Update
This commit is contained in:
parent
50b0970b06
commit
61d38c396d
950
src/subsequences2.v
Normal file
950
src/subsequences2.v
Normal file
@ -0,0 +1,950 @@
|
||||
Require Import Nat.
|
||||
Require Import PeanoNat.
|
||||
Require Import List.
|
||||
Import ListNotations.
|
||||
|
||||
|
||||
Fixpoint Subsequence {X: Type} (l s : list X) : Prop :=
|
||||
match s with
|
||||
| nil => True
|
||||
| hd::tl => exists l1 l2, l = l1 ++ (hd::l2) /\ Subsequence l2 tl
|
||||
end.
|
||||
|
||||
|
||||
|
||||
Theorem Subsequence_nil_r {X: Type} : forall (l : list X), Subsequence l nil.
|
||||
Proof.
|
||||
intro l. reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem Subsequence_nil_cons_r {X: Type}: forall (l: list X) (a:X),
|
||||
~ Subsequence nil (a::l).
|
||||
Proof.
|
||||
intros l a. intro H. destruct H. destruct H. destruct H.
|
||||
destruct x; apply nil_cons in H; contradiction H.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem Subsequence_cons_l {X: Type} : forall (l s: list X) (a: X),
|
||||
Subsequence l s -> Subsequence (a::l) s.
|
||||
Proof.
|
||||
intros l s a. intro H. destruct s. apply Subsequence_nil_r.
|
||||
destruct H. destruct H. destruct H. exists (a::x0). exists x1. rewrite H.
|
||||
split; easy.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem Subsequence_cons_r {X: Type} : forall (l s: list X) (a: X),
|
||||
Subsequence l (a::s) -> Subsequence l s.
|
||||
Proof.
|
||||
intros l s a. intro H. simpl in H. destruct H. destruct H.
|
||||
destruct s. apply Subsequence_nil_r. destruct H. simpl in H0.
|
||||
destruct H0. destruct H0. destruct H0.
|
||||
exists (x ++ a::x2). exists x3.
|
||||
rewrite H. rewrite H0. split. rewrite <- app_assoc.
|
||||
rewrite app_comm_cons. reflexivity. assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem Subsequence_cons_eq {X: Type} : forall (l1 l2: list X) (a: X),
|
||||
Subsequence (a::l1) (a::l2) <-> Subsequence l1 l2.
|
||||
Proof.
|
||||
intros l s a. split; intro H.
|
||||
destruct H. destruct H. destruct H.
|
||||
destruct x. inversion H. assumption.
|
||||
destruct s. apply Subsequence_nil_r.
|
||||
destruct H0. destruct H0. destruct H0.
|
||||
exists (x1 ++ (a::x3)). exists x4.
|
||||
inversion H. rewrite H0. rewrite <- app_assoc.
|
||||
rewrite app_comm_cons. split; easy.
|
||||
exists nil. exists l. split; easy.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma subsequence_alt_defs {X: Type} :
|
||||
forall l s : list X,
|
||||
(exists (l1: list X) (l2 : list (list X)),
|
||||
length s = length l2
|
||||
/\ l = l1 ++ flat_map (fun e => (fst e) :: (snd e)) (combine s l2))
|
||||
->
|
||||
(exists (t: list bool),
|
||||
length t = length l /\ s = map snd (filter fst (combine t l))).
|
||||
Proof.
|
||||
intros l s. intro H. destruct H. destruct H. destruct H.
|
||||
|
||||
exists (
|
||||
(repeat false (length x)) ++
|
||||
(flat_map (fun e => true :: (repeat false (length e))) x0)).
|
||||
split.
|
||||
rewrite H0. rewrite app_length. rewrite app_length. rewrite repeat_length.
|
||||
rewrite Nat.add_cancel_l. rewrite flat_map_length. rewrite flat_map_length.
|
||||
|
||||
assert (forall v (u: list X),
|
||||
length u = length v
|
||||
-> map (fun e => length (fst e :: snd e)) (combine u v)
|
||||
= map (fun e => length (true :: repeat false (length e))) v).
|
||||
intro v. induction v; intro u; intro I.
|
||||
apply length_zero_iff_nil in I. rewrite I. reflexivity.
|
||||
destruct u. apply O_S in I. contradiction I.
|
||||
simpl. rewrite IHv. rewrite repeat_length. reflexivity.
|
||||
inversion I. reflexivity.
|
||||
|
||||
rewrite H1; inversion H; reflexivity. rewrite H0.
|
||||
assert (forall (u: list X) v w,
|
||||
filter fst (combine (repeat false (length u) ++ v) (u ++ w))
|
||||
= filter fst (combine v w)).
|
||||
intro u. induction u; intros v w. reflexivity. simpl. apply IHu.
|
||||
|
||||
assert (forall (v: list (list X)) (u : list X),
|
||||
length u = length v
|
||||
-> u = map snd (filter fst (combine
|
||||
(flat_map (fun e => true:: repeat false (length e)) v)
|
||||
(flat_map (fun e => fst e :: snd e) (combine u v))))).
|
||||
intro v. induction v; intro u; intro I.
|
||||
apply length_zero_iff_nil in I. rewrite I. reflexivity.
|
||||
destruct u. apply O_S in I. contradiction I.
|
||||
simpl. rewrite H1. rewrite <- IHv; inversion I; reflexivity.
|
||||
rewrite H1. rewrite <- H2; inversion H; reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma subsequence_alt_defs2 {X: Type} :
|
||||
forall l s : list X,
|
||||
(exists (t: list bool),
|
||||
length t = length l /\ s = map snd (filter fst (combine t l)))
|
||||
-> Subsequence l s.
|
||||
Proof.
|
||||
intros l s. intro H. destruct H. destruct H.
|
||||
|
||||
assert (I: forall u (v w: list X),
|
||||
length u = length w
|
||||
-> v = map snd (filter fst (combine u w))
|
||||
-> Subsequence w v).
|
||||
intro u. induction u; intros v w; intros I J.
|
||||
rewrite J. apply Subsequence_nil_r.
|
||||
destruct v. apply Subsequence_nil_r.
