Update
This commit is contained in:
parent
7b5ca73448
commit
09b3f8f05c
@ -2108,6 +2108,9 @@ Proof.
|
|||||||
assert (K := J).
|
assert (K := J).
|
||||||
rewrite tm_step_palindromic_length_12_prefix
|
rewrite tm_step_palindromic_length_12_prefix
|
||||||
with (n := n) (hd := hd) (tl := tl) in K.
|
with (n := n) (hd := hd) (tl := tl) in K.
|
||||||
|
assert (L: even (length hd) = true).
|
||||||
|
rewrite <- Nat.div_exact in K. rewrite K.
|
||||||
|
rewrite Nat.even_mul. reflexivity. easy.
|
||||||
|
|
||||||
destruct a. inversion I. destruct a. inversion I.
|
destruct a. inversion I. destruct a. inversion I.
|
||||||
destruct a. inversion I. destruct a. inversion I.
|
destruct a. inversion I. destruct a. inversion I.
|
||||||
@ -2133,6 +2136,15 @@ Proof.
|
|||||||
reflexivity. destruct H1. inversion H1. reflexivity.
|
reflexivity. destruct H1. inversion H1. reflexivity.
|
||||||
rewrite <- app_assoc. reflexivity. rewrite H0 in H.
|
rewrite <- app_assoc. reflexivity. rewrite H0 in H.
|
||||||
|
|
||||||
|
assert (b5 <> b6).
|
||||||
|
replace (hd ++ [b; b0; b1; b2; b3; b5; b5; b6]
|
||||||
|
++ [b6; b5; b5; b3; b2; b1; b0; b] ++ tl)
|
||||||
|
with ((hd ++ [b; b0; b1; b2; b3]) ++ [b5] ++ [b5] ++ [b6]
|
||||||
|
++ [b6; b5; b5; b3; b2;b1;b0;b] ++ tl) in H.
|
||||||
|
apply tm_step_cubefree in H. destruct b5; destruct b6.
|
||||||
|
contradiction H. reflexivity. easy. easy. contradiction H. reflexivity.
|
||||||
|
apply Nat.lt_0_1. rewrite <- app_assoc. reflexivity.
|
||||||
|
|
||||||
assert (b5 <> b3).
|
assert (b5 <> b3).
|
||||||
replace (hd ++ [b; b0; b1; b2; b3; b5; b5; b6]
|
replace (hd ++ [b; b0; b1; b2; b3; b5; b5; b6]
|
||||||
++ [b6; b5; b5; b3; b2; b1; b0; b] ++ tl)
|
++ [b6; b5; b5; b3; b2; b1; b0; b] ++ tl)
|
||||||
@ -2142,8 +2154,60 @@ Proof.
|
|||||||
contradiction H. reflexivity. easy. easy. contradiction H. reflexivity.
|
contradiction H. reflexivity. easy. easy. contradiction H. reflexivity.
|
||||||
apply Nat.lt_0_1. rewrite <- app_assoc. reflexivity.
|
apply Nat.lt_0_1. rewrite <- app_assoc. reflexivity.
|
||||||
|
|
||||||
|
assert (b3 = b6). destruct b3; destruct b5; destruct b6.
|
||||||
|
contradiction H1. reflexivity. contradiction H2. reflexivity.
|
||||||
|
reflexivity. contradiction H1. reflexivity.
|
||||||
|
contradiction H1. reflexivity. reflexivity.
|
||||||
|
contradiction H2. reflexivity. contradiction H1. reflexivity.
|
||||||
|
rewrite H3 in H.
|
||||||
|
|
||||||
|
assert (b0 = b1).
|
||||||
|
replace (hd ++ [b; b0; b1; b2; b6; b5; b5; b6]
|
||||||
|
++ [b6; b5; b5; b6; b2; b1; b0; b] ++ tl)
|
||||||
|
with ((hd ++ [b]) ++ [b0; b1; b2; b6]
|
||||||
|
++ [b5; b5; b6; b6; b5; b5; b6; b2; b1; b0; b] ++ tl) in H.
