This commit is contained in:
Thomas Baruchel 2023-01-11 00:16:29 +01:00
parent 40581c2449
commit 19990e26cb

View File

@ -79,6 +79,177 @@ Proof.
Qed. Qed.
Lemma tm_step_factor5 : forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ tl -> length a = 5
-> a <> [ true; false; true; false; true].
Proof.
intros n hd a tl. intros H I.
destruct n.
assert (length (tm_step 0) = length (tm_step 0)). reflexivity.
rewrite H in H0 at 2. simpl in H0.
rewrite app_length in H0. rewrite app_length in H0.
rewrite I in H0. rewrite Nat.add_shuffle3 in H0.
apply Nat.succ_inj in H0. inversion H0.
assert (even (length (tm_step (S n))) = true).
rewrite tm_size_power2. rewrite Nat.pow_succ_r. apply Nat.even_mul.
apply Nat.le_0_l.
assert (J: even (length hd) = negb (even (length tl))).
rewrite H in H0. rewrite app_length in H0. rewrite app_length in H0.
rewrite I in H0. rewrite Nat.even_add in H0. rewrite Nat.even_add in H0.
destruct (even (length hd)); destruct (even (length tl)).
inversion H0. reflexivity. reflexivity. inversion H0.
assert (K: {a=[true; false; true; false; true]}
+ {~ a=[ true; false; true; false; true]}).
apply list_eq_dec. apply bool_dec. destruct K.
assert ({even (length hd) = true} + {even (length hd) <> true}).
apply bool_dec. destruct H1.
(* case length hd is even *)
rewrite e0 in J. rewrite Nat.negb_even in J.
destruct tl. inversion J.
destruct b.
assert (count_occ Bool.bool_dec hd true = count_occ Bool.bool_dec hd false).
generalize e0. generalize H. apply tm_step_count_occ.
assert (count_occ Bool.bool_dec (hd ++ a ++ [true]) true
= count_occ Bool.bool_dec (hd ++ a ++ [true]) false).
assert (even (length (hd ++ a ++ [true])) = true).
rewrite app_length. rewrite app_length.
rewrite Nat.even_add. rewrite Nat.even_add.
rewrite e0. rewrite e. reflexivity.
replace (hd ++ a ++ true :: tl) with ((hd ++ a ++ [true]) ++ tl) in H.
generalize H2. generalize H. apply tm_step_count_occ.
rewrite <- app_assoc. apply app_inv_head_iff.
rewrite <- app_assoc. reflexivity.
rewrite count_occ_app in H2. rewrite H1 in H2.
symmetry in H2.
rewrite count_occ_app in H2. rewrite Nat.add_cancel_l in H2.
rewrite count_occ_app in H2. rewrite count_occ_app in H2.
rewrite e in H2. simpl in H2. inversion H2.
replace (hd ++ a ++ false::tl)
with (hd ++ [true; false] ++ [true; false] ++ [true; false] ++ tl) in H.
apply tm_step_cubefree in H. contradiction H. reflexivity.
simpl. apply Nat.lt_0_2.
rewrite e. reflexivity.
(* case length hd is odd *)
apply not_true_is_false in n0.
rewrite app_removelast_last with (l := hd) (d := true) in H.
rewrite app_removelast_last with (l := hd) (d := true) in n0.
rewrite app_length in n0. simpl in n0.
rewrite Nat.add_1_r in n0. rewrite Nat.even_succ in n0.
rewrite <- Nat.negb_even in n0. rewrite negb_false_iff in n0.
destruct (last hd true).
rewrite <- app_assoc in H.
assert (count_occ Bool.bool_dec (removelast hd) true
= count_occ Bool.bool_dec (removelast hd) false).
generalize n0. generalize H. apply tm_step_count_occ.
replace (removelast hd ++ [true] ++ a ++ tl)
with ((removelast hd ++ [true; true]) ++ [false;true;false;true] ++ tl) in H.
assert (count_occ Bool.bool_dec (removelast hd ++ [true;true]) true
= count_occ Bool.bool_dec (removelast hd ++ [true;true]) false).
