Update
This commit is contained in:
parent
40581c2449
commit
19990e26cb
@ -79,6 +79,177 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Lemma tm_step_factor5 : forall (n : nat) (hd a tl : list bool),
|
||||||
|
tm_step n = hd ++ a ++ tl -> length a = 5
|
||||||
|
-> a <> [ true; false; true; false; true].
|
||||||
|
Proof.
|
||||||
|
intros n hd a tl. intros H I.
|
||||||
|
|
||||||
|
destruct n.
|
||||||
|
assert (length (tm_step 0) = length (tm_step 0)). reflexivity.
|
||||||
|
rewrite H in H0 at 2. simpl in H0.
|
||||||
|
rewrite app_length in H0. rewrite app_length in H0.
|
||||||
|
rewrite I in H0. rewrite Nat.add_shuffle3 in H0.
|
||||||
|
apply Nat.succ_inj in H0. inversion H0.
|
||||||
|
|
||||||
|
assert (even (length (tm_step (S n))) = true).
|
||||||
|
rewrite tm_size_power2. rewrite Nat.pow_succ_r. apply Nat.even_mul.
|
||||||
|
apply Nat.le_0_l.
|
||||||
|
|
||||||
|
assert (J: even (length hd) = negb (even (length tl))).
|
||||||
|
rewrite H in H0. rewrite app_length in H0. rewrite app_length in H0.
|
||||||
|
rewrite I in H0. rewrite Nat.even_add in H0. rewrite Nat.even_add in H0.
|
||||||
|
destruct (even (length hd)); destruct (even (length tl)).
|
||||||
|
inversion H0. reflexivity. reflexivity. inversion H0.
|
||||||
|
|
||||||
|
assert (K: {a=[true; false; true; false; true]}
|
||||||
|
+ {~ a=[ true; false; true; false; true]}).
|
||||||
|
apply list_eq_dec. apply bool_dec. destruct K.
|
||||||
|
|
||||||
|
assert ({even (length hd) = true} + {even (length hd) <> true}).
|
||||||
|
apply bool_dec. destruct H1.
|
||||||
|
|
||||||
|
(* case length hd is even *)
|
||||||
|
rewrite e0 in J. rewrite Nat.negb_even in J.
|
||||||
|
destruct tl. inversion J.
|
||||||
|
destruct b.
|
||||||
|
|
||||||
|
assert (count_occ Bool.bool_dec hd true = count_occ Bool.bool_dec hd false).
|
||||||
|
generalize e0. generalize H. apply tm_step_count_occ.
|
||||||
|
|
||||||
|
assert (count_occ Bool.bool_dec (hd ++ a ++ [true]) true
|
||||||
|
= count_occ Bool.bool_dec (hd ++ a ++ [true]) false).
|
||||||
|
assert (even (length (hd ++ a ++ [true])) = true).
|
||||||
|
rewrite app_length. rewrite app_length.
|
||||||
|
rewrite Nat.even_add. rewrite Nat.even_add.
|
||||||
|
rewrite e0. rewrite e. reflexivity.
|
||||||
|
replace (hd ++ a ++ true :: tl) with ((hd ++ a ++ [true]) ++ tl) in H.
|
||||||
|
generalize H2. generalize H. apply tm_step_count_occ.
|
||||||
|
rewrite <- app_assoc. apply app_inv_head_iff.
|
||||||
|
rewrite <- app_assoc. reflexivity.
|
||||||
|
|
||||||
|
rewrite count_occ_app in H2. rewrite H1 in H2.
|
||||||
|
symmetry in H2.
|
||||||
|
rewrite count_occ_app in H2. rewrite Nat.add_cancel_l in H2.
|
||||||
|
|
||||||
|
rewrite count_occ_app in H2. rewrite count_occ_app in H2.
|
||||||
|
rewrite e in H2. simpl in H2. inversion H2.
|
||||||
|
|
||||||
|
replace (hd ++ a ++ false::tl)
|
||||||
|
with (hd ++ [true; false] ++ [true; false] ++ [true; false] ++ tl) in H.
|
||||||
|
apply tm_step_cubefree in H. contradiction H. reflexivity.
|
||||||
|
simpl. apply Nat.lt_0_2.
|
||||||
|
|
||||||
|
rewrite e. reflexivity.
|
||||||
|
|
||||||
|
(* case length hd is odd *)
|
||||||
|
apply not_true_is_false in n0.
|
||||||
|
rewrite app_removelast_last with (l := hd) (d := true) in H.
|
||||||
|
rewrite app_removelast_last with (l := hd) (d := true) in n0.
|
||||||
|
rewrite app_length in n0. simpl in n0.
|
||||||
|
rewrite Nat.add_1_r in n0. rewrite Nat.even_succ in n0.
|
||||||
|
rewrite <- Nat.negb_even in n0. rewrite negb_false_iff in n0.
|
||||||
|
|
||||||
|
destruct (last hd true).
|
||||||
|
rewrite <- app_assoc in H.
|
||||||
|
assert (count_occ Bool.bool_dec (removelast hd) true
|
||||||
|
= count_occ Bool.bool_dec (removelast hd) false).
|
||||||
|
generalize n0. generalize H. apply tm_step_count_occ.
|
||||||
|
replace (removelast hd ++ [true] ++ a ++ tl)
|
||||||
|
with ((removelast hd ++ [true; true]) ++ [false;true;false;true] ++ tl) in H.
|
||||||
|
assert (count_occ Bool.bool_dec (removelast hd ++ [true;true]) true
|
||||||
|
= count_occ Bool.bool_dec (removelast hd ++ [true;true]) false).