|
||||
destruct w. apply Nat.neq_succ_0 in I. contradiction I.
|
||||
destruct a. exists nil. exists w. inversion J.
|
||||
apply IHu in H3. split; inversion J; try rewrite <- H5; easy.
|
||||
inversion I. reflexivity.
|
||||
assert (Subsequence w (x0::v)). apply IHu; inversion I; easy.
|
||||
apply Subsequence_cons_l; assumption.
|
||||
apply I with (u := x); assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_flat_map {X: Type} :
|
||||
forall l s : list X, Subsequence l s
|
||||
<-> exists (l1: list X) (l2 : list (list X)),
|
||||
length s = length l2
|
||||
/\ l = l1 ++ flat_map (fun e => (fst e) :: (snd e)) (combine s l2).
|
||||
Proof.
|
||||
intros l s. split. generalize l. induction s; intro l0; intro H.
|
||||
exists l0. exists nil. split. reflexivity. rewrite app_nil_r.
|
||||
reflexivity. destruct H. destruct H. destruct H. apply IHs in H0.
|
||||
destruct H0. destruct H0. destruct H0. exists x. exists (x1::x2).
|
||||
split; simpl; [rewrite H0 | rewrite <- H1]; easy.
|
||||
intro. apply subsequence_alt_defs in H. apply subsequence_alt_defs2.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_bools {X: Type} :
|
||||
forall l s : list X, Subsequence l s
|
||||
<-> (exists (t: list bool),
|
||||
length t = length l /\ s = map snd (filter fst (combine t l))).
|
||||
Proof.
|
||||
intros l s. split; intro. apply subsequence_alt_defs.
|
||||
apply subsequence_flat_map. assumption.
|
||||
|
||||
|
||||
(** * Various definitions
|
||||
|
||||
Different definitions of a subsequence are given; they are proved
|
||||
below to be equivalent, allowing to choose the most convenient at
|
||||
any step of a proof.
|
||||
*)
|
||||
|
||||
Definition subsequence {X: Type} (l s : list X) :=
|
||||
exists (l1: list X) (l2 : list (list X)),
|
||||
length s = length l2
|
||||
/\ l = l1 ++ flat_map (fun e => (fst e) :: (snd e)) (combine s l2).
|
||||
|
||||
Definition subsequence2 {X: Type} (l s : list X) :=
|
||||
exists (t: list bool),
|
||||
length t = length l /\ s = map snd (filter fst (combine t l)).
|
||||
|
||||
|
||||
|
||||
(** * Elementary properties
|
||||
*)
|
||||
|
||||
Theorem subsequence_nil_r {X: Type}: forall (l : list X), subsequence l nil.
|
||||
Proof.
|
||||
intro l. exists l. exists nil. rewrite app_nil_r. split; easy.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence2_nil_r {X: Type} : forall (l : list X), subsequence2 l nil.
|
||||
Proof.
|
||||
intro l.
|
||||
exists (repeat false (length l)). rewrite repeat_length.
|
||||
split; try induction l; easy.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
Theorem subsequence_nil_cons_r {X: Type}: forall (l: list X) (a:X),
|
||||
~ subsequence nil (a::l).
|
||||
Proof.
|
||||
intros l a. intro H.
|
||||
destruct H. destruct H. destruct H.
|
||||
destruct x. rewrite app_nil_l in H0.
|
||||
destruct x0. apply PeanoNat.Nat.neq_succ_0 in H. contradiction H.
|
||||
apply nil_cons in H0. contradiction H0.
|
||||
apply nil_cons in H0. contradiction H0.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence2_nil_cons_r {X: Type}: forall (l: list X) (a:X),
|
||||
~ subsequence2 nil (a::l).
|
||||
Proof.
|
||||
intros l a. intro H. destruct H.
|
||||
destruct H. assert (x = nil). destruct x. reflexivity.
|
||||
apply PeanoNat.Nat.neq_succ_0 in H. contradiction H.
|
||||
rewrite H1 in H0. symmetry in H0. apply nil_cons in H0. contradiction H0.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
|
||||
Theorem subsequence_cons_l {X: Type}: forall (l s: list X) (a: X),
|
||||
subsequence l s -> subsequence (a::l) s.
|
||||
Proof.
|
||||
intros l s a. intro H. destruct H. destruct H. destruct H.
|
||||
exists (a::x). exists x0. split. assumption. rewrite H0. reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence2_cons_l {X: Type} : forall (l s: list X) (a: X),
|
||||
subsequence2 l s -> subsequence2 (a::l) s.
|
||||
Proof.
|
||||
intros l s a. intro H. destruct H. destruct H. exists (false::x).
|
||||
split; try apply eq_S; assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
Theorem subsequence_cons_r {X: Type} : forall (l s: list X) (a: X),
|
||||
subsequence l (a::s) -> subsequence l s.
|
||||
Proof.
|
||||
intros l s a. intro H. destruct H. destruct H. destruct H.
|
||||
destruct x0. apply PeanoNat.Nat.neq_succ_0 in H. contradiction H.
|
||||
exists (x++a::l0). exists x0. split. inversion H. reflexivity. rewrite H0.
|
||||
rewrite <- app_assoc. apply app_inv_head_iff. reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence2_cons_r {X: Type} : forall (l s: list X) (a: X),
|
||||
subsequence2 l (a::s) -> subsequence2 l s.
|
||||
Proof.
|
||||
intro l. induction l. intros. apply subsequence2_nil_cons_r in H.
|
||||
contradiction H. intros s a0 . intro H. destruct H. destruct H. destruct x.
|
||||
symmetry in H0. apply nil_cons in H0. contradiction H0.
|
||||
destruct b. simpl in H0. inversion H0.
|
||||
exists (false::x). split; try rewrite <- H; reflexivity.
|
||||
apply subsequence2_cons_l. apply IHl with (a := a0).
|
||||
exists x. split; inversion H; easy.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_cons_eq {X: Type} : forall (l1 l2: list X) (a: X),
|
||||
subsequence (a::l1) (a::l2) <-> subsequence l1 l2.
|
||||
Proof.
|
||||
intros l s a. split; intro H; destruct H; destruct H; destruct H.
