Update
This commit is contained in:
parent
55180d7db3
commit
5212fb691f
@ -445,26 +445,26 @@ Proof.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Theorem subsequence_double_cons {X: Type} :
|
||||
forall (u v: list X) a, subsequence (a::u) (a::v) <-> subsequence u v.
|
||||
Theorem Subsequence_double_cons {X: Type} :
|
||||
forall (u v: list X) a, Subsequence (a::u) (a::v) <-> Subsequence u v.
|
||||
Proof.
|
||||
intros u v a. split; intro H. destruct H. destruct H. destruct H.
|
||||
intros u v a. rewrite Subsequence_flat_map. rewrite Subsequence_flat_map.
|
||||
split; intro H. destruct H. destruct H. destruct H.
|
||||
destruct x; destruct x0. symmetry in H0. apply nil_cons in H0.
|
||||
contradiction. inversion H0.
|
||||
exists l. exists x0. split. inversion H. reflexivity. reflexivity.
|
||||
apply PeanoNat.Nat.neq_succ_0 in H. contradiction.
|
||||
inversion H0. exists (x1++x::l). exists x0. split. inversion H.
|
||||
reflexivity. rewrite <- app_assoc. reflexivity.
|
||||
apply subsequence_eq_def_3. exists nil. exists u.
|
||||
split. reflexivity. apply subsequence_eq_def_2. apply subsequence_eq_def_1.
|
||||
rewrite <- Subsequence_flat_map. exists nil. exists u.
|
||||
split. reflexivity. apply Subsequence_flat_map.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Theorem subsequence_filter {X: Type} :
|
||||
forall (u v: list X) f, subsequence (filter f u) v -> subsequence u v.
|
||||
Proof.
|
||||
|
Loading…
x
Reference in New Issue
Block a user