Update
This commit is contained in:
parent
88e20199e7
commit
357c53bcf4
@ -384,30 +384,24 @@ Qed.
|
||||
Theorem Subsequence_in {X: Type} :
|
||||
forall (u: list X) a, In a u <-> Subsequence u [a].
|
||||
Proof.
|
||||
intros u a. rewrite Subsequence_flat_map. split.
|
||||
induction u; intro H. apply in_nil in H. contradiction.
|
||||
destruct H. rewrite H. exists nil. exists [u]. split. reflexivity.
|
||||
simpl. rewrite app_nil_r. reflexivity.
|
||||
rewrite <- Subsequence_flat_map. apply Subsequence_cons_l.
|
||||
apply Subsequence_flat_map. apply IHu. assumption.
|
||||
intro H. destruct H. destruct H. destruct H. rewrite H0. apply in_or_app.
|
||||
right. destruct x0. apply PeanoNat.Nat.neq_succ_0 in H. contradiction.
|
||||
left. reflexivity.
|
||||
intros u a. split. induction u; intro H.
|
||||
apply in_nil in H. contradiction.
|
||||
destruct H. rewrite H. exists nil. exists u.
|
||||
split. reflexivity. apply Subsequence_nil_r.
|
||||
apply Subsequence_cons_l. apply IHu. assumption.
|
||||
intro H. destruct H. destruct H. destruct H. rewrite H.
|
||||
apply in_or_app. right. apply in_eq.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Theorem subsequence_rev {X: Type} :
|
||||
forall (u v: list X), subsequence u v <-> subsequence (rev u) (rev v).
|
||||
Theorem Subsequence_rev {X: Type} :
|
||||
forall (u v: list X), Subsequence u v <-> Subsequence (rev u) (rev v).
|
||||
Proof.
|
||||
assert (MAIN: forall (u v: list X),
|
||||
subsequence u v -> subsequence (rev u) (rev v)).
|
||||
Subsequence u v -> Subsequence (rev u) (rev v)).
|
||||
intros u v. intro H.
|
||||
apply subsequence_eq_def_3. apply subsequence_eq_def_2.
|
||||
apply subsequence_eq_def_1 in H. destruct H. destruct H.
|
||||
apply Subsequence_bools. apply Subsequence_bools in H.
|
||||
destruct H. destruct H.
|
||||
exists (rev x). split. rewrite rev_length. rewrite rev_length.
|
||||
assumption. rewrite H0.
|
||||
|
||||
@ -439,6 +433,9 @@ Proof.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Theorem subsequence_map {X Y: Type} :
|
||||
forall (u v: list X) (f: X -> Y),
|
||||
subsequence u v -> subsequence (map f u) (map f v).
|
||||
|
Loading…
Reference in New Issue
Block a user