|
||||
destruct x. destruct x0.
|
||||
apply PeanoNat.Nat.neq_succ_0 in H. contradiction H.
|
||||
inversion H0. exists l0. exists x0.
|
||||
inversion H. rewrite H3. split; reflexivity.
|
||||
destruct x0.
|
||||
apply PeanoNat.Nat.neq_succ_0 in H. contradiction H.
|
||||
exists (x1 ++ (a::l0)). exists x0. inversion H. rewrite H2.
|
||||
split. reflexivity. inversion H0. rewrite <- app_assoc.
|
||||
apply app_inv_head_iff. rewrite app_comm_cons. reflexivity.
|
||||
exists nil. exists (x::x0). simpl.
|
||||
split; [ rewrite H | rewrite H0 ]; reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence2_cons_eq {X: Type}: forall (l1 l2: list X) (a: X),
|
||||
subsequence2 (a::l1) (a::l2) <-> subsequence2 l1 l2.
|
||||
Proof.
|
||||
intros l s a. split; intro H; destruct H; destruct H.
|
||||
destruct x. inversion H0. destruct b. exists (x).
|
||||
split; inversion H; try rewrite H2; inversion H0; reflexivity.
|
||||
inversion H. assert (subsequence2 l (a::s)).
|
||||
exists x. split; assumption.
|
||||
apply subsequence2_cons_r with (a := a). assumption.
|
||||
exists (true :: x). split. apply eq_S. assumption. rewrite H0. reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
(** * Equivalence of all definitions
|
||||
|
||||
The following three implications are proved:
|
||||
|
||||
- subsequence l s -> subsequence2 l s
|
||||
- subsequence2 l s -> subsequence3 l s
|
||||
- subsequence3 l s -> subsequence l s
|
||||
*)
|
||||
|
||||
Theorem subsequence_eq_def_1 {X: Type} :
|
||||
forall l s : list X, subsequence l s -> subsequence2 l s.
|
||||
Proof.
|
||||
intros l s. intro H. destruct H. destruct H. destruct H.
|
||||
|
||||
exists (
|
||||
(repeat false (length x)) ++
|
||||
(flat_map (fun e => true :: (repeat false (length e))) x0)).
|
||||
split.
|
||||
rewrite H0. rewrite app_length. rewrite app_length. rewrite repeat_length.
|
||||
rewrite Nat.add_cancel_l. rewrite flat_map_length. rewrite flat_map_length.
|
||||
|
||||
assert (forall v (u: list X),
|
||||
length u = length v
|
||||
-> map (fun e => length (fst e :: snd e)) (combine u v)
|
||||
= map (fun e => length (true :: repeat false (length e))) v).
|
||||
intro v. induction v; intro u; intro I.
|
||||
apply length_zero_iff_nil in I. rewrite I. reflexivity.
|
||||
destruct u. apply O_S in I. contradiction I.
|
||||
simpl. rewrite IHv. rewrite repeat_length. reflexivity.
|
||||
inversion I. reflexivity.
|
||||
|
||||
rewrite H1; inversion H; reflexivity. rewrite H0.
|
||||
assert (forall (u: list X) v w,
|
||||
filter fst (combine (repeat false (length u) ++ v) (u ++ w))
|
||||
= filter fst (combine v w)).
|
||||
intro u. induction u; intros v w. reflexivity. simpl. apply IHu.
|
||||
|
||||
assert (forall (v: list (list X)) (u : list X),
|
||||
length u = length v
|
||||
-> u = map snd (filter fst (combine
|
||||
(flat_map (fun e => true:: repeat false (length e)) v)
|
||||
(flat_map (fun e => fst e :: snd e) (combine u v))))).
|
||||
intro v. induction v; intro u; intro I.
|
||||
apply length_zero_iff_nil in I. rewrite I. reflexivity.
|
||||
destruct u. apply O_S in I. contradiction I.
|
||||
simpl. rewrite H1. rewrite <- IHv; inversion I; reflexivity.
|
||||
rewrite H1. rewrite <- H2; inversion H; reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_eq_def_2 {X: Type} :
|
||||
forall l s : list X, subsequence2 l s -> subsequence3 l s.
|
||||
Proof.
|
||||
intros l s. intro H. destruct H. destruct H.
|
||||
|
||||
assert (I: forall u (v w: list X),
|
||||
length u = length w
|
||||
-> v = map snd (filter fst (combine u w))
|
||||
-> subsequence3 w v).
|
||||
intro u. induction u; intros v w; intros I J.
|
||||
rewrite J. apply subsequence3_nil_r.
|
||||
destruct v. apply subsequence3_nil_r.
|
||||
destruct w. apply Nat.neq_succ_0 in I. contradiction I.
|
||||
destruct a. exists nil. exists w. inversion J.
|
||||
apply IHu in H3. split; inversion J; try rewrite <- H5; easy.
|
||||
inversion I. reflexivity.
|
||||
assert (subsequence3 w (x0::v)). apply IHu; inversion I; easy.
|
||||
apply subsequence3_cons_l; assumption.
|
||||
apply I with (u := x); assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
(** * Decidability of all definitions
|
||||
*)
|
||||
|
||||
Theorem subsequence2_dec {X: Type}:
|
||||
(forall x y : X, {x = y} + {x <> y})
|
||||
-> forall (l s : list X), { subsequence2 l s } + { ~ subsequence2 l s }.
|
||||
Proof.
|
||||
intro H.
|
||||
intro l. induction l; intro s. destruct s. left. apply subsequence2_nil_r.
|
||||
right. apply subsequence2_nil_cons_r.
|
||||
|
||||
assert({subsequence2 l s} + {~ subsequence2 l s}). apply IHl. destruct H0.
|
||||
|
||||
rewrite <- subsequence2_cons_eq with (a := a) in s0.
|
||||
apply subsequence2_cons_r in s0. left; assumption.
|
||||
|
||||
destruct s. left. apply subsequence2_nil_r.
|
||||
assert ({x=a}+{x<>a}). apply H. destruct H0. rewrite e.
|
||||
destruct IHl with (s := s); [ left | right ];
|
||||
rewrite subsequence2_cons_eq; assumption.
