This commit is contained in:
Thomas Baruchel 2022-11-23 21:25:05 +01:00
parent c4d2b01b84
commit 09e6059a4d

View File

@ -980,6 +980,30 @@ Proof.
- rewrite Nat.add_0_r. rewrite Nat.add_0_r. apply tm_step_next_range2_neighbor. - rewrite Nat.add_0_r. rewrite Nat.add_0_r. apply tm_step_next_range2_neighbor.
apply H. apply H.
- rewrite IHm. rewrite Nat.add_succ_r. rewrite Nat.add_succ_r. - rewrite IHm. rewrite Nat.add_succ_r. rewrite Nat.add_succ_r.
(*
assert (I: S k < 2^(S n + m)).
assert (2^n < 2^(S n + m)).
assert (n < S n + m). rewrite Nat.add_succ_comm.
apply Nat.lt_add_pos_r. apply Nat.lt_0_succ.
generalize H0. assert (1 < 2). apply Nat.lt_1_2. generalize H1.
apply Nat.pow_lt_mono_r. generalize H0. generalize H.
apply Nat.lt_trans.
generalize I.
apply tm_step_next_range2_neighbor. induction m.
S k < 2^n ->
eqb (nth k (tm_step n) false) (nth (S k) (tm_step n) false)
= eqb
(nth (k + 2^n) (tm_step (S n)) false) (nth (S k + 2^n) (tm_step (S n)) false).
*)
assert (I : eqb (nth k (tm_step (S n + m)) false) assert (I : eqb (nth k (tm_step (S n + m)) false)
(nth (S k) (tm_step (S n + m)) false) (nth (S k) (tm_step (S n + m)) false)
= eqb (nth (k + 2 ^ S (n + m)) (tm_step (S (S n + m))) false) = eqb (nth (k + 2 ^ S (n + m)) (tm_step (S (S n + m))) false)
@ -1002,18 +1026,56 @@ Proof.
apply Nat.pow_lt_mono_r. apply Nat.lt_1_2. apply M. apply Nat.pow_lt_mono_r. apply Nat.lt_1_2. apply M.
generalize L. generalize J. apply Nat.lt_trans. generalize L. generalize J. apply Nat.lt_trans.
assert (nth_error (tm_step n) k = Some(nth k (tm_step n) false)).
generalize J. rewrite <- tm_size_power2. apply nth_error_nth'.
assert (nth_error (tm_step (S n + m)) k = Some(nth k (tm_step (S n + m)) false)).
generalize K. rewrite <- tm_size_power2. apply nth_error_nth'.
(* assert (nth k (tm_step n) false = nth k (tm_step (S n + m)) false). *)
assert (nth_error (tm_step n) k = nth_error (tm_step (S n + m)) k).
generalize K. generalize J. apply tm_step_stable.
rewrite <- H2 in H1. rewrite H0 in H1. inversion H1.
replace (tm_morphism (tm_step (n + m))) with (tm_step (S n + m)) in H4.
rewrite H4.
assert (nth_error (tm_step n) (S k) = Some(nth (S k) (tm_step n) false)).
generalize H. rewrite <- tm_size_power2. apply nth_error_nth'.
assert (nth_error (tm_step (S n + m)) (S k) = Some(nth (S k) (tm_step (S n + m)) false)).
assert (2^n < 2^(S n + m)).
assert (n < S n + m). rewrite Nat.add_succ_comm.
apply Nat.lt_add_pos_r. apply Nat.lt_0_succ.
generalize H5.
apply Nat.pow_lt_mono_r.
apply Nat.lt_1_2.
assert (S k < 2^(S n + m)). generalize H5. generalize H.
apply Nat.lt_trans.
generalize K. generalize J. generalize H6. rewrite <- tm_size_power2. apply nth_error_nth'.
apply tm_step_stable.
Theorem tm_step_stable : forall (n m k : nat), assert (nth_error (tm_step n) (S k) = nth_error (tm_step (S n + m)) (S k)).
k < 2^n -> k < 2^m -> nth_error(tm_step n) k = nth_error (tm_step m) k. assert (2^n < 2^(S n + m)).
assert (n < S n + m). rewrite Nat.add_succ_comm.
apply Nat.lt_add_pos_r. apply Nat.lt_0_succ.
generalize H6.
apply Nat.pow_lt_mono_r.
apply Nat.lt_1_2.
assert (S k < 2^(S n + m)). generalize H6. generalize H.
apply Nat.lt_trans.
generalize H7. generalize H. apply tm_step_stable.
rewrite H3 in H6. rewrite H5 in H6.
inversion H6. rewrite H8.
replace (tm_morphism (tm_step (n + m))) with (tm_step (S n + m)).
reflexivity.
reflexivity.
reflexivity.
Qed.