/* .-. | ' '._.HECKERS Authored by abakh To the extent possible under law, the author(s) have dedicated all copyright and related and neighboring rights to this software to the public domain worldwide. This software is distributed without any warranty. You should have received a copy of the CC0 Public Domain Dedication along with this software. If not, see . */ #include "common.h" #define LIGHT -1 #define DARK 1 #define KING 2 #define DOESNT_MATTER 1 #define IMAGINARY 0 #define NORMAL 1 #define ALT_IMG 2 #define ALT_NRM 3 #define WIN 100000 byte py,px;//cursor byte cy,cx;//selected(choosen) piece int dpt; byte game[8][8]; byte computer[2]={0,0}; char sides[2]={'h','h'}; byte score[2];//set by header() bool endgame=false; byte jumpagainy , jumpagainx; bool kinged;//if a piece jumps over multiple others and becomes a king it cannot continue jumping bool in(byte A[4],byte B[4],byte a,byte b){ for(byte c=0;c<4;++c) if(A[c]==a && B[c]==b) return true; return false; } void rectangle(byte sy,byte sx){ byte y,x; for(y=0;y<=8+1;++y){ mvaddch(sy+y,sx,ACS_VLINE); mvaddch(sy+y,sx+8*2,ACS_VLINE); } for(x=0;x<=8*2;++x){ mvaddch(sy,sx+x,ACS_HLINE); mvaddch(sy+8+1,sx+x,ACS_HLINE); } mvaddch(sy,sx,ACS_ULCORNER); mvaddch(sy+8+1,sx,ACS_LLCORNER); mvaddch(sy,sx+8*2,ACS_URCORNER); mvaddch(sy+8+1,sx+8*2,ACS_LRCORNER); } void header(void){ score[0]=score[1]=0; byte y,x; for(y=0;y<8;++y){ for(x=0;x<8;++x){ if(game[y][x]){ if(game[y][x]<0) score[0]++; else score[1]++; } } } mvprintw(0,0," .-."); mvprintw(1,0,"| ' %2d:%2d",score[0],score[1]); mvprintw(2,0,"'._,HECKERS "); } void draw(byte sy,byte sx){//the game's board rectangle(sy,sx); chtype ch ; byte y,x; for(y=0;y<8;++y){ for(x=0;x<8;++x){ ch=A_NORMAL; if(y==py && x==px) ch |= A_STANDOUT; if(y==cy && x==cx) ch |= A_BOLD; if(game[y][x]){ if(game[y][x]<0){ if(has_colors()) ch|=COLOR_PAIR(1); else ch |= A_UNDERLINE; } if(abs(game[y][x])<2) ch |='O'; else ch |='K'; } else if( (y%2) != (x%2) ) ch|='.'; else ch|=' '; mvaddch(sy+1+y,sx+x*2+1,ch); } } } //place the pieces on the board void fill(void){ byte y,x; for(y=0;y<8;++y){ for(x=0;x<8;++x){ game[y][x]=0; if( (y%2) != (x%2)){ if(y<3) game[y][x]=1; if(y>4) game[y][x]=-1; } } } } //fill mvy/x with possible moves bool moves(byte ty,byte tx,byte mvy[4],byte mvx[4]){ bool ret=0; byte ndx=0; byte t= game[ty][tx]; move(15,0); byte dy,dx; for(dy=-1;dy<2;++dy){ for(dx=-1;dx<2;++dx){ if( !dy || !dx || (!ty && dy<0) || (!tx && dx<0) || (dy==-t) || (ty+dy>=8) || (tx+dx>=8) ) ; else if(!game[ty+dy][tx+dx]){ ret=1; mvy[ndx]=ty+dy; mvx[ndx]=tx+dx; ++ndx; } else ++ndx; } } return ret; } //would be much faster than applying moves() on every tile bool can_move(byte side){ byte y , x ,t, dy , dx; for(y=0;y<8;++y){ for(x=0;x<8;++x){ if( (t=game[y][x])*side > 0 ){ for(dy=-1;dy<2;++dy){ for(dx=-1;dx<2;++dx){ if( !dy || !dx || (!y && dy<0) || (!x && dx<0) || (dy==-t) || (y+dy>=8) || (x+dx>=8) ) ; else if( !game[y+dy][x+dx] ) return 1; } } } } } return 0; } //fill mvy/x with possible jumping moves bool jumps(byte ty,byte tx,byte mvy[4],byte mvx[4]){ bool ret=0; byte ndx=0; byte ey,ex; byte t= game[ty][tx]; byte dy,dx; for(dy=-1;dy<2;++dy){ for(dx=-1;dx<2;++dx){ ey = dy*2; ex = dx*2; if(!dy || !dx ||(dy==-t)|| (ty+ey<0) || (tx+ex<0) || (ty+ey>=8) || (tx+ex>=8) ) ; else if(!game[ty+ey][tx+ex] && game[ty+dy][tx+dx]*t<0){ ret=1; mvy[ndx]=ty+ey; mvx[ndx]=tx+ex; ++ndx; } else ++ndx; } } return ret; } //same as can_move for jumps byte can_jump(byte ty,byte tx){ byte dy,dx,t=game[ty][tx]; byte ey,ex; byte