assert (even (length (removelast hd ++ [true;true])) = true).
rewrite app_length. rewrite Nat.even_add_even. assumption.
apply Nat.EvenT_Even. apply Nat.even_EvenT. reflexivity.
generalize H2. generalize H. apply tm_step_count_occ.
rewrite count_occ_app in H2. rewrite count_occ_app in H2.
rewrite H1 in H2. rewrite Nat.add_cancel_l in H2.
simpl in H2. inversion H2.
rewrite e. rewrite app_assoc_reverse. reflexivity.
replace ((removelast hd ++ [false]) ++ a ++ tl)
with (removelast hd ++ [false; true] ++ [false; true] ++ [false;true] ++ tl) in H.
apply tm_step_cubefree in H. contradiction H. reflexivity.
simpl. apply Nat.lt_0_2.
rewrite e. rewrite app_assoc_reverse. reflexivity.
assert (length hd <> 0). destruct hd. inversion n0.
simpl. apply Nat.neq_succ_0. rewrite <- length_zero_iff_nil. assumption.
assert (length hd <> 0). destruct hd. inversion n0.
simpl. apply Nat.neq_succ_0. rewrite <- length_zero_iff_nil. assumption.
assumption.
Qed.
Lemma tm_step_factor5' : forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ tl -> length a = 5
-> a <> [ false; true; false; true; false].
Proof.
assert ({last (b :: hd) true = true} + {last (b :: hd) true <> true}).
apply bool_dec.
assert (last (b::hd) true = true). destruct H1. assumption.
apply not_true_is_false in n0.
replace ((removelast (b :: hd) ++ [last (b :: hd) true]) ++ a ++ tl)
with ((removelast (b :: hd)) ++ [false;true] ++ [false;true]
++ [false;true] ++ tl) in H.
apply tm_step_cubefree in H. contradiction H. reflexivity.
simpl. apply Nat.lt_0_2.
rewrite <- app_assoc. apply app_inv_head_iff.
rewrite n0. rewrite e. reflexivity.
rewrite H1 in H.
Lemma two_step_consecutive_identical_length :
forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ tl -> length a = 5
-> exists (b c : list bool) (d : bool), a = b ++ [d;d] ++ c.
Proof.
intros n hd a tl. intros H I.
destruct a. inversion I. destruct a. inversion I.
destruct a. inversion I. destruct a. inversion I.
destruct a. inversion I.
assert (a = nil). simpl in I.
apply Nat.succ_inj in I. apply Nat.succ_inj in I.
apply Nat.succ_inj in I. apply Nat.succ_inj in I.
apply Nat.succ_inj in I.
apply length_zero_iff_nil in I. assumption.
rewrite H0. rewrite H0 in H. rewrite H0 in I.
destruct b; destruct b0; destruct b1; destruct b2; destruct b3.
exists nil. exists (true::true::true::nil). exists true. simpl. reflexivity.
exists nil. exists (true::true::false::nil). exists true. simpl. reflexivity.
exists nil. exists (true::false::true::nil). exists true. simpl. reflexivity.
exists nil. exists (true::false::false::nil). exists true. simpl. reflexivity.
exists nil. exists (false::true::true::nil). exists true. simpl. reflexivity.
exists nil. exists (false::true::false::nil). exists true. simpl. reflexivity.
exists nil. exists (false::false::true::nil). exists true. simpl. reflexivity.
exists nil. exists (false::false::false::nil). exists true. simpl. reflexivity.
exists (true::false::nil). exists (true::nil). exists true. simpl. reflexivity.
exists (true::false::nil). exists (false::nil). exists true. simpl. reflexivity.
Lemma tm_step_square_size_3 : forall (n : nat) (hd a tl : list bool), Lemma tm_step_square_size_3 : forall (n : nat) (hd a tl : list bool),
tm_step n = hd ++ a ++ a ++ tl -> length a = 3 tm_step n = hd ++ a ++ a ++ tl -> length a = 3
-> a = true::false::true::nil \/ a = false::true::false::nil. -> a = true::false::true::nil \/ a = false::true::false::nil.