|
||||
|
||||
right. intro I.
|
||||
destruct I. destruct H0. destruct x0.
|
||||
symmetry in H1. apply nil_cons in H1. contradiction H1.
|
||||
destruct b.
|
||||
inversion H1. rewrite H3 in n0. easy.
|
||||
apply n. exists x0; split; inversion H0; easy.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence3_dec {X: Type}:
|
||||
(forall x y : X, {x = y} + {x <> y})
|
||||
-> forall (l s : list X), { subsequence3 l s } + { ~ subsequence3 l s }.
|
||||
Proof.
|
||||
intro H. intros l s.
|
||||
assert ({ subsequence2 l s } + { ~ subsequence2 l s }).
|
||||
apply subsequence2_dec. assumption. destruct H0.
|
||||
apply subsequence_eq_def_2 in s0. left. assumption.
|
||||
right. intro I.
|
||||
apply subsequence_eq_def_3 in I.
|
||||
apply subsequence_eq_def_1 in I.
|
||||
apply n in I. contradiction I.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_dec {X: Type}:
|
||||
(forall x y : X, {x = y} + {x <> y})
|
||||
-> forall (l s : list X), { subsequence l s } + { ~ subsequence l s }.
|
||||
Proof.
|
||||
intro H. intros l s.
|
||||
assert ({ subsequence3 l s } + { ~ subsequence3 l s }).
|
||||
apply subsequence3_dec. assumption. destruct H0.
|
||||
apply subsequence_eq_def_3 in s0. left. assumption.
|
||||
right. intro I.
|
||||
apply subsequence_eq_def_1 in I.
|
||||
apply subsequence_eq_def_2 in I.
|
||||
apply n in I. contradiction I.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Various general properties
|
||||
*)
|
||||
|
||||
Theorem subsequence_id {X: Type} :
|
||||
forall u : list X, subsequence u u.
|
||||
Proof.
|
||||
intro u. apply subsequence_eq_def_3.
|
||||
induction u. easy. exists nil. exists u.
|
||||
split; easy.
|
||||
Qed.
|
||||
|
||||
Theorem subsequence_app {X: Type} :
|
||||
forall l1 s1 l2 s2 : list X,
|
||||
subsequence l1 s1 -> subsequence l2 s2 -> subsequence (l1++l2) (s1++s2).
|
||||
Proof.
|
||||
intros l1 s1 l2 s2. intros H I.
|
||||
apply subsequence_eq_def_3. apply subsequence_eq_def_2.
|
||||
apply subsequence_eq_def_1 in H.
|
||||
apply subsequence_eq_def_1 in I.
|
||||
destruct H. destruct I. exists (x++x0). destruct H. destruct H0.
|
||||
split. rewrite app_length. rewrite app_length.
|
||||
rewrite H. rewrite H0. reflexivity.
|
||||
rewrite H1. rewrite H2.
|
||||
|
||||
assert (J: forall (t : list bool) (u : list X) (v: list bool) (w : list X),
|
||||
length t = length u
|
||||
-> combine (t++v) (u++w) = (combine t u) ++ (combine v w)).
|
||||
intros t u v w. generalize u. induction t; intro u0; intro K.
|
||||
replace u0 with (nil : list X). reflexivity.
|
||||
destruct u0. reflexivity. apply O_S in K. contradiction K.
|
||||
destruct u0. apply PeanoNat.Nat.neq_succ_0 in K. contradiction K.
|
||||
simpl. rewrite IHt. reflexivity. inversion K. reflexivity.
|
||||
|
||||
rewrite J. rewrite filter_app. rewrite map_app. reflexivity.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_trans {X: Type} :
|
||||
forall (l1 l2 l3: list X),
|
||||
subsequence l1 l2 -> subsequence l2 l3 -> subsequence l1 l3.
|
||||
Proof.
|
||||
intros l1 l2 l3. intros H I.
|
||||
apply subsequence_eq_def_3. apply subsequence_eq_def_2.
|
||||
apply subsequence_eq_def_1 in I.
|
||||
destruct H. destruct H. destruct H. destruct I. destruct H1.
|
||||
exists (
|
||||
(repeat false (length x)) ++
|
||||
(flat_map (fun e => (fst e) :: (repeat false (length (snd e))))
|
||||
(combine x1 x0))).
|
||||
split.
|
||||
|
||||
rewrite app_length. rewrite repeat_length.
|
||||
rewrite H0. rewrite app_length. rewrite Nat.add_cancel_l.
|
||||
rewrite flat_map_length. rewrite flat_map_length.
|
||||
assert (forall (u: list X) (v: list (list X)),
|
||||
length u = length v
|
||||
-> list_sum (map (fun z => length (fst z :: snd z))
|
||||
(combine u v))
|
||||
= list_sum (map (fun z => S (length z)) v)).
|
||||
intros u v. generalize u. induction v; intro u0; intro I.
|
||||
apply length_zero_iff_nil in I. rewrite I. reflexivity.
|
||||
destruct u0. apply O_S in I. contradiction I.
|
||||
simpl. rewrite IHv. reflexivity. inversion I. reflexivity.
|
||||
rewrite H3.
|
||||
assert (forall (u: list bool) (v: list (list X)),
|
||||
length u = length v
|
||||
-> list_sum (map (fun z => length (fst z :: repeat false (length (snd z))))
|
||||
(combine u v))
|
||||
= list_sum (map (fun z => S (length z)) v)).
|
||||
intros u v. generalize u.
|
||||
induction v; intro u0; intro I; destruct u0. reflexivity.
|
||||
apply PeanoNat.Nat.neq_succ_0 in I. contradiction I.
|
||||
apply O_S in I. contradiction I.
|
||||
simpl. rewrite IHv. rewrite repeat_length. reflexivity.
|
||||
inversion I. reflexivity. rewrite H4. reflexivity.
|
||||
rewrite H1. rewrite H. reflexivity. assumption.
|
||||
|
||||
assert (K: forall (w v: list X) u,
|
||||
filter fst (combine ((repeat false (length w)) ++ u)
|
||||
(w ++ v)) = filter fst (combine u v)).
|
||||
intro w0. induction w0. reflexivity. apply IHw0.
