This commit is contained in:
Thomas Baruchel 2023-02-08 21:07:22 +01:00
parent 30d125a9a6
commit 227425d100

View File

@ -124,8 +124,6 @@ Proof.
Qed.
Theorem tm_step_palindrome_power2_inverse' :
forall (m n k : nat) (hd tl : list bool),
tm_step n = hd ++ tl
@ -161,3 +159,63 @@ Proof.
apply tm_step_palindrome_power2_inverse.
Qed.
Lemma trailing_zeros :
forall n, 0 < n -> exists k j, n = S (Nat.double k) * 2^j.
Proof.
intro n. intro H.
assert (exists m, 2^m <= n < 2^(S m)).
exists (Nat.log2 n). apply Nat.log2_spec; assumption.
destruct H0. generalize dependent n. induction x; intros n H I.
- exists 0. exists 0. simpl.
destruct n. inversion H. destruct I. destruct n. reflexivity.
simpl in H1. rewrite <- Nat.succ_lt_mono in H1.
rewrite <- Nat.succ_lt_mono in H1. apply Nat.nlt_0_r in H1.
contradiction.
- destruct I. apply Nat.div_le_mono with (c := 2) in H0.
rewrite Nat.pow_succ_r in H0. rewrite Nat.mul_comm in H0.
rewrite Nat.div_mul in H0.
assert (Nat.Even n \/ Nat.Odd n). apply Nat.Even_or_Odd.
destruct H2. assert (U := H2).
+ apply Nat.Even_double in H2. rewrite Nat.double_twice in H2.
rewrite H2 in H1. rewrite Nat.pow_succ_r in H1.
rewrite <- Nat.mul_lt_mono_pos_l in H1. rewrite Nat.div2_div in H1.
assert (exists k j, n/2 = S (Nat.double k) * 2^j).
apply IHx. assert (0 < 2^x). rewrite <- Nat.neq_0_lt_0.
apply Nat.pow_nonzero. easy. generalize H0. generalize H3.
apply Nat.lt_le_trans. split; assumption.
destruct H3. destruct H3. exists x0. exists (S x1).
rewrite H2. rewrite Nat.pow_succ_r. symmetry. rewrite Nat.mul_comm.
rewrite <- Nat.mul_assoc. rewrite Nat.mul_cancel_l.
rewrite Nat.mul_comm. rewrite <- H3. rewrite Nat.div2_div.
reflexivity. easy. apply Nat.le_0_l. apply Nat.lt_0_2.
apply Nat.le_0_l.
+ apply Nat.Odd_double in H2.
exists (Nat.div2 n). exists 0. rewrite H2 at 1.
rewrite Nat.mul_1_r. reflexivity.
+ easy.
+ apply Nat.le_0_l.
+ easy.
Qed.
Lemma xxx :
forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ a ++ tl
-> a = rev a
-> 11 = 42.
Proof.
intros n hd a tl. intros H I.
tm_step_square_size:
forall (n k j : nat) (hd a tl : list bool),
tm_step (S n) = hd ++ a ++ a ++ tl ->
length a = S (Nat.double k) * 2 ^ j -> k = 0 \/ k = 1