mirror of
https://github.com/go-gitea/gitea.git
synced 2024-11-04 08:17:24 -05:00
472 lines
12 KiB
Go
472 lines
12 KiB
Go
|
// Copyright The OpenTelemetry Authors
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package label // import "go.opentelemetry.io/otel/label"
|
||
|
|
||
|
import (
|
||
|
"encoding/json"
|
||
|
"reflect"
|
||
|
"sort"
|
||
|
"sync"
|
||
|
)
|
||
|
|
||
|
type (
|
||
|
// Set is the representation for a distinct label set. It
|
||
|
// manages an immutable set of labels, with an internal cache
|
||
|
// for storing label encodings.
|
||
|
//
|
||
|
// This type supports the `Equivalent` method of comparison
|
||
|
// using values of type `Distinct`.
|
||
|
//
|
||
|
// This type is used to implement:
|
||
|
// 1. Metric labels
|
||
|
// 2. Resource sets
|
||
|
// 3. Correlation map (TODO)
|
||
|
Set struct {
|
||
|
equivalent Distinct
|
||
|
|
||
|
lock sync.Mutex
|
||
|
encoders [maxConcurrentEncoders]EncoderID
|
||
|
encoded [maxConcurrentEncoders]string
|
||
|
}
|
||
|
|
||
|
// Distinct wraps a variable-size array of `KeyValue`,
|
||
|
// constructed with keys in sorted order. This can be used as
|
||
|
// a map key or for equality checking between Sets.
|
||
|
Distinct struct {
|
||
|
iface interface{}
|
||
|
}
|
||
|
|
||
|
// Filter supports removing certain labels from label sets.
|
||
|
// When the filter returns true, the label will be kept in
|
||
|
// the filtered label set. When the filter returns false, the
|
||
|
// label is excluded from the filtered label set, and the
|
||
|
// label instead appears in the `removed` list of excluded labels.
|
||
|
Filter func(KeyValue) bool
|
||
|
|
||
|
// Sortable implements `sort.Interface`, used for sorting
|
||
|
// `KeyValue`. This is an exported type to support a
|
||
|
// memory optimization. A pointer to one of these is needed
|
||
|
// for the call to `sort.Stable()`, which the caller may
|
||
|
// provide in order to avoid an allocation. See
|
||
|
// `NewSetWithSortable()`.
|
||
|
Sortable []KeyValue
|
||
|
)
|
||
|
|
||
|
var (
|
||
|
// keyValueType is used in `computeDistinctReflect`.
|
||
|
keyValueType = reflect.TypeOf(KeyValue{})
|
||
|
|
||
|
// emptySet is returned for empty label sets.
|
||
|
emptySet = &Set{
|
||
|
equivalent: Distinct{
|
||
|
iface: [0]KeyValue{},
|
||
|
},
|
||
|
}
|
||
|
)
|
||
|
|
||
|
const maxConcurrentEncoders = 3
|
||
|
|
||
|
// EmptySet returns a reference to a Set with no elements.
|
||
|
//
|
||
|
// This is a convenience provided for optimized calling utility.
|
||
|
func EmptySet() *Set {
|
||
|
return emptySet
|
||
|
}
|
||
|
|
||
|
// reflect abbreviates `reflect.ValueOf`.
|
||
|
func (d Distinct) reflect() reflect.Value {
|
||
|
return reflect.ValueOf(d.iface)
|
||
|
}
|
||
|
|
||
|
// Valid returns true if this value refers to a valid `*Set`.
|
||
|
func (d Distinct) Valid() bool {
|
||
|
return d.iface != nil
|
||
|
}
|
||
|
|
||
|
// Len returns the number of labels in this set.
|
||
|
func (l *Set) Len() int {
|
||
|
if l == nil || !l.equivalent.Valid() {
|
||
|
return 0
|
||
|
}
|
||
|
return l.equivalent.reflect().Len()
|
||
|
}
|
||
|
|
||
|
// Get returns the KeyValue at ordered position `idx` in this set.
|
||
|
func (l *Set) Get(idx int) (KeyValue, bool) {
|
||
|
if l == nil {
|
||
|
return KeyValue{}, false
|
||
|
}
|
||
|
value := l.equivalent.reflect()
|
||
|
|
||
|
if idx >= 0 && idx < value.Len() {
|
||
|
// Note: The Go compiler successfully avoids an allocation for
|
||
|
// the interface{} conversion here:
|
||
|
return value.Index(idx).Interface().(KeyValue), true
|
||
|
}
|
||
|
|
||
|
return KeyValue{}, false
|
||
|
}
|
||
|
|
||
|
// Value returns the value of a specified key in this set.
|
||
|
func (l *Set) Value(k Key) (Value, bool) {
|
||
|
if l == nil {
|
||
|
return Value{}, false
|
||
|
}
|
||
|
rValue := l.equivalent.reflect()
|
||
|
vlen := rValue.Len()
|
||
|
|
||
|
idx := sort.Search(vlen, func(idx int) bool {
|
||
|
return rValue.Index(idx).Interface().(KeyValue).Key >= k
|
||
|
})
|
||
|
if idx >= vlen {
|
||
|
return Value{}, false
|
||
|
}
|
||
|
keyValue := rValue.Index(idx).Interface().(KeyValue)
|
||
|
if k == keyValue.Key {
|
||
|
return keyValue.Value, true
|
||
|
}
|
||
|
return Value{}, false
|
||
|
}
|
||
|
|
||
|
// HasValue tests whether a key is defined in this set.