|
||||
rewrite H2. rewrite H0.
|
||||
assert (forall (u v: list X) (w: list bool),
|
||||
map snd (filter fst (combine ((repeat false (length u)) ++ w) (u ++ v)))
|
||||
= map snd (filter fst (combine w v))).
|
||||
intro u. induction u; intros v w. reflexivity.
|
||||
apply IHu. rewrite H3.
|
||||
assert (forall (u: list bool) (v: list X) (w: list (list X)),
|
||||
length u = length w
|
||||
-> length u = length v
|
||||
-> filter fst (combine
|
||||
(flat_map
|
||||
(fun e => fst e:: (repeat false (length (snd e))))
|
||||
(combine u w))
|
||||
(flat_map (fun e => fst e :: snd e) (combine v w)))
|
||||
= filter fst (combine u v)).
|
||||
intros u v w. generalize u. generalize v.
|
||||
induction w; intros v0 u0; intros I J.
|
||||
apply length_zero_iff_nil in I. rewrite I. reflexivity.
|
||||
destruct u0. reflexivity. destruct v0.
|
||||
apply PeanoNat.Nat.neq_succ_0 in J; contradiction J.
|
||||
destruct b; simpl; rewrite K; rewrite IHw;
|
||||
inversion I; inversion J; reflexivity.
|
||||
rewrite H4; try rewrite H1; try rewrite H; reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma subsequence_length {X: Type} :
|
||||
forall (u v: list X), subsequence u v -> length v <= length u.
|
||||
Proof.
|
||||
intros u v. generalize u. induction v; intro u0; intro H. apply Nat.le_0_l.
|
||||
apply subsequence_eq_def_1 in H. apply subsequence_eq_def_2 in H.
|
||||
destruct H. destruct H. destruct H. apply subsequence_eq_def_3 in H0.
|
||||
apply IHv in H0. simpl. apply Nat.le_succ_l. rewrite H.
|
||||
rewrite app_length. apply Nat.lt_lt_add_l.
|
||||
rewrite <- Nat.le_succ_l. simpl. rewrite <- Nat.succ_le_mono.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_eq {X: Type} :
|
||||
forall (u v: list X),
|
||||
subsequence u v -> subsequence v u -> u = v.
|
||||
Proof.
|
||||
intro u. induction u; intro v; intros H I;
|
||||
apply subsequence_eq_def_1 in H; apply subsequence_eq_def_1 in I.
|
||||
|
||||
destruct v. reflexivity.
|
||||
apply subsequence2_nil_cons_r in H. contradiction H.
|
||||
destruct v. apply subsequence2_nil_cons_r in I. contradiction I.
|
||||
|
||||
destruct H. destruct H. destruct I. destruct H1.
|
||||
destruct x0. apply O_S in H. contradiction H.
|
||||
destruct x1. apply O_S in H1. contradiction H1.
|
||||
destruct b; destruct b0.
|
||||
|
||||
assert (subsequence2 u v). exists x0.
|
||||
split; inversion H; inversion H0; reflexivity.
|
||||
assert (subsequence2 v u). exists x1.
|
||||
split; inversion H1; inversion H2; reflexivity.
|
||||
apply subsequence_eq_def_2 in H3; apply subsequence_eq_def_3 in H3.
|
||||
apply subsequence_eq_def_2 in H4; apply subsequence_eq_def_3 in H4.
|
||||
apply IHu in H4. rewrite H4. inversion H0. reflexivity. assumption.
|
||||
|
||||
assert (subsequence2 u v). exists x0.
|
||||
split; inversion H; inversion H0; reflexivity.
|
||||
assert (subsequence2 v (a::u)). exists x1.
|
||||
split; inversion H1; inversion H2; reflexivity.
|
||||
assert (subsequence u (a::u)). apply subsequence_trans with (l2 := v);
|
||||
apply subsequence_eq_def_3; apply subsequence_eq_def_2; assumption.
|
||||
apply subsequence_length in H5. apply Nat.nle_succ_diag_l in H5.
|
||||
contradiction H5.
|
||||
|
||||
assert (subsequence2 u (x::v)). exists x0.
|
||||
split; inversion H; inversion H0; reflexivity.
|
||||
assert (subsequence2 v u). exists x1.
|
||||
split; inversion H1; inversion H2; reflexivity.
|
||||
assert (subsequence v (x::v)). apply subsequence_trans with (l2 := u);
|
||||
apply subsequence_eq_def_3; apply subsequence_eq_def_2; assumption.
|
||||
apply subsequence_length in H5. apply Nat.nle_succ_diag_l in H5.
|
||||
contradiction H5.
|
||||
|
||||
assert (subsequence2 u (x::v)). exists x0.
|
||||
split; inversion H; inversion H0; reflexivity.
|
||||
assert (subsequence2 v (a::u)). exists x1.
|
||||
split; inversion H1; inversion H2; reflexivity.
|
||||
apply subsequence2_cons_r in H3. apply subsequence2_cons_r in H4.
|
||||
apply subsequence_eq_def_2 in H3. apply subsequence_eq_def_2 in H4.
|
||||
apply subsequence_eq_def_3 in H3. apply subsequence_eq_def_3 in H4.
|
||||
apply IHu in H4. rewrite H4 in H0. rewrite H4 in H.
|
||||
simpl in H0. assert (subsequence2 v (x::v)). exists x0.
|
||||
split. inversion H. reflexivity. assumption.
|
||||
apply subsequence_eq_def_2 in H5. apply subsequence_eq_def_3 in H5.
|
||||
apply subsequence_length in H5. apply Nat.nle_succ_diag_l in H5.
|
||||
contradiction H5. assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_length_eq {X: Type} :
|
||||
forall (u v: list X),
|
||||
subsequence u v -> length u = length v -> u = v.
|
||||
Proof.
|
||||
intros u v. intros H I. apply subsequence_eq_def_1 in H.
|
||||
destruct H. destruct H. rewrite H0 in I.
|
||||
rewrite map_length in I.
|
||||
replace (length u) with (length (combine x u)) in I.
|
||||
symmetry in I. apply filter_length_forallb in I.