|
||||||
|
assert (even (length (removelast hd ++ [true;true])) = true).
|
||||||
|
rewrite app_length. rewrite Nat.even_add_even. assumption.
|
||||||
|
apply Nat.EvenT_Even. apply Nat.even_EvenT. reflexivity.
|
||||||
|
generalize H2. generalize H. apply tm_step_count_occ.
|
||||||
|
|
||||||
|
rewrite count_occ_app in H2. rewrite count_occ_app in H2.
|
||||||
|
rewrite H1 in H2. rewrite Nat.add_cancel_l in H2.
|
||||||
|
simpl in H2. inversion H2.
|
||||||
|
|
||||||
|
rewrite e. rewrite app_assoc_reverse. reflexivity.
|
||||||
|
|
||||||
|
replace ((removelast hd ++ [false]) ++ a ++ tl)
|
||||||
|
with (removelast hd ++ [false; true] ++ [false; true] ++ [false;true] ++ tl) in H.
|
||||||
|
apply tm_step_cubefree in H. contradiction H. reflexivity.
|
||||||
|
simpl. apply Nat.lt_0_2.
|
||||||
|
|
||||||
|
rewrite e. rewrite app_assoc_reverse. reflexivity.
|
||||||
|
|
||||||
|
assert (length hd <> 0). destruct hd. inversion n0.
|
||||||
|
simpl. apply Nat.neq_succ_0. rewrite <- length_zero_iff_nil. assumption.
|
||||||
|
assert (length hd <> 0). destruct hd. inversion n0.
|
||||||
|
simpl. apply Nat.neq_succ_0. rewrite <- length_zero_iff_nil. assumption.
|
||||||
|
|
||||||
|
assumption.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma tm_step_factor5' : forall (n : nat) (hd a tl : list bool),
|
||||||
|
tm_step n = hd ++ a ++ tl -> length a = 5
|
||||||
|
-> a <> [ false; true; false; true; false].
|
||||||
|
Proof.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
assert ({last (b :: hd) true = true} + {last (b :: hd) true <> true}).
|
||||||
|
apply bool_dec.
|
||||||
|
assert (last (b::hd) true = true). destruct H1. assumption.
|
||||||
|
apply not_true_is_false in n0.
|
||||||
|
|
||||||
|
replace ((removelast (b :: hd) ++ [last (b :: hd) true]) ++ a ++ tl)
|
||||||
|
with ((removelast (b :: hd)) ++ [false;true] ++ [false;true]
|
||||||
|
++ [false;true] ++ tl) in H.
|
||||||
|
apply tm_step_cubefree in H. contradiction H. reflexivity.
|
||||||
|
simpl. apply Nat.lt_0_2.
|
||||||
|
rewrite <- app_assoc. apply app_inv_head_iff.
|
||||||
|
rewrite n0. rewrite e. reflexivity.
|
||||||
|
rewrite H1 in H.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Lemma two_step_consecutive_identical_length :
|
||||||
|
forall (n : nat) (hd a tl : list bool),
|
||||||
|
tm_step n = hd ++ a ++ tl -> length a = 5
|
||||||
|
-> exists (b c : list bool) (d : bool), a = b ++ [d;d] ++ c.
|
||||||
|
Proof.
|
||||||
|
intros n hd a tl. intros H I.
|
||||||
|
destruct a. inversion I. destruct a. inversion I.
|
||||||
|
destruct a. inversion I. destruct a. inversion I.
|
||||||
|
destruct a. inversion I.
|
||||||
|
|
||||||
|
assert (a = nil). simpl in I.
|
||||||
|
apply Nat.succ_inj in I. apply Nat.succ_inj in I.
|
||||||
|
apply Nat.succ_inj in I. apply Nat.succ_inj in I.
|
||||||
|
apply Nat.succ_inj in I.
|
||||||
|
apply length_zero_iff_nil in I. assumption.
|
||||||
|
rewrite H0. rewrite H0 in H. rewrite H0 in I.
|
||||||
|
|
||||||
|
destruct b; destruct b0; destruct b1; destruct b2; destruct b3.
|
||||||
|
|
||||||
|
exists nil. exists (true::true::true::nil). exists true. simpl. reflexivity.
|
||||||
|
exists nil. exists (true::true::false::nil). exists true. simpl. reflexivity.
|
||||||
|
exists nil. exists (true::false::true::nil). exists true. simpl. reflexivity.
|
||||||
|
exists nil. exists (true::false::false::nil). exists true. simpl. reflexivity.
|
||||||
|
exists nil. exists (false::true::true::nil). exists true. simpl. reflexivity.
|
||||||
|
exists nil. exists (false::true::false::nil). exists true. simpl. reflexivity.
|
||||||
|
exists nil. exists (false::false::true::nil). exists true. simpl. reflexivity.
|
||||||
|
exists nil. exists (false::false::false::nil). exists true. simpl. reflexivity.
|
||||||
|
|
||||||
|
exists (true::false::nil). exists (true::nil). exists true. simpl. reflexivity.
|
||||||
|
exists (true::false::nil). exists (false::nil). exists true. simpl. reflexivity.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Lemma tm_step_square_size_3 : forall (n : nat) (hd a tl : list bool),
|
Lemma tm_step_square_size_3 : forall (n : nat) (hd a tl : list bool),
|
||||||
tm_step n = hd ++ a ++ a ++ tl -> length a = 3
|
tm_step n = hd ++ a ++ a ++ tl -> length a = 3
|
||||||
-> a = true::false::true::nil \/ a = false::true::false::nil.
|
-> a = true::false::true::nil \/ a = false::true::false::nil.
|
||||||
|
Loading…
Reference in New Issue
Block a user