This commit is contained in:
Thomas Baruchel 2022-12-06 23:05:49 +01:00
parent 1d362f5a4d
commit 6e69a3fd13

View File

@ -1107,22 +1107,52 @@ Lemma lt_even_even : forall (a b : nat),
even a = true -> even b = true -> a < b -> S a < b.
Proof.
intros a b. intros H I J.
assert (even (S a) = false). rewrite Nat.even_succ.
rewrite <- Nat.negb_odd in H. rewrite Bool.negb_true_iff in H. apply H.
assert (S a <> b).
assert (S (S a) <= b).
rewrite <- Nat.le_succ_l in J. rewrite Nat.lt_eq_cases in J.
destruct J.
- apply H0.
- rewrite <- H0 in I. rewrite Nat.even_succ in I.
rewrite <- I in H. rewrite <- Nat.negb_even in H.
destruct (even a).
+ simpl in H. apply Bool.diff_true_false in H. contradiction H.
+ simpl in H. symmetry in H. apply Bool.diff_true_false in H. contradiction H.
Qed.
Require Import Arith_prebase.
Lemma tm_step_add_small_power :
forall (n m k j : nat),
k * 2^m < 2^n -> j < m
1 < k -> k * 2^m < 2^n -> j < m
-> nth_error (tm_step n) (k * 2^m) <> nth_error (tm_step n) (k * 2^m + 2^j).
Proof.
intros n m k j. intros H I.
intros n m k j. intros J H I.
assert (M: 0 < m-j). rewrite Nat.add_lt_mono_l with (p := j).
rewrite Arith_prebase.le_plus_minus_r_stt. rewrite Nat.add_0_r. apply I.
generalize I. apply Nat.lt_le_incl.
(*
destruct (m-j). apply Nat.lt_irrefl in M. contradiction M.
rewrite Nat.pow_succ_r. rewrite Nat.even_mul. rewrite Nat.even_2.
simpl. rewrite Bool.orb_true_r. reflexivity. apply Nat.le_0_l.
*)
(*
*)
(*
assert (0 < n-m).
rewrite Nat.add_lt_mono_l with (p := m).
rewrite Arith_prebase.le_plus_minus_r_stt. rewrite Nat.add_0_r. apply H4.
generalize H4. apply Nat.lt_le_incl.
*)
(*
assert (N: 0 < n-j). rewrite Nat.add_lt_mono_l with (p := j).
rewrite Arith_prebase.le_plus_minus_r_stt. rewrite Nat.add_0_r.
generalize I. generalize I. apply Nat.lt_trans.
apply Nat.lt_le_incl. generalize H4. generalize I. apply Nat.lt_trans.
*)
induction n.
- simpl. destruct k.
@ -1141,19 +1171,87 @@ Proof.
- rewrite tm_build.
assert (S: k * 2^m < 2^n \/ 2^n <= k * 2^m). apply Nat.lt_ge_cases.
destruct S.
+ rewrite nth_error_app1. rewrite nth_error_app1.
+
(* m < n *)
assert (N: m < n). apply Nat.lt_le_incl in H0.
apply Nat.log2_le_mono in H0.
rewrite Nat.log2_mul_pow2 in H0. rewrite Nat.log2_pow2 in H0.
generalize H0. assert (m < m + Nat.log2 k).
apply Nat.lt_add_pos_r. apply Nat.log2_pos. apply J.
generalize H1. apply Nat.lt_le_trans.
apply Nat.le_0_l. apply Nat.lt_succ_l in J. apply J.
apply Nat.le_0_l.
assert (0 < n-m).
rewrite Nat.add_lt_mono_l with (p := m).
rewrite Arith_prebase.le_plus_minus_r_stt. rewrite Nat.add_0_r. apply N.
generalize N. apply Nat.lt_le_incl.
assert (0 < n-j). rewrite Nat.add_lt_mono_l with (p := j).
rewrite Arith_prebase.le_plus_minus_r_stt. rewrite Nat.add_0_r.
generalize N. generalize I. apply Nat.lt_trans.
apply Nat.lt_le_incl. generalize N. generalize I. apply Nat.lt_trans.
rewrite nth_error_app1. rewrite nth_error_app1.
apply IHn. apply H0. rewrite tm_size_power2.
replace (k*2^m + 2^j < 2^n) with ((k*2^(m-j)+1)*(2^j) < 2^(n-j)*2^j).
apply Nat.mul_lt_mono_pos_r.
rewrite <- Nat.neq_0_lt_0. apply Nat.pow_nonzero. easy.
assert (0 < m). assert (0 <= j). apply Nat.le_0_l.
generalize I. generalize H3. apply Nat.le_lt_trans.
assert (0 < n). destruct k. apply Nat.nlt_succ_diag_l in J. contradiction J.
assert (2^0 <= (S k) * (2^m)). simpl. assert (1 <= 2^m).
replace (1) with (2^0) at 1. apply Nat.pow_le_mono_r. easy.
apply Nat.le_0_l. reflexivity.
generalize H4. apply Arith_prebase.le_plus_trans_stt.
assert (2^0 < 2^n). generalize H0. generalize H4.
apply Nat.le_lt_trans. rewrite <- Nat.pow_lt_mono_r_iff in H5.
apply H5. apply Nat.lt_1_2.
assert (S (k*2^m) < 2^n). apply lt_even_even.
rewrite Nat.even_mul.
assert (Nat.even (2^m) = true). destruct m.
* apply Nat.lt_irrefl in H3. contradiction H3.
* rewrite Nat.pow_succ_r. rewrite Nat.even_mul. rewrite Nat.even_2.
reflexivity. apply Nat.le_0_l.
* destruct m. apply Nat.lt_irrefl in H3. contradiction H3.
rewrite Nat.pow_succ_r. rewrite Nat.even_mul. rewrite Nat.even_2.
simpl. rewrite Bool.orb_true_r. reflexivity. apply Nat.le_0_l.
* destruct m. apply Nat.lt_irrefl in H3. contradiction H3.
destruct n.
apply Nat.lt_irrefl in H2. contradiction H2.
rewrite Nat.pow_succ_r. rewrite Nat.even_mul. rewrite Nat.even_2.
reflexivity. apply Nat.le_0_l.
* apply H0.
* rewrite Nat.add_1_r. apply lt_even_even. rewrite Nat.even_mul.
destruct (m-j). apply Nat.lt_irrefl in M. contradiction M.
rewrite Nat.pow_succ_r. rewrite Nat.even_mul. rewrite Nat.even_2.
simpl. rewrite Bool.orb_true_r. reflexivity. apply Nat.le_0_l.
destruct (n-j). apply Nat.lt_irrefl in H2. contradiction H2.
rewrite Nat.pow_succ_r. rewrite Nat.even_mul. rewrite Nat.even_2.
reflexivity. apply Nat.le_0_l.
apply Nat.mul_lt_mono_pos_r with (p := 2^j).
rewrite <- Nat.neq_0_lt_0. apply Nat.pow_nonzero. easy.
Nat.shiftl_mul_pow2: forall a n : nat, Nat.shiftl a n = a * 2 ^ n
rewrite <- Nat.pow_add_r.
rewrite <- Nat.mul_assoc. rewrite <- Nat.pow_add_r.
rewrite Nat.sub_add. rewrite Nat.sub_add.
apply H0.
apply Nat.lt_le_incl.
generalize N. generalize I. apply Nat.lt_trans.
apply Nat.lt_le_incl. apply I.
*