Update
This commit is contained in:
parent
9fe0252398
commit
7051b17c49
@ -46,14 +46,14 @@ Qed.
|
|||||||
*)
|
*)
|
||||||
|
|
||||||
|
|
||||||
Lemma permutation_mapping_nil {X: Type} :
|
Lemma Permutation_mapping_nil {X: Type} :
|
||||||
forall (base : list X), Permutation_mapping nil nil base.
|
forall (base : list X), Permutation_mapping nil nil base.
|
||||||
Proof.
|
Proof.
|
||||||
intro base. exists base. exists nil. split; easy.
|
intro base. exists base. exists nil. split; easy.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma permutation_mapping_nil_l {X: Type} :
|
Lemma Permutation_mapping_nil_l {X: Type} :
|
||||||
forall (u base : list X), Permutation_mapping nil u base -> u = nil.
|
forall (u base : list X), Permutation_mapping nil u base -> u = nil.
|
||||||
Proof.
|
Proof.
|
||||||
intro u. induction u; intro base; intro H. reflexivity.
|
intro u. induction u; intro base; intro H. reflexivity.
|
||||||
@ -63,7 +63,7 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma permutation_mapping_nil_r {X: Type} :
|
Lemma Permutation_mapping_nil_r {X: Type} :
|
||||||
forall (u base : list X), Permutation_mapping u nil base -> u = nil.
|
forall (u base : list X), Permutation_mapping u nil base -> u = nil.
|
||||||
Proof.
|
Proof.
|
||||||
intro u. induction u; intro base; intro H. reflexivity.
|
intro u. induction u; intro base; intro H. reflexivity.
|
||||||
@ -73,7 +73,7 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma permutation_mapping_cons {X: Type} :
|
Lemma Permutation_mapping_cons {X: Type} :
|
||||||
forall (u v base : list X) a b,
|
forall (u v base : list X) a b,
|
||||||
Permutation_mapping (a::u) (b::v) base -> Permutation_mapping u v base.
|
Permutation_mapping (a::u) (b::v) base -> Permutation_mapping u v base.
|
||||||
Proof.
|
Proof.
|
||||||
@ -83,7 +83,7 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma permutation_mapping_app {X: Type} :
|
Lemma Permutation_mapping_app {X: Type} :
|
||||||
forall (u1 u2 v1 v2 base : list X),
|
forall (u1 u2 v1 v2 base : list X),
|
||||||
Permutation_mapping (u1 ++ u2) (v1 ++ v2) base
|
Permutation_mapping (u1 ++ u2) (v1 ++ v2) base
|
||||||
-> length u1 = length v1 ->
|
-> length u1 = length v1 ->
|
||||||
@ -127,7 +127,7 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma permutation_mapping_base_cons {X: Type} :
|
Lemma Permutation_mapping_base_cons {X: Type} :
|
||||||
forall (u v base : list X) a,
|
forall (u v base : list X) a,
|
||||||
Permutation_mapping u v base -> Permutation_mapping u v (a::base).
|
Permutation_mapping u v base -> Permutation_mapping u v (a::base).
|
||||||
Proof.
|
Proof.
|
||||||
@ -144,7 +144,7 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma permutation_mapping_self {X: Type} :
|
Lemma Permutation_mapping_self {X: Type} :
|
||||||
forall (u base : list X), incl u base -> Permutation_mapping u u base.
|
forall (u base : list X), incl u base -> Permutation_mapping u u base.
|
||||||
Proof.
|
Proof.
|
||||||
intro u. induction u; intro base; intro H; exists base.
|
intro u. induction u; intro base; intro H; exists base.
|
||||||
@ -155,7 +155,7 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma permutation_mapping_length {X: Type} :
|
Lemma Permutation_mapping_length {X: Type} :
|
||||||
forall (u v base : list X),
|
forall (u v base : list X),
|
||||||
Permutation_mapping u v base -> length u = length v.
|
Permutation_mapping u v base -> length u = length v.
|
||||||
Proof.
|
Proof.
|
||||||
@ -167,7 +167,7 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma permutation_mapping_swap {X: Type} :
|
Lemma Permutation_mapping_swap {X: Type} :
|
||||||
forall (u v base : list X),
|
forall (u v base : list X),
|
||||||
Permutation_mapping u v base -> Permutation_mapping v u base.
|
Permutation_mapping u v base -> Permutation_mapping v u base.
|
||||||
Proof.
|
Proof.
|
||||||
@ -302,7 +302,7 @@ Qed.
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
Lemma permutation_mapping_base {X: Type} :
|
Lemma Permutation_mapping_base {X: Type} :
|
||||||
forall (u v base p: list X),
|
forall (u v base p: list X),
|
||||||
Permutation base p -> Permutation_mapping u v base
|
Permutation base p -> Permutation_mapping u v base
|
||||||
-> Permutation_mapping u v p.
|
-> Permutation_mapping u v p.
|
||||||
|
Loading…
Reference in New Issue
Block a user