Update
This commit is contained in:
parent
98162d1052
commit
34a4a7f63b
@ -785,8 +785,7 @@ Proof.
|
||||
intro z. induction z; intro q; intro J. apply NoDup_nil.
|
||||
destruct q. rewrite combine_nil. apply NoDup_nil.
|
||||
destruct a. simpl. rewrite NoDup_cons_iff in J. destruct J.
|
||||
apply IHz in H2.
|
||||
apply NoDup_cons.
|
||||
apply IHz in H2. apply NoDup_cons.
|
||||
|
||||
assert (K: forall (q: list X) g h,
|
||||
~ In g q -> ~ In g (map snd (filter fst (combine h q)))).
|
||||
@ -802,3 +801,16 @@ Proof.
|
||||
rewrite NoDup_cons_iff in J. destruct J. assumption. apply J.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
Theorem subsequence_in_2 {X: Type} :
|
||||
forall (u v: list X) a, subsequence u v -> In a v -> In a u.
|
||||
Proof.
|
||||
intros u v. generalize u. induction v; intros u0 a0; intros H I.
|
||||
contradiction I. destruct I.
|
||||
apply subsequence_eq_def_1 in H. apply subsequence_eq_def_2 in H.
|
||||
destruct H. destruct H. destruct H. rewrite H. rewrite H0.
|
||||
apply in_elt. apply IHv. apply subsequence_cons_r in H.
|
||||
assumption. assumption.
|
||||
Qed.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user