1
0
mirror of https://github.com/go-gitea/gitea.git synced 2024-11-04 08:17:24 -05:00
gitea/vendor/github.com/olivere/elastic/v7/suggester_phrase.go
Lunny Xiao 5dbf36f356
Issue search support elasticsearch (#9428)
* Issue search support elasticsearch

* Fix lint

* Add indexer name on app.ini

* add a warnning on SearchIssuesByKeyword

* improve code
2020-02-13 14:06:17 +08:00

551 lines
14 KiB
Go
Vendored

// Copyright 2012-present Oliver Eilhard. All rights reserved.
// Use of this source code is governed by a MIT-license.
// See http://olivere.mit-license.org/license.txt for details.
package elastic
// PhraseSuggester provides an API to access word alternatives
// on a per token basis within a certain string distance.
// For more details, see
// https://www.elastic.co/guide/en/elasticsearch/reference/7.0/search-suggesters-phrase.html.
type PhraseSuggester struct {
Suggester
name string
text string
field string
analyzer string
size *int
shardSize *int
contextQueries []SuggesterContextQuery
// fields specific to a phrase suggester
maxErrors *float64
separator *string
realWordErrorLikelihood *float64
confidence *float64
generators map[string][]CandidateGenerator
gramSize *int
smoothingModel SmoothingModel
forceUnigrams *bool
tokenLimit *int
preTag, postTag *string
collateQuery *Script
collatePreference *string
collateParams map[string]interface{}
collatePrune *bool
}
// NewPhraseSuggester creates a new PhraseSuggester.
func NewPhraseSuggester(name string) *PhraseSuggester {
return &PhraseSuggester{
name: name,
collateParams: make(map[string]interface{}),
}
}
func (q *PhraseSuggester) Name() string {
return q.name
}
func (q *PhraseSuggester) Text(text string) *PhraseSuggester {
q.text = text
return q
}
func (q *PhraseSuggester) Field(field string) *PhraseSuggester {
q.field = field
return q
}
func (q *PhraseSuggester) Analyzer(analyzer string) *PhraseSuggester {
q.analyzer = analyzer
return q
}
func (q *PhraseSuggester) Size(size int) *PhraseSuggester {
q.size = &size
return q
}
func (q *PhraseSuggester) ShardSize(shardSize int) *PhraseSuggester {
q.shardSize = &shardSize
return q
}
func (q *PhraseSuggester) ContextQuery(query SuggesterContextQuery) *PhraseSuggester {
q.contextQueries = append(q.contextQueries, query)
return q
}
func (q *PhraseSuggester) ContextQueries(queries ...SuggesterContextQuery) *PhraseSuggester {
q.contextQueries = append(q.contextQueries, queries...)
return q
}
func (q *PhraseSuggester) GramSize(gramSize int) *PhraseSuggester {
if gramSize >= 1 {
q.gramSize = &gramSize
}
return q
}
func (q *PhraseSuggester) MaxErrors(maxErrors float64) *PhraseSuggester {
q.maxErrors = &maxErrors
return q
}
func (q *PhraseSuggester) Separator(separator string) *PhraseSuggester {
q.separator = &separator
return q
}
func (q *PhraseSuggester) RealWordErrorLikelihood(realWordErrorLikelihood float64) *PhraseSuggester {
q.realWordErrorLikelihood = &realWordErrorLikelihood
return q
}
func (q *PhraseSuggester) Confidence(confidence float64) *PhraseSuggester {
q.confidence = &confidence
return q
}
func (q *PhraseSuggester) CandidateGenerator(generator CandidateGenerator) *PhraseSuggester {
if q.generators == nil {
q.generators = make(map[string][]CandidateGenerator)
}
typ := generator.Type()
if _, found := q.generators[typ]; !found {
q.generators[typ] = make([]CandidateGenerator, 0)
}
q.generators[typ] = append(q.generators[typ], generator)
return q
}
func (q *PhraseSuggester) CandidateGenerators(generators ...CandidateGenerator) *PhraseSuggester {
for _, g := range generators {
q = q.CandidateGenerator(g)
}
return q
}
func (q *PhraseSuggester) ClearCandidateGenerator() *PhraseSuggester {
q.generators = nil
return q
}
func (q *PhraseSuggester) ForceUnigrams(forceUnigrams bool) *PhraseSuggester {
q.forceUnigrams = &forceUnigrams
return q
}
func (q *PhraseSuggester) SmoothingModel(smoothingModel SmoothingModel) *PhraseSuggester {
