (J: 4 < length a \/ length a <= 4).
apply Nat.lt_ge_cases. destruct J.
assert (exists b c d, a = b ++ [d;d] ++ c).
generalize H0. generalize H. apply tm_step_consecutive_identical_length'.
destruct H1. destruct H1. destruct H1. rewrite H1 in H.
replace (hd ++ (true::true::a) ++ (true::true::a) ++ tl)
with (hd ++ (true::true::nil) ++ (a ++ (true::true::a) ++ tl)) in H.
apply tm_step_consecutive_identical in H.
rewrite J in H. simpl in H. inversion H.
replace (hd ++ (x ++ [x1; x1] ++ x0) ++ (x ++ [x1; x1] ++ x0) ++ tl)
with ((hd ++ x) ++ [x1;x1] ++ (x0++x) ++ [x1;x1] ++ (x0 ++ tl)) in H.
apply tm_step_consecutive_identical in H.
apply app_inv_head_iff. rewrite <- app_assoc_reverse.
apply app_inv_head_iff. reflexivity.
* destruct a. inversion I. simpl in I.
apply Nat.succ_inj in I. apply Nat.succ_inj in I.
apply Nat.succ_inj in I. apply length_zero_iff_nil in I.
destruct b. rewrite I. reflexivity.
rewrite I in H.
replace (hd ++ [true;false;false] ++ [true;false;false] ++ tl)
with ((hd ++ [true]) ++ [false;false] ++ [true] ++ [false;false] ++ tl) in H.
apply tm_step_consecutive_identical in H. simpl in H. inversion H.
rewrite app_assoc_reverse. apply app_inv_head_iff. reflexivity.
+ right. destruct a. inversion I. destruct b.
* destruct a. inversion I. simpl in I.
apply Nat.succ_inj in I. apply Nat.succ_inj in I.
apply Nat.succ_inj in I. apply length_zero_iff_nil in I.
destruct b. rewrite I in H.
replace (hd ++ [false;true;true] ++ [false;true;true] ++ tl)
with ((hd ++ [false]) ++ [true;true] ++ [false] ++ [true;true] ++ tl) in H.
apply tm_step_consecutive_identical in H. simpl in H. inversion H.
rewrite app_assoc_reverse. apply app_inv_head_iff. reflexivity.
rewrite I. reflexivity.
* replace (hd ++ (false::false::a) ++ (false::false::a) ++ tl)
with (hd ++ (false::false::nil) ++ a ++ (false::false::nil) ++ (a ++ tl)) in H.
apply tm_step_consecutive_identical in H. simpl in H. inversion H.
simpl in I. apply Nat.succ_inj in I. apply Nat.succ_inj in I.
rewrite I in H. inversion H.
apply app_inv_head_iff.
rewrite <- app_assoc_reverse.
apply app_inv_head_iff. reflexivity.
assert (J: even (length (x0 ++ x)) = false).
rewrite H1 in I. rewrite app_length in I. rewrite app_length in I.
rewrite Nat.add_shuffle3 in I. rewrite Nat.add_comm in I.
rewrite Nat.odd_add_even in I.
rewrite app_length. rewrite Nat.add_comm. rewrite <- Nat.negb_odd.
rewrite I. reflexivity. apply Nat.EvenT_Even. apply Nat.even_EvenT.
reflexivity. rewrite H in J. inversion J.
rewrite <- app_assoc. apply app_inv_head_iff.
rewrite <- app_assoc. rewrite <- app_assoc. apply app_inv_head_iff.
rewrite <- app_assoc. apply app_inv_head_iff. apply app_inv_head_iff.
rewrite <- app_assoc. apply app_inv_head_iff.
reflexivity.
apply Nat.le_lteq in H0. destruct H0. assumption.
rewrite H0 in I. inversion I.
Qed.
@ -361,46 +319,6 @@ Qed.
destruct a. inversion I.
destruct b.
assert (K: tm_step n = hd ++ [false] ++ [true] ++ [true]
++ a ++ [true] ++ [true] ++ [true] ++ a ++ tl).
rewrite H. apply app_inv_head_iff.
replace (true::true::true::a) with ([true] ++ [true] ++ [true] ++ a).
rewrite <- app_assoc. apply app_inv_head_iff.
rewrite <- app_assoc. apply app_inv_head_iff.
rewrite <- app_assoc. apply app_inv_head_iff. apply app_inv_head_iff.
rewrite <- app_assoc. apply app_inv_head_iff.
rewrite <- app_assoc. apply app_inv_head_iff.
rewrite <- app_assoc. reflexivity. reflexivity.
apply tm_step_cubefree in K. contradiction K. reflexivity.
simpl. apply Nat.lt_0_1. simpl in I. apply Nat.succ_inj in I.
apply Nat.succ_inj in I. apply Nat.succ_inj in I.
rewrite length_zero_iff_nil in I. rewrite I. reflexivity.
replace (hd ++ (true::true::a) ++ (true::true::a) ++ tl)
with (hd ++ (true::true::nil) ++ (a ++ (true::true::a) ++ tl)) in H.
apply tm_step_consecutive_identical in H.
rewrite J in H. simpl in H. inversion H.
apply app_inv_head_iff. rewrite <- app_assoc_reverse.
apply app_inv_head_iff. reflexivity.
Theorem tm_step_cubefree : forall (n : nat) (hd a b tl : list bool),
tm_step n = hd ++ a ++ a ++ b ++ tl -> 0 < length a -> a <> b.
Carré de taille 3 :
AABAAB (impossible)
ABBABB (impossible)
ABAABA (OK)
BABBAB
Lemma xxx : forall (n k : nat) (hd pat tl : list bool),
tm_step n = hd ++ pat ++ tl
-> length pat <= 2^k