This commit is contained in:
Thomas Baruchel 2023-10-20 23:56:27 +02:00
parent 8f1fd646db
commit 69549d5bfa

197
src/permutations.v Normal file
View File

@ -0,0 +1,197 @@
Require Import Nat.
Require Import PeanoNat.
Require Import List.
Import ListNotations.
(*
Definition of a permutation;
We call a list a "permutation" iff it is a permutation
of integers 0, 1, 2, 3, ...
Eg. [1; 3; 2; 0]
*)
Definition permutation (l: list nat) :=
forall k:nat, k < List.length l -> In k l.
Theorem perm_seq_1 : forall (l: list nat),
permutation l -> incl (seq 0 (length l)) l.
Proof.
intro l. intro H. unfold permutation in H.
induction (length l). apply incl_nil_l. rewrite seq_S. simpl.
apply incl_app. apply IHn. intro k. intro I.
apply Nat.lt_lt_succ_r in I. apply H in I. assumption.
apply incl_cons. apply H. apply Nat.lt_succ_diag_r. easy.
Qed.
Theorem perm_nodup : forall (l: list nat), permutation l -> NoDup l.
Proof.
intro l. intro H. apply perm_seq_1 in H.
apply NoDup_incl_NoDup with (l := seq 0 (length l)).
apply seq_NoDup. rewrite seq_length. easy. assumption.
Qed.
Theorem perm_seq_2 : forall (l: list nat),
permutation l -> incl l (seq 0 (length l)).
Proof.
intro l. intro H. apply NoDup_length_incl.
apply seq_NoDup. rewrite seq_length. easy.
apply perm_seq_1. assumption.
Qed.
Lemma perm_max_alt : forall (l: list nat),
permutation l -> (forall k, In k l -> k < length l).
Proof.
intro l. intro H. intro k. intro I.
apply perm_seq_2 in H. apply incl_Forall_in_iff in H.
rewrite Forall_forall in H. apply H in I. apply in_seq in I.
destruct I. assumption.
Qed.
Lemma perm_max : forall (l: list nat),
permutation l -> l <> nil -> In (length l - 1) l.
Proof.
intro l. intros H I. unfold permutation in H. apply H.
rewrite Nat.sub_1_r. apply Nat.lt_pred_l.
destruct l. contradiction I. reflexivity. easy.
Qed.
Lemma perm_max_split : forall (l: list nat),
permutation l -> l <> nil
-> exists l1 l2, l = l1 ++ [length(l) - 1] ++ l2.
Proof.
intro l. intros H I.
assert (J: In (length l - 1) l). apply perm_max; assumption.
apply In_nth with (d := 0) in J. destruct J. destruct H0.
apply nth_split with (d := 0) in H0. destruct H0. destruct H0.
destruct H0. exists x0. exists x1. rewrite H1 in H0. assumption.
Qed.
Lemma perm_max_remove : forall (l: list nat),
permutation l -> l <> nil
-> exists l1 l2, ((l = l1 ++ [length(l) - 1] ++ l2)
/\ permutation (l1++l2)).
Proof.
intro l. intros H I.
assert (J: exists l1 l2, l = l1 ++ [length l - 1] ++ l2).
apply perm_max_split; assumption.
destruct J. destruct H0. exists x. exists x0. split. assumption.
assert (J: forall k, k < length l - 1 -> In k l -> In k (x ++ x0)).
intro k. intros. rewrite H0 in H2. apply in_elt_inv in H2.
destruct H2. rewrite H2 in H1. apply Nat.lt_irrefl in H1. contradiction H1.
assumption. unfold permutation. intros.
assert (k < length l - 1). rewrite H0.
rewrite app_length. simpl. rewrite <- Nat.add_sub_assoc.
rewrite Nat.sub_1_r. rewrite Nat.pred_succ. rewrite <- app_length.
assumption. rewrite Nat.le_succ_l. apply Nat.lt_0_succ.
apply J. assumption. apply H. apply Nat.lt_lt_succ_r in H2.
rewrite Nat.sub_1_r in H2. rewrite Nat.succ_pred in H2.
assumption. destruct l. contradiction I. reflexivity. easy.
Qed.