q.smoothingModel = smoothingModel
return q
}
func (q *PhraseSuggester) TokenLimit(tokenLimit int) *PhraseSuggester {
q.tokenLimit = &tokenLimit
return q
}
func (q *PhraseSuggester) Highlight(preTag, postTag string) *PhraseSuggester {
q.preTag = &preTag
q.postTag = &postTag
return q
}
func (q *PhraseSuggester) CollateQuery(collateQuery *Script) *PhraseSuggester {
q.collateQuery = collateQuery
return q
}
func (q *PhraseSuggester) CollatePreference(collatePreference string) *PhraseSuggester {
q.collatePreference = &collatePreference
return q
}
func (q *PhraseSuggester) CollateParams(collateParams map[string]interface{}) *PhraseSuggester {
q.collateParams = collateParams
return q
}
func (q *PhraseSuggester) CollatePrune(collatePrune bool) *PhraseSuggester {
q.collatePrune = &collatePrune
return q
}
// phraseSuggesterRequest is necessary because the order in which
// the JSON elements are routed to Elasticsearch is relevant.
// We got into trouble when using plain maps because the text element
// needs to go before the simple_phrase element.
type phraseSuggesterRequest struct {
Text string `json:"text"`
Phrase interface{} `json:"phrase"`
}
// Source generates the source for the phrase suggester.
func (q *PhraseSuggester) Source(includeName bool) (interface{}, error) {
ps := &phraseSuggesterRequest{}
if q.text != "" {
ps.Text = q.text
}
suggester := make(map[string]interface{})
ps.Phrase = suggester
if q.analyzer != "" {
suggester["analyzer"] = q.analyzer
}
if q.field != "" {
suggester["field"] = q.field
}
if q.size != nil {
suggester["size"] = *q.size
}
if q.shardSize != nil {
suggester["shard_size"] = *q.shardSize
}
switch len(q.contextQueries) {
case 0:
case 1:
src, err := q.contextQueries[0].Source()
if err != nil {
return nil, err
}
suggester["contexts"] = src
default:
var ctxq []interface{}
for _, query := range q.contextQueries {
src, err := query.Source()
if err != nil {
return nil, err
}
ctxq = append(ctxq, src)
}
suggester["contexts"] = ctxq
}
// Phase-specified parameters
if q.realWordErrorLikelihood != nil {
suggester["real_word_error_likelihood"] = *q.realWordErrorLikelihood
}
if q.confidence != nil {
suggester["confidence"] = *q.confidence
}
if q.separator != nil {
suggester["separator"] = *q.separator
}
if q.maxErrors != nil {
suggester["max_errors"] = *q.maxErrors
}
if q.gramSize != nil {
suggester["gram_size"] = *q.gramSize
}
if q.forceUnigrams != nil {
suggester["force_unigrams"] = *q.forceUnigrams
}
if q.tokenLimit != nil {
suggester["token_limit"] = *q.tokenLimit
}
if q.generators != nil && len(q.generators) > 0 {
for typ, generators := range q.generators {
var arr []interface{}
for _, g := range generators {
src, err := g.Source()
if err != nil {
return nil, err
}
arr = append(arr, src)
}
suggester[typ] = arr
}
}
if q.smoothingModel != nil {
src, err := q.smoothingModel.Source()
if err != nil {
return nil, err
}
x := make(map[string]interface{})
x[q.smoothingModel.Type()] = src
suggester["smoothing"] = x
}
if q.preTag != nil {
hl := make(map[string]string)
hl["pre_tag"] = *q.preTag
if q.postTag != nil {
hl["post_tag"] = *q.postTag
}
suggester["highlight"] = hl
}
if q.collateQuery != nil {
collate := make(map[string]interface{})
suggester["collate"] = collate
if q.collateQuery != nil {
src, err := q.collateQuery.Source()
if err != nil {
return nil, err
}
collate["query"] = src
}
if q.collatePreference != nil {
collate["preference"] = *q.collatePreference
}
if len(q.collateParams) > 0 {
collate["params"] = q.collateParams
}
if q.collatePrune != nil {
collate["prune"] = *q.collatePrune
}
}
if !includeName {
return ps, nil
}
source := make(map[string]interface{})
source[q.name] = ps
return source, nil
}
// -- Smoothing models --
type SmoothingModel interface {
Type() string
Source() (interface{}, error)
}
// StupidBackoffSmoothingModel implements a stupid backoff smoothing model.