ret=0; for(dy=-1;dy<2;++dy){ for(dx=-1;dx<2;++dx){ ey=dy*2; ex=dx*2; if((dy==-t)||(ty+ey<0)||(tx+ex<0)||(ty+ey>=8)||(tx+ex>=8) ) ; else if(!game[ty+dy*2][tx+dx*2]&&game[ty+dy][tx+dx]*t<0){ ++ret; if(ret>1) return ret; } } } return ret; } //see if the side is forced to do a jump byte forced_jump(byte side){ byte y,x; byte foo,ret; foo=ret=0; for(y=0;y<8;++y){ for(x=0;x<8;++x){ if(game[y][x]*side>0 && (foo=can_jump(y,x)) ) ret+=foo; if(ret>1) return ret; } } return ret; } byte cmove(byte fy,byte fx,byte sy,byte sx){//really move/jump , 'move' is a curses function byte a = game[fy][fx]; byte ret=0; game[fy][fx]=0; game[sy][sx]=a; if(abs(fy-sy) == 2){ ret =game[(fy+sy)/2][(fx+sx)/2]; game[(fy+sy)/2][(fx+sx)/2]=0; } return ret; } //make the pawn a king bool king(byte y,byte x){ byte t= (4-y)*game[y][x]; if( (y==7 || !y) && t<0 && t>-5 ){ game[y][x]*=2; return 1; } return 0; } double advantage(byte side){ unsigned char own,opp; own=opp=0; byte foo; byte y,x; for(y=0;y<8;++y){ for(x=0;x<8;++x){ foo=game[y][x]*side; if(foo>0){ ++own;//so it wont sacrfice two pawns for a king ( 2 kings == 3 pawns) own+=foo; } else if(foo<0){ ++opp; opp-=foo; } } } if(!own) return 0; else if(!opp) return WIN; else return (double)own/opp; } double posadvantage(byte side){ double adv=0; double oppadv=0; byte foo; byte y,x; byte goal= (side>0)*7 , oppgoal=(side<0)*7; /*This encourages the AI to king its pawns and concentrate its kings in the center. The idea is : With forces concentrated in the center, movements to all of the board would be in the game tree's horizon of sight(given enough depth); and with forces being focused , its takes less movements to make an attack. */ for(y=0;y<8;++y){ for(x=0;x<8;++x){ foo=game[y][x]*side; if(foo>0){ adv+=foo; ++adv; if(foo==1) adv+= 1/( abs(y-goal) );//adding positional value else if(foo==2) adv+= 1/( fabs(y-3.5)+ fabs(x-3.5) ); } else if( foo<0 ){ oppadv-=foo; ++oppadv; if(foo==-1) adv+=1/( abs(y-oppgoal) ); else if(foo==-2) adv+= 1/( fabs(y-3.5)+ fabs(x-3.5) ); } } } if(!adv) return 0; else if( !oppadv ) return WIN; else return adv/oppadv; return adv; } //the AI algorithm double decide(byte side,byte depth,byte s){//s is the type of move, it doesn't stand for anything byte fj=forced_jump(side);//only one legal jump if returns 1 byte nextturn; byte mvy[4],mvx[4]; byte n; bool didking; byte captured; double adv=0; byte toy,tox; byte y,x; double wrstadv=WIN+1; double bestadv=0; byte besttoy,besttox; byte besty,bestx; bestx=besty=besttox=besttoy=-100; bool canmove=0; byte nexts ; if(s == IMAGINARY || s == NORMAL ) nexts=IMAGINARY; else nexts=ALT_IMG; for(y=0;y<8;++y){ for(x=0;x<8;++x){ if(fj && (s==NORMAL || s==ALT_NRM) && jumpagainy>=0 && (jumpagainy!=y || jumpagainx!=x) ) continue; if(game[y][x]*side>0){ canmove=0; memset(mvy,-1,4); memset(mvx,-1,4); if(fj) canmove=jumps(y,x,mvy,mvx); else canmove=moves(y,x,mvy,mvx); if(canmove){ for(n=0;n<4;++n){ if(mvy[n] != -1){//a real move toy=mvy[n]; tox=mvx[n]; captured=cmove(y,x,toy,tox);//do the imaginary move if(fj && can_jump(toy,tox) ) //its a double jump nextturn=side; else nextturn=-side; didking=king(toy,tox); //see the advantage you get if(fj==1 && (s==ALT_NRM || s==NORMAL) ) adv= DOESNT_MATTER;//you have to do the move anyway else if(!depth){ if(s==IMAGINARY || s==NORMAL)//calculating advantage only based on numerical superiority adv=advantage(side); else adv=posadvantage(side);//taking to account the position of the pieces } else{ if(nextturn==side) adv=decide(nextturn,depth,nexts); else{ //best move is the one that gives least advantage to the opponent adv=decide(nextturn,depth-!fj,nexts); if(adv==WIN) adv=0; else if(adv) adv=1/adv; else adv=WIN; } } //undo the imaginary move if(didking) game[toy][tox]/=2; game[y][x]=game[toy][tox]; game[toy][tox]=0; if(fj) game[(toy+y)/2][(tox+x)/2]=captured; if(besty<0 || adv>bestadv || (adv==bestadv && ( rand()%2 )) ){ besty=y; bestx=x; besttoy=toy; besttox=tox; bestadv=adv; } if(adv= 0 ){ if(endgame && fj!