Lemma perm_max_insert : forall (l1 l2: list nat),
permutation (l1 ++ l2) -> permutation (l1 ++ [ length (l1++l2) ] ++ l2).
Proof.
intros l1 l2. intro H. unfold permutation. intro k. intro I.
rewrite app_length in I. simpl in I. rewrite Nat.add_succ_r in I.
rewrite Nat.lt_succ_r in I. rewrite <- app_length in I.
apply Nat.le_lteq in I. destruct I. apply H in H0.
apply in_app_iff in H0. destruct H0. rewrite in_app_iff. left.
assumption. rewrite in_app_iff. right. apply in_cons. assumption.
rewrite <- H0. rewrite in_app_iff. right. apply in_eq.
Qed.
Lemma perm_incl_incl : forall (l: list nat) (n: nat),
incl l (seq 0 n) -> incl (seq 0 n) l -> NoDup l -> permutation l.
Proof.
intros l n. intros H I J.
assert (length l <= n). replace n with (length (seq 0 n)).
apply NoDup_incl_length; assumption. apply seq_length.
assert (n <= length l). replace n with (length (seq 0 n)).
apply NoDup_incl_length. apply seq_NoDup. assumption.
apply seq_length. assert (length l = n).
apply Nat.le_antisymm; assumption.
apply incl_Forall_in_iff in I. rewrite Forall_forall in I.
unfold permutation. intro k. intro K. apply I. rewrite H2 in K.
assert (0 <= k < 0 + n). split. apply Nat.le_0_l.
assumption. apply in_seq in H3. assumption.
Qed.
Lemma perm_eq : forall (l1 l2: list nat),
permutation l1 -> permutation l2 -> length l1 = length l2
-> incl l1 l2 /\ incl l2 l1.
Proof.
intros l1 l2. intros H I J.
Admitted.
Lemma perm_incl : forall (l1 l2: list nat),
permutation l1 -> permutation l2 -> (incl l1 l2 \/ incl l2 l1).
Proof.
intros l1 l2. intros H I.
assert (length l1 < length l2 \/ length l2 <= length l1).
apply Nat.lt_ge_cases. destruct H0. left.
apply perm_seq_2 in H. apply perm_seq_1 in I.
apply incl_appl with (m := seq (length l1) (length l2 - length l1)) in H.
rewrite <- seq_app in H. rewrite Nat.add_sub_assoc in H.
rewrite Nat.add_sub_swap in H. rewrite Nat.sub_diag in H.
apply incl_tran with (m := seq 0 (length l2)); assumption.
apply Nat.le_refl. apply Nat.lt_le_incl. assumption.
apply Nat.le_lteq in H0. destruct H0. right.
apply perm_seq_2 in I. apply perm_seq_1 in H.
apply incl_appl with (m := seq (length l2) (length l1 - length l2)) in I.
rewrite <- seq_app in I. rewrite Nat.add_sub_assoc in I.
rewrite Nat.add_sub_swap in I. rewrite Nat.sub_diag in I.
apply incl_tran with (m := seq 0 (length l1)); assumption.
apply Nat.le_refl. apply Nat.lt_le_incl. assumption.
left. assert (incl l1 l2 /\ incl l2 l1).
symmetry in H0. apply perm_eq; assumption. destruct H1. assumption.
Qed.
Example test1: permutation [1;2;3;0].
Proof.
unfold permutation.
simpl. intro k. intro H.
rewrite PeanoNat.Nat.lt_succ_r in H.
rewrite PeanoNat.Nat.le_lteq in H.
rewrite PeanoNat.Nat.lt_succ_r in H.
rewrite PeanoNat.Nat.le_lteq in H.
rewrite PeanoNat.Nat.lt_succ_r in H.
rewrite PeanoNat.Nat.le_lteq in H.
rewrite PeanoNat.Nat.lt_succ_r in H.
rewrite PeanoNat.Nat.le_lteq in H.
destruct H. destruct H. destruct H. destruct H.
apply PeanoNat.Nat.nlt_0_r in H. contradiction.
right. right. right. left. easy.
left. easy. right. left. easy. right. right. left. easy.
Qed.
Example test2: permutation [].
Proof.
unfold permutation. intro k. simpl. easy.
Qed.