This commit is contained in:
Thomas Baruchel 2023-02-03 18:20:34 +01:00
parent 7fc5c18623
commit 4d5823ea0d

View File

@ -2535,7 +2535,26 @@ Proof.
Qed.
Lemma tm_step_palindromic_power2_odd_beta :
forall (m n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ (rev a) ++ tl
-> 6 < length a
-> length a = 2^(S (Nat.double m))
-> length (hd ++ a) mod (2 ^ (S (Nat.double m))) = 0
\/ 2^5 <= length a.
Proof.
intros m n hd a tl. intros H I J.
destruct m. rewrite J in I. inversion I. inversion H1. inversion H3.
destruct m. left.
apply tm_step_palindrome_mod8 with (n := n) (tl := tl); assumption.
right. rewrite J. apply Nat.pow_le_mono_r. easy.
rewrite Nat.double_S. rewrite Nat.double_S.
rewrite <- Nat.succ_le_mono. rewrite <- Nat.succ_le_mono.
rewrite <- Nat.succ_le_mono. rewrite <- Nat.succ_le_mono.
rewrite <- Nat.succ_le_mono. apply le_0_n.
Qed.
(*