Update
This commit is contained in:
parent
daabce4917
commit
35672797f1
@ -530,6 +530,20 @@ Proof.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_in {X: Type} :
|
||||
forall (u: list X) a, In a u <-> subsequence u [a].
|
||||
Proof.
|
||||
intros u a. split.
|
||||
induction u; intro H. apply in_nil in H. contradiction.
|
||||
destruct H. rewrite H. exists nil. exists [u]. split. reflexivity.
|
||||
simpl. rewrite app_nil_r. reflexivity. apply subsequence_cons_l.
|
||||
apply IHu. assumption.
|
||||
intro H. destruct H. destruct H. destruct H. rewrite H0. apply in_or_app.
|
||||
right. destruct x0. apply PeanoNat.Nat.neq_succ_0 in H. contradiction.
|
||||
left. reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_rev {X: Type} :
|
||||
forall (u v: list X), subsequence u v <-> subsequence (rev u) (rev v).
|
||||
Proof.
|
||||
@ -712,20 +726,6 @@ Proof.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_in {X: Type} :
|
||||
forall (u: list X) a, In a u <-> subsequence u [a].
|
||||
Proof.
|
||||
intros u a. split.
|
||||
induction u; intro H. apply in_nil in H. contradiction.
|
||||
destruct H. rewrite H. exists nil. exists [u]. split. reflexivity.
|
||||
simpl. rewrite app_nil_r. reflexivity. apply subsequence_cons_l.
|
||||
apply IHu. assumption.
|
||||
intro H. destruct H. destruct H. destruct H. rewrite H0. apply in_or_app.
|
||||
right. destruct x0. apply PeanoNat.Nat.neq_succ_0 in H. contradiction.
|
||||
left. reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_filter_2 {X: Type} :
|
||||
forall (u v: list X) f,
|
||||
subsequence u v -> subsequence (filter f u) (filter f v).
|
||||
|
Loading…
Reference in New Issue
Block a user