Update
This commit is contained in:
parent
7fc5c18623
commit
4d5823ea0d
@ -2535,7 +2535,26 @@ Proof.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma tm_step_palindromic_power2_odd_beta :
|
||||
forall (m n : nat) (hd a tl : list bool),
|
||||
tm_step n = hd ++ a ++ (rev a) ++ tl
|
||||
-> 6 < length a
|
||||
-> length a = 2^(S (Nat.double m))
|
||||
-> length (hd ++ a) mod (2 ^ (S (Nat.double m))) = 0
|
||||
\/ 2^5 <= length a.
|
||||
Proof.
|
||||
intros m n hd a tl. intros H I J.
|
||||
|
||||
destruct m. rewrite J in I. inversion I. inversion H1. inversion H3.
|
||||
|
||||
destruct m. left.
|
||||
apply tm_step_palindrome_mod8 with (n := n) (tl := tl); assumption.
|
||||
right. rewrite J. apply Nat.pow_le_mono_r. easy.
|
||||
rewrite Nat.double_S. rewrite Nat.double_S.
|
||||
rewrite <- Nat.succ_le_mono. rewrite <- Nat.succ_le_mono.
|
||||
rewrite <- Nat.succ_le_mono. rewrite <- Nat.succ_le_mono.
|
||||
rewrite <- Nat.succ_le_mono. apply le_0_n.
|
||||
Qed.
|
||||
|
||||
|
||||
(*
|
||||
|
Loading…
Reference in New Issue
Block a user