|
||||
apply forallb_filter_id in I. rewrite I in H0.
|
||||
|
||||
assert (J: forall (a: list bool) (b: list X),
|
||||
length a = length b -> b = map snd (combine a b)).
|
||||
intro a. induction a; intro b; intro J.
|
||||
symmetry in J. apply length_zero_iff_nil in J. rewrite J. reflexivity.
|
||||
destruct b. inversion J. simpl. rewrite <- IHa. reflexivity.
|
||||
inversion J. reflexivity. rewrite H0. apply J. assumption.
|
||||
|
||||
rewrite combine_length. rewrite H. apply PeanoNat.Nat.min_id.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_in {X: Type} :
|
||||
forall (u: list X) a, In a u <-> subsequence u [a].
|
||||
Proof.
|
||||
intros u a. split.
|
||||
induction u; intro H. apply in_nil in H. contradiction.
|
||||
destruct H. rewrite H. exists nil. exists [u]. split. reflexivity.
|
||||
simpl. rewrite app_nil_r. reflexivity. apply subsequence_cons_l.
|
||||
apply IHu. assumption.
|
||||
intro H. destruct H. destruct H. destruct H. rewrite H0. apply in_or_app.
|
||||
right. destruct x0. apply PeanoNat.Nat.neq_succ_0 in H. contradiction.
|
||||
left. reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_rev {X: Type} :
|
||||
forall (u v: list X), subsequence u v <-> subsequence (rev u) (rev v).
|
||||
Proof.
|
||||
assert (MAIN: forall (u v: list X),
|
||||
subsequence u v -> subsequence (rev u) (rev v)).
|
||||
intros u v. intro H.
|
||||
apply subsequence_eq_def_3. apply subsequence_eq_def_2.
|
||||
apply subsequence_eq_def_1 in H. destruct H. destruct H.
|
||||
exists (rev x). split. rewrite rev_length. rewrite rev_length.
|
||||
assumption. rewrite H0.
|
||||
|
||||
assert (LEMMA : forall (l1: list bool) (l2: list X),
|
||||
length l1 = length l2
|
||||
-> combine (rev l1) (rev l2) = rev (combine l1 l2)).
|
||||
intro l1. induction l1; intro l2; intro I. reflexivity.
|
||||
destruct l2. inversion I. inversion I. apply IHl1 in H2.
|
||||
simpl.
|
||||
assert (LEMMA2 : forall (u w : list bool) (v x : list X),
|
||||
length u = length v
|
||||
-> combine (u ++ w) (v ++ x) = (combine u v) ++ (combine w x)).
|
||||
intro u0. induction u0; intros w v0 x1; intro J.
|
||||
symmetry in J. apply length_zero_iff_nil in J. rewrite J.
|
||||
reflexivity. destruct v0. inversion J. inversion J.
|
||||
apply IHu0 with (w := w) (x := x1) in H3. simpl. rewrite H3.
|
||||
reflexivity. rewrite LEMMA2. rewrite IHl1. reflexivity.
|
||||
inversion I. reflexivity. rewrite rev_length. rewrite rev_length.
|
||||
inversion I. reflexivity. rewrite LEMMA. rewrite <- map_rev.
|
||||
assert (LEMMA3: forall v (w: list (bool * X)),
|
||||
rev (filter v w) = filter v (rev w)).
|
||||
intros v0 w. induction w. reflexivity. simpl. rewrite filter_app.
|
||||
simpl. destruct (v0 a). simpl. rewrite IHw. reflexivity.
|
||||
rewrite IHw. symmetry. apply app_nil_r. rewrite LEMMA3.
|
||||
reflexivity. assumption.
|
||||
split. apply MAIN. intro H. apply MAIN in H.
|
||||
rewrite rev_involutive in H. rewrite rev_involutive in H.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_map {X Y: Type} :
|
||||
forall (u v: list X) (f: X -> Y),
|
||||
subsequence u v -> subsequence (map f u) (map f v).
|
||||
Proof.
|
||||
intros u v. generalize u. induction v; intros u0 f; intro H.
|
||||
apply subsequence_nil_r. apply subsequence_eq_def_3.
|
||||
apply subsequence_eq_def_1 in H. apply subsequence_eq_def_2 in H.
|
||||
destruct H. destruct H. destruct H.
|
||||
exists (map f x). exists (map f x0). split.
|
||||
rewrite <- map_cons. rewrite <- map_app. rewrite H. reflexivity.
|
||||
apply subsequence_eq_def_2. apply subsequence_eq_def_1.
|
||||
apply IHv. apply subsequence_eq_def_3. assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_double_cons {X: Type} :
|
||||
forall (u v: list X) a, subsequence (a::u) (a::v) <-> subsequence u v.
|
||||
Proof.
|
||||
intros u v a. split; intro H. destruct H. destruct H. destruct H.
|
||||
destruct x; destruct x0. symmetry in H0. apply nil_cons in H0.
|
||||
contradiction. inversion H0.
|
||||
exists l. exists x0. split. inversion H. reflexivity. reflexivity.
|
||||
apply PeanoNat.Nat.neq_succ_0 in H. contradiction.
|
||||
inversion H0. exists (x1++x::l). exists x0. split. inversion H.
|
||||
reflexivity. rewrite <- app_assoc. reflexivity.
|
||||
apply subsequence_eq_def_3. exists nil. exists u.
|
||||
split. reflexivity. apply subsequence_eq_def_2. apply subsequence_eq_def_1.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_filter {X: Type} :
|
||||
forall (u v: list X) f, subsequence (filter f u) v -> subsequence u v.
|
||||
Proof.
|
||||
intro u. induction u; intros v f; intro H. assumption.
|
||||
simpl in H. destruct (f a). assert (K := H).
|
||||
apply subsequence_eq_def_1 in H. destruct H. destruct H.
|
||||
destruct x. apply O_S in H. contradiction. destruct b.
|
||||
destruct v. apply subsequence_nil_r. assert (x0 = a). inversion H0.
|
||||
reflexivity. rewrite H1.
|
||||
apply subsequence_eq_def_3. exists nil. exists u. split. reflexivity.
|
||||
apply subsequence_eq_def_2. apply subsequence_eq_def_1.
