Update
This commit is contained in:
parent
a93c2a6607
commit
272abb67cf
78
thue-morse.v
78
thue-morse.v
@ -942,6 +942,76 @@ Proof.
|
||||
rewrite tm_size_power2. apply Nat.le_add_l.
|
||||
Qed.
|
||||
|
||||
Require Import Ltac2.Option.
|
||||
Lemma tm_step_next_range2_flip_two : forall (n k m : nat),
|
||||
k < 2^n -> m < 2^n ->
|
||||
nth_error (tm_step n) k = nth_error (tm_step n) m
|
||||
<->
|
||||
nth_error (tm_step (S n)) (k + 2^n)
|
||||
= nth_error (tm_step (S n)) (m + 2^n).
|
||||
Proof.
|
||||
intros n k m. intros H. intros I.
|
||||
(* Part 1: preamble *)
|
||||
|
||||
assert (nth_error (tm_step n) k <> nth_error (tm_step (S n)) (k + 2^n)).
|
||||
generalize H. apply tm_step_next_range2.
|
||||
assert (nth_error (tm_step n) m <> nth_error (tm_step (S n)) (m + 2^n)).
|
||||
generalize I. apply tm_step_next_range2.
|
||||
|
||||
assert (K: k + 2^n < 2^(S n)). simpl. rewrite Nat.add_0_r.
|
||||
generalize H. apply Nat.add_lt_mono_r.
|
||||
assert (J: m + 2^n < 2^(S n)). simpl. rewrite Nat.add_0_r.
|
||||
generalize I. apply Nat.add_lt_mono_r.
|
||||
|
||||
(* Part 2 *)
|
||||
assert (nth_error (tm_step n) k = Some (nth k (tm_step n) false)).
|
||||
generalize H. rewrite <- tm_size_power2. apply nth_error_nth'.
|
||||
assert (nth_error (tm_step n) m = Some (nth m (tm_step n) false)).
|
||||
generalize I. rewrite <- tm_size_power2. apply nth_error_nth'.
|
||||
assert (nth_error (tm_step (S n)) (k + 2 ^ n) =
|
||||
Some (nth (k + 2^n) (tm_step (S n)) false)).
|
||||
generalize K. rewrite <- tm_size_power2. rewrite <- tm_size_power2.
|
||||
apply nth_error_nth'.
|
||||
assert (nth_error (tm_step (S n)) (m + 2 ^ n) =
|
||||
Some (nth (m + 2^n) (tm_step (S n)) false)).
|
||||
generalize J. rewrite <- tm_size_power2. rewrite <- tm_size_power2.
|
||||
apply nth_error_nth'.
|
||||
rewrite H2. rewrite H3. rewrite H4. rewrite H5.
|
||||
|
||||
(* Part 3 *)
|
||||
destruct (nth k (tm_step n) false).
|
||||
destruct (nth m (tm_step n) false).
|
||||
destruct (nth (k + 2 ^ n) (tm_step (S n)) false).
|
||||
destruct (nth (m + 2 ^ n) (tm_step (S n)) false).
|
||||
easy.
|
||||
rewrite H2 in H0. rewrite H4 in H0. contradiction H0. reflexivity.
|
||||
destruct (nth (m + 2 ^ n) (tm_step (S n)) false).
|
||||
rewrite H3 in H1. rewrite H5 in H1. contradiction H1. reflexivity.
|
||||
easy.
|
||||
destruct (nth (k + 2 ^ n) (tm_step (S n)) false).
|
||||
destruct (nth (m + 2 ^ n) (tm_step (S n)) false).
|
||||
rewrite H2 in H0. rewrite H4 in H0. contradiction H0. reflexivity.
|
||||
easy.
|
||||
destruct (nth (m + 2 ^ n) (tm_step (S n)) false).
|
||||
easy.
|
||||
rewrite H3 in H1. rewrite H5 in H1. contradiction H1. reflexivity.
|
||||
destruct (nth m (tm_step n) false).
|
||||
destruct (nth (k + 2 ^ n) (tm_step (S n)) false).
|
||||
destruct (nth (m + 2 ^ n) (tm_step (S n)) false).
|
||||
rewrite H3 in H1. rewrite H5 in H1. contradiction H1. reflexivity.
|
||||
easy.
|
||||
destruct (nth (m + 2 ^ n) (tm_step (S n)) false).
|
||||
easy.
|
||||
rewrite H2 in H0. rewrite H4 in H0. contradiction H0. reflexivity.
|
||||
destruct (nth (k + 2 ^ n) (tm_step (S n)) false).
|
||||
destruct (nth (m + 2 ^ n) (tm_step (S n)) false).
|
||||
easy.
|
||||
rewrite H3 in H1. rewrite H5 in H1. contradiction H1. reflexivity.
|
||||
destruct (nth (m + 2 ^ n) (tm_step (S n)) false).
|
||||
rewrite H2 in H0. rewrite H4 in H0. contradiction H0. reflexivity.
|
||||
easy.
|
||||
Qed.
|
||||
|
||||
Lemma tm_step_next_range2_neighbor : forall (n k : nat),
|
||||
S k < 2^n ->
|
||||
nth_error (tm_step n) k = nth_error (tm_step n) (S k)
|
||||
@ -1101,19 +1171,13 @@ Proof.
|
||||
apply Nat.lt_succ_diag_r.
|
||||
generalize H1. generalize H0. apply Nat.lt_trans. rewrite <- H1.
|
||||
rewrite tm_step_repunit_index. destruct (odd n). easy. easy.
|
||||
rewrite <- J. rewrite I.
|
||||
|
||||
(*
|
||||
assert (K: nth_error (tm_step n) a = Some (odd n)). rewrite I.
|
||||
apply tm_step_repunit.
|
||||
*)
|
||||
|
||||
Lemma tm_step_next_range :
|
||||
forall (n k : nat) (b : bool),
|
||||
nth_error (tm_step n) k = Some b -> nth_error (tm_step (S n)) k = Some b.
|
||||
Theorem tm_step_stable : forall (n m k : nat),
|
||||
k < 2^n -> k < 2^m -> nth_error(tm_step n) k = nth_error (tm_step m) k.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user