// See https://www.elastic.co/guide/en/elasticsearch/reference/7.0/search-suggesters-phrase.html#_smoothing_models
// for details about smoothing models.
type StupidBackoffSmoothingModel struct {
discount float64
}
func NewStupidBackoffSmoothingModel(discount float64) *StupidBackoffSmoothingModel {
return &StupidBackoffSmoothingModel{
discount: discount,
}
}
func (sm *StupidBackoffSmoothingModel) Type() string {
return "stupid_backoff"
}
func (sm *StupidBackoffSmoothingModel) Source() (interface{}, error) {
source := make(map[string]interface{})
source["discount"] = sm.discount
return source, nil
}
// --
// LaplaceSmoothingModel implements a laplace smoothing model.
// See https://www.elastic.co/guide/en/elasticsearch/reference/7.0/search-suggesters-phrase.html#_smoothing_models
// for details about smoothing models.
type LaplaceSmoothingModel struct {
alpha float64
}
func NewLaplaceSmoothingModel(alpha float64) *LaplaceSmoothingModel {
return &LaplaceSmoothingModel{
alpha: alpha,
}
}
func (sm *LaplaceSmoothingModel) Type() string {
return "laplace"
}
func (sm *LaplaceSmoothingModel) Source() (interface{}, error) {
source := make(map[string]interface{})
source["alpha"] = sm.alpha
return source, nil
}
// --
// LinearInterpolationSmoothingModel implements a linear interpolation
// smoothing model.
// See https://www.elastic.co/guide/en/elasticsearch/reference/7.0/search-suggesters-phrase.html#_smoothing_models
// for details about smoothing models.
type LinearInterpolationSmoothingModel struct {
trigramLamda float64
bigramLambda float64
unigramLambda float64
}
func NewLinearInterpolationSmoothingModel(trigramLamda, bigramLambda, unigramLambda float64) *LinearInterpolationSmoothingModel {
return &LinearInterpolationSmoothingModel{
trigramLamda: trigramLamda,
bigramLambda: bigramLambda,
unigramLambda: unigramLambda,
}
}
func (sm *LinearInterpolationSmoothingModel) Type() string {
return "linear_interpolation"
}
func (sm *LinearInterpolationSmoothingModel) Source() (interface{}, error) {
source := make(map[string]interface{})
source["trigram_lambda"] = sm.trigramLamda
source["bigram_lambda"] = sm.bigramLambda
source["unigram_lambda"] = sm.unigramLambda
return source, nil
}
// -- CandidateGenerator --
type CandidateGenerator interface {
Type() string
Source() (interface{}, error)
}
// DirectCandidateGenerator implements a direct candidate generator.
