This commit is contained in:
Thomas Baruchel 2022-12-10 14:46:14 +01:00
parent 65adb7ec02
commit 3f9b64f4ab

View File

@ -1376,26 +1376,32 @@ Proof.
rewrite nth_error_nth' with (d := false). easy. rewrite nth_error_nth' with (d := false). easy.
rewrite tm_size_power2. apply lt_split_bits. rewrite tm_size_power2. apply lt_split_bits.
assumption. assumption. assumption. assumption. assumption. assumption.
replace (nth_error (tm_step m) (2^j)) with (nth_error (tm_step (S j)) (2^j)).
rewrite tm_build. rewrite nth_error_app2. rewrite tm_size_power2.
rewrite Nat.sub_diag. rewrite tm_step_head_1. simpl. reflexivity.
rewrite tm_size_power2. apply Nat.le_refl.
apply tm_step_stable. rewrite <- Nat.mul_1_l at 1.
rewrite Nat.pow_succ_r. rewrite <- Nat.mul_lt_mono_pos_r.
apply Nat.lt_1_2.
rewrite <- Nat.neq_0_lt_0. apply Nat.pow_nonzero. easy.
apply Nat.le_0_l. apply Nat.pow_lt_mono_r. apply Nat.lt_1_2.
assumption.
rewrite tm_step_head_1. simpl. reflexivity.
apply tm_step_stable.
generalize I. generalize H. generalize G. apply lt_split_bits.
assert (k*2^m + 2^j < 2^n).
generalize I. generalize H. generalize G. apply lt_split_bits.
assert (2^n <= 2^(m+n)). apply Nat.pow_le_mono_r. easy. apply Nat.le_add_l.
generalize H2. generalize H1. apply Nat.lt_le_trans.
Lemma lt_split_bits : forall n m k j, apply tm_step_stable. assumption.
0 < k -> j < m -> k * 2^m < 2^n -> k * 2^m +2^j < 2^n. assert (2^n <= 2^(m+n)). apply Nat.pow_le_mono_r. easy. apply Nat.le_add_l.
generalize H1. generalize I. apply Nat.lt_le_trans.
nth_error_nth': Qed.
forall [A : Type] (l : list A) [n : nat] (d : A),
n < length l -> nth_error l n = Some (nth n l d)
Theorem tm_step_stable : forall (n m k : nat),
k < 2^n -> k < 2^m -> nth_error (tm_step n) k = nth_error (tm_step m) k.
Nat.mul_le_mono_nonneg:
forall n m p q : nat,
0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q
Lemma tm_step_add_small_power2 : Lemma tm_step_add_small_power2 :