This commit is contained in:
Thomas Baruchel 2023-12-06 08:59:48 +01:00
parent 88e20199e7
commit 357c53bcf4

View File

@ -384,30 +384,24 @@ Qed.
Theorem Subsequence_in {X: Type} : Theorem Subsequence_in {X: Type} :
forall (u: list X) a, In a u <-> Subsequence u [a]. forall (u: list X) a, In a u <-> Subsequence u [a].
Proof. Proof.
intros u a. rewrite Subsequence_flat_map. split. intros u a. split. induction u; intro H.
induction u; intro H. apply in_nil in H. contradiction. apply in_nil in H. contradiction.
destruct H. rewrite H. exists nil. exists [u]. split. reflexivity. destruct H. rewrite H. exists nil. exists u.
simpl. rewrite app_nil_r. reflexivity. split. reflexivity. apply Subsequence_nil_r.
rewrite <- Subsequence_flat_map. apply Subsequence_cons_l. apply Subsequence_cons_l. apply IHu. assumption.
apply Subsequence_flat_map. apply IHu. assumption. intro H. destruct H. destruct H. destruct H. rewrite H.
intro H. destruct H. destruct H. destruct H. rewrite H0. apply in_or_app. apply in_or_app. right. apply in_eq.
right. destruct x0. apply PeanoNat.Nat.neq_succ_0 in H. contradiction.
left. reflexivity.
Qed. Qed.
Theorem Subsequence_rev {X: Type} :
forall (u v: list X), Subsequence u v <-> Subsequence (rev u) (rev v).
Theorem subsequence_rev {X: Type} :
forall (u v: list X), subsequence u v <-> subsequence (rev u) (rev v).
Proof. Proof.
assert (MAIN: forall (u v: list X), assert (MAIN: forall (u v: list X),
subsequence u v -> subsequence (rev u) (rev v)). Subsequence u v -> Subsequence (rev u) (rev v)).
intros u v. intro H. intros u v. intro H.
apply subsequence_eq_def_3. apply subsequence_eq_def_2. apply Subsequence_bools. apply Subsequence_bools in H.
apply subsequence_eq_def_1 in H. destruct H. destruct H. destruct H. destruct H.
exists (rev x). split. rewrite rev_length. rewrite rev_length. exists (rev x). split. rewrite rev_length. rewrite rev_length.
assumption. rewrite H0. assumption. rewrite H0.
@ -439,6 +433,9 @@ Proof.
Qed. Qed.
Theorem subsequence_map {X Y: Type} : Theorem subsequence_map {X Y: Type} :
forall (u v: list X) (f: X -> Y), forall (u v: list X) (f: X -> Y),
subsequence u v -> subsequence (map f u) (map f v). subsequence u v -> subsequence (map f u) (map f v).