=1 && s==NORMAL && bestadv==wrstadv ){//the algorithm is not given enough depth to determine which move is better if(wrstadv == WIN){//the randomization in the algorithm may cause an illusion of an inevitable win in several moves if(depth > 1) decide(side,depth-1,NORMAL); else goto Move; } else decide(side,depth,ALT_NRM);//change your opinion about what advantage means } else{ Move: cmove(besty,bestx,besttoy,besttox); kinged=king(besttoy,besttox); if(!kinged && can_jump(besttoy,besttox) ){ jumpagainy = besttoy;//so the next player (itself) can only continue the chain of jumps from there jumpagainx = besttox; } else jumpagainy=jumpagainx=-1; } } return bestadv; } //peacefully close when ^C is pressed void sigint_handler(int x){ endwin(); puts("Quit."); exit(x); } void mouseinput(void){ #ifndef NO_MOUSE MEVENT minput; #ifdef PDCURSES nc_getmouse(&minput); #else getmouse(&minput); #endif if( minput.y-4 <8 && minput.x-1<16){ py=minput.y-4; px=(minput.x-1)/2; } else return; if(minput.bstate & (BUTTON1_CLICKED|BUTTON1_PRESSED|BUTTON1_RELEASED) ) ungetch('\n'); #endif } void help(void){ erase(); header(); attron(A_BOLD); mvprintw(3,0," **** THE CONTROLS ****"); mvprintw(8,0,"YOU CAN ALSO USE THE MOUSE!"); attroff(A_BOLD); mvprintw(4,0,"RETURN/ENTER : Select or move the piece"); mvprintw(5,0,"hjkl/ARROW KEYS : Move cursor"); mvprintw(6,0,"q : quit"); mvprintw(7,0,"F1 & F2 : Help on controls & gameplay"); mvprintw(10,0,"Press a key to continue"); refresh(); getch(); erase(); } void gameplay(void){ erase(); header(); attron(A_BOLD); mvprintw(3,0," **** THE GAMEPLAY ****"); attroff(A_BOLD); move(4,0); printw("1) The game starts with each player having 12 men;\n"); printw(" men can only diagonally move forwards \n"); printw(" (toward the opponent's side).\n\n"); printw("2) Men can become kings by reaching the opponent's \n"); printw(" first rank; kings can diagonally move both forwards\n"); printw(" and backwards.\n\n"); printw("3) Pieces can capture opponent's pieces by jumping over them\n"); printw(" also they can capture several pieces at once by doing a\n"); printw(" chain of jumps.\n\n"); printw("4) You have to do a jump if you can.\n\n"); printw("5) A player wins when the opponent can't do a move e. g. \n"); printw(" all of their pieces are captured.\n\n"); refresh(); getch(); erase(); } int main(int argc,char** argv){ dpt=4; int opt; bool sides_chosen=0,no_replay=0; while( (opt= getopt(argc,argv,"hnp:1:2:"))!= -1 ){ switch(opt){ case '1': case '2': if(!strcmp("c",optarg) || !strcmp("h",optarg)){ sides[opt-'1']=optarg[0]; sides_chosen=1; } else{ puts("That should be either h or c\n"); return EXIT_FAILURE; } break; case 'p': if(sscanf(optarg,"%d",&dpt) && dpt<128 && dpt>0) ; else{ puts("That should be a number from 1 to 127."); return EXIT_FAILURE; } break; case 'n': no_replay=1; break; case 'h': default: printf("Usage: %s [options]\n -p ai power\n -1 type of player 1\n -2 type of player 2\n -h help\n -n dont ask for replay\n",argv[0]); return EXIT_SUCCESS; break; } } initscr(); #ifndef NO_MOUSE mousemask(ALL_MOUSE_EVENTS,NULL); #endif noecho(); cbreak(); keypad(stdscr,1); int input ; if(!sides_chosen){ printw("Black plays first.