// See https://www.elastic.co/guide/en/elasticsearch/reference/7.0/search-suggesters-phrase.html#_smoothing_models
// for details about smoothing models.
type DirectCandidateGenerator struct {
field string
preFilter *string
postFilter *string
suggestMode *string
accuracy *float64
size *int
sort *string
stringDistance *string
maxEdits *int
maxInspections *int
maxTermFreq *float64
prefixLength *int
minWordLength *int
minDocFreq *float64
}
func NewDirectCandidateGenerator(field string) *DirectCandidateGenerator {
return &DirectCandidateGenerator{
field: field,
}
}
func (g *DirectCandidateGenerator) Type() string {
return "direct_generator"
}
func (g *DirectCandidateGenerator) Field(field string) *DirectCandidateGenerator {
g.field = field
return g
}
func (g *DirectCandidateGenerator) PreFilter(preFilter string) *DirectCandidateGenerator {
g.preFilter = &preFilter
return g
}
func (g *DirectCandidateGenerator) PostFilter(postFilter string) *DirectCandidateGenerator {
g.postFilter = &postFilter
return g
}
func (g *DirectCandidateGenerator) SuggestMode(suggestMode string) *DirectCandidateGenerator {
g.suggestMode = &suggestMode
return g
}
func (g *DirectCandidateGenerator) Accuracy(accuracy float64) *DirectCandidateGenerator {
g.accuracy = &accuracy
return g
}
func (g *DirectCandidateGenerator) Size(size int) *DirectCandidateGenerator {
g.size = &size
return g
}
func (g *DirectCandidateGenerator) Sort(sort string) *DirectCandidateGenerator {
g.sort = &sort
return g
}
func (g *DirectCandidateGenerator) StringDistance(stringDistance string) *DirectCandidateGenerator {
g.stringDistance = &stringDistance
return g
}
func (g *DirectCandidateGenerator) MaxEdits(maxEdits int) *DirectCandidateGenerator {
g.maxEdits = &maxEdits
return g
}
func (g *DirectCandidateGenerator) MaxInspections(maxInspections int) *DirectCandidateGenerator {
g.maxInspections = &maxInspections
return g
}
func (g *DirectCandidateGenerator) MaxTermFreq(maxTermFreq float64) *DirectCandidateGenerator {
g.maxTermFreq = &maxTermFreq
return g
}
func (g *DirectCandidateGenerator) PrefixLength(prefixLength int) *DirectCandidateGenerator {
g.prefixLength = &prefixLength
return g
}
func (g *DirectCandidateGenerator) MinWordLength(minWordLength int) *DirectCandidateGenerator {
g.minWordLength = &minWordLength
return g
}
func (g *DirectCandidateGenerator) MinDocFreq(minDocFreq float64) *DirectCandidateGenerator {
g.minDocFreq = &minDocFreq
return g
}
func (g *DirectCandidateGenerator) Source() (interface{}, error) {
source := make(map[string]interface{})
if g.field != "" {
source["field"] = g.field
}
if g.suggestMode != nil {
source["suggest_mode"] = *g.suggestMode
}
if g.accuracy != nil {
source["accuracy"] = *g.accuracy
}
if g.size != nil {
source["size"] = *g.size
}
if g.sort != nil {
source["sort"] = *g.sort
}
if g.stringDistance != nil {
source["string_distance"] = *g.stringDistance
}
if g.maxEdits != nil {
source["max_edits"] = *g.maxEdits
}
if g.maxInspections != nil {
source["max_inspections"] = *g.maxInspections
}
if g.maxTermFreq != nil {
source["max_term_freq"] = *g.maxTermFreq
}
if g.prefixLength != nil {
source["prefix_length"] = *g.prefixLength
}
if g.minWordLength != nil {
source["min_word_length"] = *g.minWordLength
}
if g.minDocFreq != nil {
source["min_doc_freq"] = *g.minDocFreq
}
if g.preFilter != nil {
source["pre_filter"] = *g.preFilter
}
if g.postFilter != nil {
source["post_filter"] = *g.postFilter
}
return source, nil
}