Update
This commit is contained in:
parent
06acb4fd7e
commit
24c29ad273
@ -348,20 +348,12 @@ Proof.
|
|||||||
(* second case in split *)
|
(* second case in split *)
|
||||||
rewrite H0.
|
rewrite H0.
|
||||||
|
|
||||||
(*
|
|
||||||
apply FinFun.bInjective_bSurjective in H3.
|
|
||||||
apply FinFun.bSurjective_bBijective in H3. destruct H3 as [g].
|
|
||||||
destruct H3.
|
|
||||||
*)
|
|
||||||
|
|
||||||
assert (forall s, (forall y, In y s -> y < length base)
|
assert (forall s, (forall y, In y s -> y < length base)
|
||||||
-> map (nth_error base) s
|
-> map (nth_error base) s
|
||||||
= map (nth_error (map (fun e => nth (g e) base x) (seq 0 (length base)))) (map f s)).
|
= map (nth_error (map (fun e => nth (g e) base x) (seq 0 (length base)))) (map f s)).
|
||||||
intro s. rewrite map_map. induction s; intro K. reflexivity.
|
intro s. rewrite map_map. induction s; intro K. reflexivity.
|
||||||
simpl. rewrite IHs.
|
simpl. rewrite IHs.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
assert (forall q p, p < q -> nth p (seq 0 q) 0 = p).
|
assert (forall q p, p < q -> nth p (seq 0 q) 0 = p).
|
||||||
intro q. induction q; intro p'; intro J4.
|
intro q. induction q; intro p'; intro J4.
|
||||||
apply Nat.nlt_0_r in J4. contradiction.
|
apply Nat.nlt_0_r in J4. contradiction.
|
||||||
@ -378,7 +370,6 @@ Proof.
|
|||||||
with (Some ((fun e => nth (g e) base x)
|
with (Some ((fun e => nth (g e) base x)
|
||||||
(nth (f a) (seq 0 (length base)) 0))).
|
(nth (f a) (seq 0 (length base)) 0))).
|
||||||
|
|
||||||
|
|
||||||
assert (forall m n f' g',
|
assert (forall m n f' g',
|
||||||
FinFun.bFun m f' -> FinFun.bFun m g'
|
FinFun.bFun m f' -> FinFun.bFun m g'
|
||||||
-> (forall x : nat, x < m -> g' (f' x) = x /\ f' (g' x) = x)
|
-> (forall x : nat, x < m -> g' (f' x) = x /\ f' (g' x) = x)
|
||||||
@ -389,9 +380,10 @@ Proof.
|
|||||||
|
|
||||||
rewrite H6. apply H5 in N. destruct N. rewrite H8. reflexivity.
|
rewrite H6. apply H5 in N. destruct N. rewrite H8. reflexivity.
|
||||||
apply H2. assumption. rewrite H6. apply H5 in N. destruct N.
|
apply H2. assumption. rewrite H6. apply H5 in N. destruct N.
|
||||||
rewrite H7.
|
|
||||||
|
|
||||||
rewrite nth_error_nth' with (d := x).
|
symmetry. rewrite map_nth_error with (d := f a). reflexivity.
|
||||||
|
|
||||||
|
rewrite nth_error_nth' with (d := 0). rewrite H6. reflexivity.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user