\nChoose type of the black player(H/c)\n" ); refresh(); input=getch(); if(input=='c'){ computer[0]=dpt; sides[0]='c'; printw("Computer.\n"); } else{ computer[0]=0; sides[0]='h'; printw("Human.\n"); } printw("Choose type of the white player(h/C)\n"); refresh(); input=getch(); if(input=='h'){ computer[1]=0; sides[1]='h'; printw("Human.\n"); } else{ computer[1]=dpt; sides[1]='c'; printw("Computer.\n"); } } if(has_colors()){ start_color(); use_default_colors(); init_pair(1,COLOR_RED,-1); } signal(SIGINT,sigint_handler); Start: srand(time(NULL)%UINT_MAX); fill(); cy=cx=-1; py=px=0; byte mvy[4],mvx[4]; memset(mvy,-1,4); memset(mvx,-1,4); byte turn=1; bool t=1; bool fj; byte result; byte todraw=0; double adv = 1;//used to determine when the game is a draw double previousadv =1; Turn: curs_set(0); jumpagainy=jumpagainx=-1; kinged=0; turn =-turn; t=!t;//t == turn<0 that's turn in binary/array index format fj = forced_jump(turn); erase(); flushinp(); header(); draw(3,0); if(t){ previousadv=adv; adv= advantage(1) + (score[0]*score[1]);//just taking the dry scores to account too,nothing special if(previousadv==adv) ++todraw; else todraw=0; } if(score[0]==score[1] && !can_move(1) && !can_move(-1) && !forced_jump(1) && !forced_jump(-1)){ result=0; goto End; } else if(!score[0] || (turn==-1 && !fj && !can_move(-1))){ result=1; goto End; } else if(!score[1] || (turn==1 && !fj && !can_move(1))){ result=-1; goto End; } else if(todraw==50){ // 50 turns without any gain for either side result=0; goto End; } endgame= score[t]<=5 || score[!t]<=5; draw(3,0); refresh(); while(sides[t]=='c'){ mvprintw(13,0,"Thinking..."); refresh(); decide(turn,dpt+(score[t]=0 && !kinged )){ goto Turn; } } while(1){ erase(); draw(3,0); header(); if(!(computer[0]||computer[1])){ if(t) addstr(" White's turn"); else{ attron(COLOR_PAIR(1)); addstr(" Black's turn"); attroff(COLOR_PAIR(1)); } } refresh(); input=getch(); if( input == KEY_F(1) || input=='?' ) help(); if( (input==KEY_F(2)||input=='!') ) gameplay(); if( input == KEY_MOUSE ) mouseinput(); if( (input=='k' || (input==KEY_UP||input=='w')) && py>0) --py; if( (input=='j' || (input==KEY_DOWN||input=='s')) && py<7) ++py; if( (input=='h' || (input==KEY_LEFT||input=='a')) && px>0) --px; if( (input=='l' || (input==KEY_RIGHT||input=='d')) && px<7) ++px; if( (input=='q'||input==27)){ result=2; goto End; } if(input=='\n' || input==KEY_ENTER){ if(game[py][px]*turn>0){ cy=py; cx=px; memset(mvy,-1,4); memset(mvx,-1,4); if(!fj) moves(py,px,mvy,mvx); jumps(py,px,mvy,mvx); } if( in(mvy,mvx,py,px) && !(jumpagainy>=0 && (cy !=jumpagainy || cx != jumpagainx) ) ){ memset(mvy,-1,4); memset(mvx,-1,4); cmove(cy,cx,py,px); kinged=king(py,px); cy=-1; cx=-1; if( !(fj && can_jump(py,px) && !kinged ) ){ goto Turn; } else{ jumpagainy=py; jumpagainx=px; } } } } End: move(13,0); switch(result){ case -1: printw("Black side has won the game."); break; case 0: printw("Draw."); break; case 1: printw("White side has won the game."); break; case 2: printw("You resigned."); } if(!no_replay){ printw(" Wanna rematch?(y/n)"); refresh(); curs_set(1); input=getch(); if(result==2){ if (input=='Y' || input=='y') goto Start; } else if(input!='n' && input!='N' && input!= 'q'){ /*byte b=computer[0]; //switch sides, i don't know if it's necessary computer[0]=computer[1]; computer[1]=b;*/ goto Start; } } else{ printw("Press any key on your keyboard to continue."); getch(); } endwin(); return EXIT_SUCCESS; }