|
||||||
|
assert (length (hd ++ [b]) mod 4 = 1).
|
||||||
|
rewrite app_length. rewrite <- Nat.add_mod_idemp_l. rewrite K.
|
||||||
|
reflexivity. easy.
|
||||||
|
assert (exists x, firstn 2 [b0; b1; b2; b6] = [x; x]).
|
||||||
|
generalize H4.
|
||||||
|
apply tm_step_factor4_1mod4 with (n' := n)
|
||||||
|
(y := [b5; b5; b6; b6; b5; b5; b6; b2; b1; b0; b] ++ tl). assumption.
|
||||||
|
reflexivity. destruct H5. inversion H5. reflexivity.
|
||||||
|
rewrite <- app_assoc. reflexivity. rewrite H4 in H.
|
||||||
|
|
||||||
|
assert ({b2=b6} + {~ b2=b6}). apply bool_dec. destruct H5. rewrite e in H.
|
||||||
|
replace (hd ++ [b; b1; b1; b6; b6; b5; b5; b6]
|
||||||
|
++ [b6; b5; b5; b6; b6; b1; b1; b] ++ tl)
|
||||||
|
with ((hd ++ [b; b1; b1]) ++ [b6; b6; b5; b5]
|
||||||
|
++ [b6; b6; b5; b5] ++ [b6; b6; b1; b1; b] ++ tl) in H.
|
||||||
|
assert (even (length ((hd ++ [b; b1; b1]) ++ [b6; b6; b5; b5])) = true).
|
||||||
|
assert (0 < length ([b6; b6; b5; b5])). apply Nat.lt_0_succ.
|
||||||
|
generalize H5. generalize H. apply tm_step_square_pos.
|
||||||
|
rewrite app_length in H5. rewrite app_length in H5.
|
||||||
|
rewrite <- Nat.add_assoc in H5. rewrite Nat.even_add in H5.
|
||||||
|
rewrite L in H5. inversion H5. rewrite <- app_assoc. reflexivity.
|
||||||
|
|
||||||
|
assert (b2 = b5). destruct b2; destruct b6; destruct b5.
|
||||||
|
reflexivity. contradiction n0. reflexivity. reflexivity.
|
||||||
|
contradiction H1. reflexivity. contradiction H1. reflexivity.
|
||||||
|
reflexivity. contradiction n0. reflexivity. reflexivity.
|
||||||
|
rewrite H5 in H.
|
||||||
|
|
||||||
|
assert (b1 <> b5).
|
||||||
|
replace (hd ++ [b; b1; b1; b5; b6; b5; b5; b6]
|
||||||
|
++ [b6; b5; b5; b6; b5; b1; b1; b] ++ tl)
|
||||||
|
with ((hd ++ [b]) ++ [b1] ++ [b1] ++ [b5]
|
||||||
|
++ [b6;b5;b5;b6;b6; b5; b5; b6; b5; b1; b1; b] ++ tl) in H.
|
||||||
|
apply tm_step_cubefree in H. destruct b1; destruct b5.
|
||||||
|
contradiction H. reflexivity. easy. easy. contradiction H. reflexivity.
|
||||||
|
apply Nat.lt_0_1. rewrite <- app_assoc. reflexivity.
|
||||||
|
|
||||||
|
assert (b1 = b6). destruct b1; destruct b5; destruct b6.
|
||||||
|
reflexivity. contradiction H6. reflexivity. reflexivity.
|
||||||
|
contradiction H1. reflexivity. contradiction H1. reflexivity.
|
||||||
|
reflexivity. contradiction H6. reflexivity. reflexivity.
|
||||||
|
rewrite H7 in H.
|
||||||
|
|
||||||
(*
|
(*
|
||||||
Lemma tm_step_proper_palindrome_center :
|
Lemma tm_step_proper_palindrome_center :
|
||||||
|
Loading…
Reference in New Issue
Block a user