Update
This commit is contained in:
parent
43a2349b3a
commit
4f5b891ca2
@ -110,5 +110,97 @@ Proof.
|
|||||||
(* main part of the proof:
|
(* main part of the proof:
|
||||||
each odd palindromic factor greater than 5
|
each odd palindromic factor greater than 5
|
||||||
contains a palindromic subfactor of length 5 *)
|
contains a palindromic subfactor of length 5 *)
|
||||||
|
pose (t := length a - 5). assert (Nat.even t = true).
|
||||||
|
unfold t. rewrite Nat.even_sub. rewrite <- Nat.negb_odd.
|
||||||
|
rewrite J. reflexivity. generalize H0.
|
||||||
|
apply Nat.lt_le_incl.
|
||||||
|
|
||||||
|
pose (u := firstn (Nat.div2 t) a).
|
||||||
|
pose (v := firstn 5 (skipn (Nat.div2 t) a)).
|
||||||
|
pose (w := skipn (Nat.div2 t + 5) a).
|
||||||
|
|
||||||
|
assert (a = u ++ v ++ w).
|
||||||
|
unfold u. unfold v. unfold w.
|
||||||
|
rewrite firstn_skipn_comm.
|
||||||
|
replace (Nat.div2 t) with (min (Nat.div2 t) (Nat.div2 t + 5)) at 1.
|
||||||
|
rewrite <- firstn_firstn. rewrite app_assoc. rewrite firstn_skipn.
|
||||||
|
rewrite firstn_skipn. reflexivity.
|
||||||
|
apply Nat.min_l. rewrite <- Nat.add_0_r at 1.
|
||||||
|
apply Nat.add_le_mono_l. apply le_0_n.
|
||||||
|
|
||||||
|
assert (Nat.Even (length a - 5)).
|
||||||
|
apply Nat.EvenT_Even. apply Nat.even_EvenT. rewrite Nat.even_sub.
|
||||||
|
rewrite <- Nat.negb_odd. rewrite J. reflexivity.
|
||||||
|
apply Nat.lt_le_incl. assumption.
|
||||||
|
|
||||||
|
assert (length v = 5). unfold v. apply firstn_length_le.
|
||||||
|
rewrite skipn_length. unfold t.
|
||||||
|
rewrite Nat.mul_le_mono_pos_l with (p := 2).
|
||||||
|
rewrite Nat.mul_sub_distr_l.
|
||||||
|
replace (2 * Nat.div2 (length a - 5))
|
||||||
|
with (Nat.double (Nat.div2 (length a - 5))).
|
||||||
|
rewrite <- Nat.Even_double.
|
||||||
|
|
||||||
|
replace (2 * length a) with ((length a + 5) + (length a - 5)).
|
||||||
|
rewrite Nat.add_sub. replace (2*5) with (5+5).
|
||||||
|
apply Nat.add_le_mono_r. apply Nat.lt_le_incl. assumption.
|
||||||
|
reflexivity. rewrite <- Nat.add_assoc.
|
||||||
|
|
||||||
|
rewrite Nat.add_sub_assoc. rewrite Nat.add_sub_swap. simpl.
|
||||||
|
rewrite Nat.add_0_r. reflexivity. apply Nat.le_refl. apply Nat.lt_le_incl.
|
||||||
|
assumption. assumption.
|
||||||
|
apply Nat.double_twice. apply Nat.lt_0_2.
|
||||||
|
|
||||||
|
assert (length u = length w). unfold u. unfold w.
|
||||||
|
rewrite firstn_length. rewrite skipn_length. rewrite Nat.min_l.
|
||||||
|
unfold t. rewrite <- Nat.mul_cancel_l with (p := 2).
|
||||||
|
rewrite <- Nat.double_twice. rewrite <- Nat.Even_double.
|
||||||
|
rewrite Nat.mul_sub_distr_l. rewrite Nat.mul_add_distr_l.
|
||||||
|
rewrite <- Nat.double_twice. rewrite <- Nat.double_twice.
|
||||||
|
rewrite <- Nat.Even_double. rewrite Nat.double_twice.
|
||||||
|
rewrite <- Nat.add_sub_swap. rewrite <- Nat.add_sub_assoc.
|
||||||
|
replace (2 * length a) with ((length a - 5) + (length a + 5)).
|
||||||
|
simpl. rewrite Nat.add_sub. reflexivity.
|
||||||
|
rewrite Nat.add_comm. rewrite <- Nat.add_assoc.
|
||||||
|
rewrite Nat.add_sub_assoc. rewrite Nat.add_sub_swap. simpl.
|
||||||
|
rewrite Nat.add_0_r. reflexivity. apply Nat.le_refl. apply Nat.lt_le_incl.
|
||||||
|
assumption. simpl. apply le_n_S. apply le_n_S. apply le_n_S. apply le_n_S.
|
||||||
|
apply le_n_S. apply le_0_n. apply Nat.lt_le_incl. assumption.
|
||||||
|
assumption. assumption. easy.
|
||||||
|
unfold t.
|
||||||
|
rewrite Nat.mul_le_mono_pos_l with (p := 2). rewrite <- Nat.double_twice.
|
||||||
|
rewrite <- Nat.Even_double. simpl. rewrite Nat.add_0_r.
|
||||||
|
rewrite <- Nat.add_0_r at 1. apply Nat.add_le_mono.
|
||||||
|
apply Nat.le_sub_l. apply le_0_n. assumption. apply Nat.lt_0_2.
|
||||||
|
|
||||||
|
assert (v = rev v). rewrite H2 in I.
|
||||||
|
rewrite rev_app_distr in I. rewrite rev_app_distr in I.
|
||||||
|
rewrite <- app_assoc in I.
|
||||||
|
|
||||||
|
assert (forall x0 x1 y0 y1 : list bool,
|
||||||
|
x0 ++ x1 = y0 ++ y1 -> length x0 = length y0 -> x0 = y0).
|
||||||
|
|
||||||
|
intro x0. induction x0. destruct y0. intros. reflexivity.
|
||||||
|
intros. inversion H7. destruct y0. intros. inversion H7.
|
||||||
|
intros. simpl in H7. apply Nat.succ_inj in H7.
|
||||||
|
rewrite <- app_comm_cons in H6.
|
||||||
|
rewrite <- app_comm_cons in H6.
|
||||||
|
|
||||||
|
destruct a0; destruct b. inversion H6.
|
||||||
|
apply IHx0 with (x1 := x1) (y1 := y1) in H7. rewrite H7. reflexivity.
|
||||||
|
assumption. inversion H6. inversion H6. inversion H6.
|
||||||
|
apply IHx0 with (x1 := x1) (y1 := y1) in H7. rewrite H7. reflexivity.
|
||||||
|
assumption.
|
||||||
|
|
||||||
|
assert (u = rev w). generalize H5. rewrite <- rev_length with (l := w).
|
||||||
|
generalize I. apply H6.
|
||||||
|
rewrite H7 in I. rewrite rev_involutive in I.
|
||||||
|
apply app_inv_head in I. apply app_inv_tail in I. assumption.
|
||||||
|
|
||||||
|
assert (length v <> 5).
|
||||||
|
assert (odd (length v) = true). rewrite H4. reflexivity.
|
||||||
|
generalize H7. generalize H6. generalize H. rewrite H2.
|
||||||
|
rewrite <- app_assoc. rewrite <- app_assoc. rewrite app_assoc.
|
||||||
|
apply tm_step_palindromic_odd. rewrite H4 in H7. contradiction H7.
|
||||||
|
reflexivity.
|
||||||
|
Qed.
|
||||||
|
Loading…
Reference in New Issue
Block a user