|
||||
apply IHu with (f := f). rewrite H1 in K.
|
||||
apply subsequence_double_cons in K. assumption.
|
||||
apply subsequence_cons_l. apply IHu with (f := f).
|
||||
apply subsequence_eq_def_3. apply subsequence_eq_def_2.
|
||||
exists x. split. inversion H. reflexivity. apply H0.
|
||||
apply subsequence_cons_l. apply IHu with (f := f). assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_incl {X: Type} :
|
||||
forall (u v: list X), subsequence u v -> incl v u.
|
||||
Proof.
|
||||
intros u v. intro H. intro a. intro I.
|
||||
generalize I. generalize H. generalize u.
|
||||
induction v; intros u0; intros J K. inversion K.
|
||||
destruct K. rewrite H0 in J.
|
||||
apply subsequence_eq_def_1 in J.
|
||||
apply subsequence_eq_def_2 in J.
|
||||
destruct J. destruct H1. destruct H1. rewrite H1.
|
||||
|
||||
assert (J: forall (u v : list X) w, In w (u++w::v)).
|
||||
intro u1. induction u1; intros v0 w. left. reflexivity.
|
||||
right. apply IHu1. apply J. apply IHv.
|
||||
|
||||
apply subsequence_cons_r in H. assumption. assumption.
|
||||
apply subsequence_cons_r in J. assumption. assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_split {X: Type} :
|
||||
forall (u v w: list X),
|
||||
subsequence (u++v) w
|
||||
-> (exists a b, w = a++b /\ (subsequence u a) /\ subsequence v b).
|
||||
Proof.
|
||||
intros u v w. intro H.
|
||||
apply subsequence_eq_def_1 in H. destruct H. destruct H.
|
||||
|
||||
assert (forall (b: list bool) (u v: list X),
|
||||
length b = length (u++v)
|
||||
-> exists x y, b = x++y /\ length x = length u /\ length y = length v).
|
||||
intros b u0 v0. intro I. rewrite app_length in I.
|
||||
exists (firstn (length u0) b). exists (skipn (length u0) b).
|
||||
split. symmetry. apply firstn_skipn. split.
|
||||
rewrite firstn_length_le. reflexivity. rewrite I.
|
||||
apply PeanoNat.Nat.le_add_r. rewrite skipn_length.
|
||||
rewrite I. rewrite Nat.add_sub_swap. rewrite PeanoNat.Nat.sub_diag.
|
||||
reflexivity. apply le_n.
|
||||
apply H1 in H. destruct H. destruct H. destruct H. destruct H2.
|
||||
|
||||
exists (map snd (filter fst (combine x0 u))).
|
||||
exists (map snd (filter fst (combine x1 v))).
|
||||
rewrite <- map_app. rewrite <- filter_app.
|
||||
|
||||
assert (L: forall (g i: list bool) (h j: list X), length g = length h
|
||||
-> (combine g h) ++ (combine i j) = combine (g++i) (h++j)).
|
||||
intro g. induction g; intros i h j; intro I.
|
||||
symmetry in I. apply length_zero_iff_nil in I. rewrite I. reflexivity.
|
||||
destruct h. apply PeanoNat.Nat.neq_succ_0 in I. contradiction.
|
||||
simpl. rewrite IHg. reflexivity. inversion I. reflexivity.
|
||||
rewrite L. rewrite <- H. split. assumption.
|
||||
split; apply subsequence_eq_def_3; apply subsequence_eq_def_2;
|
||||
[ exists x0 | exists x1]; split; try assumption; reflexivity.
|
||||
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_split_2 {X: Type} :
|
||||
forall (u v w: list X),
|
||||
subsequence u (v++w)
|
||||
-> (exists a b, u = a++b /\ (subsequence a v) /\ subsequence b w).
|
||||
Proof.
|
||||
intros u v w. intro H. destruct H. destruct H. destruct H.
|
||||
exists (x ++
|
||||
flat_map (fun e : X * list X => fst e :: snd e) (combine v x0)).
|
||||
exists (
|
||||
flat_map (fun e : X * list X => fst e :: snd e)
|
||||
(combine w (skipn (length v) x0))).
|
||||
split. rewrite H0. rewrite <- app_assoc. apply app_inv_head_iff.
|
||||
rewrite <- flat_map_app.
|
||||
|
||||
assert (L: forall (w y: list X) (z : list (list X)),
|
||||
length z = length w + length y ->
|
||||
combine (w ++ y) z = combine w z ++ combine y (skipn (length w) z)).
|
||||
intros w0. induction w0; intros y z; intro I. reflexivity.
|
||||
destruct z. simpl. rewrite combine_nil. reflexivity.
|
||||
simpl. rewrite IHw0. reflexivity. inversion I. reflexivity.
|
||||
rewrite L. reflexivity. rewrite app_length in H. rewrite H.
|
||||
reflexivity. split.
|
||||
exists x. exists (firstn (length v) x0). split.
|
||||
rewrite firstn_length. rewrite <- H. rewrite app_length.
|
||||
rewrite min_l. reflexivity. apply PeanoNat.Nat.le_add_r.
|
||||
rewrite combine_firstn_l. reflexivity.
|
||||
|
||||
exists nil. exists (skipn (length v) x0). split.
|
||||
rewrite app_length in H. rewrite skipn_length. rewrite <- H.
|
||||
rewrite PeanoNat.Nat.add_sub_swap. rewrite PeanoNat.Nat.sub_diag.
|
||||
reflexivity. reflexivity. reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_filter_2 {X: Type} :
|
||||
forall (u v: list X) f,
|
||||
subsequence u v -> subsequence (filter f u) (filter f v).
|
||||
Proof.
|
||||
intros u v. generalize u. induction v; intros u0 f; intro H.
|
||||
apply subsequence_nil_r.
|
||||
|
||||
assert (f a = true \/ f a = false).
|
||||
destruct (f a); [ left | right ]; reflexivity. destruct H0.
|
||||
simpl. rewrite H0.
|
||||
replace (a::v) with ([a] ++ v) in H. apply subsequence_split_2 in H.
|
||||
destruct H. destruct H. destruct H. destruct H1.
|
||||
|
||||
assert (subsequence ((filter f x) ++ (filter f x0))
|
||||
((filter f [a]) ++ (filter f v))).
|
||||
apply subsequence_app. simpl. rewrite H0.
|
||||
apply subsequence_incl in H1. apply incl_cons_inv in H1. destruct H1.
|
||||
assert (In a (filter f x)). apply filter_In. split; assumption.
|
||||
apply subsequence_in. assumption. apply IHv. assumption.
|
||||
rewrite <- filter_app in H3. rewrite <- H in H3. simpl in H3.
|
||||
rewrite H0 in H3. assumption. reflexivity.
|
||||
simpl. rewrite H0. apply IHv. apply subsequence_cons_r in H.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_add {X: Type} :
|
||||
forall (u v w: list X) x, subsequence u v -> Add x u w -> subsequence w v.
|
||||
Proof.
|
||||
intros u v w. generalize u v.
|
||||
induction w; intros u0 v0 x; intros H I; inversion I.
|
||||
rewrite <- H2. apply subsequence_cons_l. rewrite <- H3. assumption.
|
||||
|
||||
assert (J := H). apply subsequence_eq_def_1 in H. rewrite <- H1 in H.
|
||||
rewrite H0 in H. destruct H. destruct H.
|
||||
destruct x1. apply O_S in H. contradiction. destruct b.
|
||||
rewrite H4. simpl. apply subsequence_double_cons.
|
||||
apply IHw with (u := l) (x := x).
|
||||
apply subsequence_eq_def_3. apply subsequence_eq_def_2. exists x1.
|
||||
inversion H. split; reflexivity. assumption.
|
||||
apply subsequence_cons_r with (a:=a).
|
||||
rewrite H4. simpl. apply subsequence_double_cons.
|
||||
apply IHw with (u := l) (x := x).
|
||||
apply subsequence_eq_def_3. apply subsequence_eq_def_2. exists x1.
|
||||
inversion H. split; reflexivity. assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_nodup {X: Type} :
|
||||
forall (u v: list X), subsequence u v -> NoDup u -> NoDup v.
|
||||
Proof.
|
||||
intros u v. intros H I. apply subsequence_eq_def_1 in H.
|
||||
destruct H. destruct H. rewrite H0.
|
||||
|
||||
assert (J: forall z (q: list X),
|
||||
NoDup q -> NoDup (map snd (filter fst (combine z q)))).
|
||||
intro z. induction z; intro q; intro J. apply NoDup_nil.
|
||||
destruct q. rewrite combine_nil. apply NoDup_nil.
|
||||
destruct a. simpl. rewrite NoDup_cons_iff in J. destruct J.
|
||||
apply IHz in H2. apply NoDup_cons.
|
||||
|
||||
assert (K: forall (q: list X) g h,
|
||||
~ In g q -> ~ In g (map snd (filter fst (combine h q)))).
|
||||
intro q0. induction q0; intros g h; intro J.
|
||||
rewrite combine_nil. easy. destruct h. easy. destruct b.
|
||||
replace (map snd (filter fst (combine (true :: h) (a :: q0))))
|
||||
with (a::(map snd (filter fst (combine h q0)))).
|
||||
rewrite not_in_cons. split;
|
||||
rewrite not_in_cons in J; destruct J. assumption. apply IHq0.
|
||||
assumption. reflexivity. apply IHq0.
|
||||
rewrite not_in_cons in J; destruct J. assumption. apply K. assumption.
|
||||
assumption. simpl. apply IHz.
|
||||
rewrite NoDup_cons_iff in J. destruct J. assumption. apply J.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_in_2 {X: Type} :
|
||||
forall (u v: list X) a, subsequence u v -> In a v -> In a u.
|
||||
Proof.
|
||||
intros u v. generalize u. induction v; intros u0 a0; intros H I.
|
||||
contradiction I. destruct I.
|
||||
apply subsequence_eq_def_1 in H. apply subsequence_eq_def_2 in H.
|
||||
destruct H. destruct H. destruct H. rewrite H. rewrite H0.
|
||||
apply in_elt. apply IHv. apply subsequence_cons_r in H.
|
||||
assumption. assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_not_in {X: Type} :
|
||||
forall (u v: list X) a, subsequence u v -> ~ In a u -> ~ In a v.
|
||||
Proof.
|
||||
intros u v. generalize u. induction v; intros u0 a0; intros H I.
|
||||
easy. apply not_in_cons. split. apply subsequence_incl in H.
|
||||
apply incl_cons_inv in H. destruct H.
|
||||
|
||||
assert (forall z (x y: X), In x z -> ~ In y z -> x <> y).
|
||||
intro z. induction z; intros x y; intros J K. inversion J.
|
||||
apply in_inv in J. destruct J. rewrite <- H1.
|
||||
apply not_in_cons in K. destruct K. apply not_eq_sym. assumption.
|
||||
apply IHz. assumption.
|
||||
apply not_in_cons in K. destruct K. assumption. apply not_eq_sym.
|
||||
generalize I. generalize H. apply H1. generalize I. apply IHv.
|
||||
apply subsequence_cons_r in H. assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_as_filter {X: Type} :
|
||||
forall (u: list X) f, subsequence u (filter f u).
|
||||
Proof.
|
||||
intros u f. apply subsequence_eq_def_3. apply subsequence_eq_def_2.
|
||||
exists (map f u). split. apply map_length.
|
||||
induction u. reflexivity. simpl. destruct (f a).
|
||||
simpl. rewrite IHu. reflexivity. assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_as_partition {X: Type} :
|
||||
forall (u v w: list X) f,
|
||||
(v, w) = partition f u -> (subsequence u v) /\ (subsequence u w).
|
||||
Proof.
|
||||
intros u v w f. intro H. rewrite partition_as_filter in H. split.
|
||||
replace v with (fst (v, w)). rewrite H. simpl.
|
||||
apply subsequence_as_filter. reflexivity.
|
||||
replace w with (snd (v, w)). rewrite H. simpl.
|
||||
apply subsequence_as_filter. reflexivity.
|
||||
Qed.
|
Loading…
Reference in New Issue
Block a user