|
||
|
func (l *Set) HasValue(k Key) bool {
|
||
|
if l == nil {
|
||
|
return false
|
||
|
}
|
||
|
_, ok := l.Value(k)
|
||
|
return ok
|
||
|
}
|
||
|
|
||
|
// Iter returns an iterator for visiting the labels in this set.
|
||
|
func (l *Set) Iter() Iterator {
|
||
|
return Iterator{
|
||
|
storage: l,
|
||
|
idx: -1,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ToSlice returns the set of labels belonging to this set, sorted,
|
||
|
// where keys appear no more than once.
|
||
|
func (l *Set) ToSlice() []KeyValue {
|
||
|
iter := l.Iter()
|
||
|
return iter.ToSlice()
|
||
|
}
|
||
|
|
||
|
// Equivalent returns a value that may be used as a map key. The
|
||
|
// Distinct type guarantees that the result will equal the equivalent
|
||
|
// Distinct value of any label set with the same elements as this,
|
||
|
// where sets are made unique by choosing the last value in the input
|
||
|
// for any given key.
|
||
|
func (l *Set) Equivalent() Distinct {
|
||
|
if l == nil || !l.equivalent.Valid() {
|
||
|
return emptySet.equivalent
|
||
|
}
|
||
|
return l.equivalent
|
||
|
}
|
||
|
|
||
|
// Equals returns true if the argument set is equivalent to this set.
|
||
|
func (l *Set) Equals(o *Set) bool {
|
||
|
return l.Equivalent() == o.Equivalent()
|
||
|
}
|
||
|
|
||
|
// Encoded returns the encoded form of this set, according to
|
||
|
// `encoder`. The result will be cached in this `*Set`.
|
||
|
func (l *Set) Encoded(encoder Encoder) string {
|
||
|
if l == nil || encoder == nil {
|
||
|
return ""
|
||
|
}
|
||
|
|
||
|
id := encoder.ID()
|
||
|
if !id.Valid() {
|
||
|
// Invalid IDs are not cached.
|
||
|
return encoder.Encode(l.Iter())
|
||
|
}
|
||
|
|
||
|
var lookup *string
|
||
|
l.lock.Lock()
|
||
|
for idx := 0; idx < maxConcurrentEncoders; idx++ {
|
||
|
if l.encoders[idx] == id {
|
||
|
lookup = &l.encoded[idx]
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
l.lock.Unlock()
|
||
|
|
||
|
if lookup != nil {
|
||
|
return *lookup
|
||
|
}
|
||
|
|
||
|
r := encoder.Encode(l.Iter())
|
||
|
|
||
|
l.lock.Lock()
|
||
|
defer l.lock.Unlock()
|
||
|
|
||
|
for idx := 0; idx < maxConcurrentEncoders; idx++ {
|
||
|
if l.encoders[idx] == id {
|
||
|
return l.encoded[idx]
|
||
|
}
|
||
|
if !l.encoders[idx].Valid() {
|
||
|
l.encoders[idx] = id
|
||
|
l.encoded[idx] = r
|
||
|
return r
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// TODO: This is a performance cliff. Find a way for this to
|
||
|
// generate a warning.
|
||
|
return r
|
||
|
}
|
||
|
|
||
|
func empty() Set {
|
||
|
return Set{
|
||
|
equivalent: emptySet.equivalent,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// NewSet returns a new `Set`. See the documentation for
|
||
|
// `NewSetWithSortableFiltered` for more details.
|
||
|
//
|
||
|
// Except for empty sets, this method adds an additional allocation
|
||
|
// compared with calls that include a `*Sortable`.
|
||
|
func NewSet(kvs ...KeyValue) Set {
|
||
|
// Check for empty set.
|
||
|
if len(kvs) == 0 {
|
||
|
return empty()
|
||
|
}
|
||
|
s, _ := NewSetWithSortableFiltered(kvs, new(Sortable), nil)
|
||
|
return s //nolint
|
||
|
}
|
||
|
|
||
|
// NewSetWithSortable returns a new `Set`. See the documentation for
|
||
|
// `NewSetWithSortableFiltered` for more details.
|
||
|
//
|
||
|
// This call includes a `*Sortable` option as a memory optimization.
|
||
|
func NewSetWithSortable(kvs []KeyValue, tmp *Sortable) Set {
|
||
|
// Check for empty set.
|
||
|
if len(kvs) == 0 {
|
||
|
return empty()
|
||
|
}
|
||
|
s, _ := NewSetWithSortableFiltered(kvs, tmp, nil)
|
||
|
return s //nolint
|
||
|
}
|
||
|
|
||
|
// NewSetWithFiltered returns a new `Set`. See the documentation for
|
||
|
// `NewSetWithSortableFiltered` for more details.
|
||
|
//
|
||
|
// This call includes a `Filter` to include/exclude label keys from
|
||
|
// the return value. Excluded keys are returned as a slice of label
|
||
|
// values.
|
||
|
func NewSetWithFiltered(kvs []KeyValue, filter Filter) (Set, []KeyValue) {
|
||
|
// Check for empty set.
|
||
|
if len(kvs) == 0 {
|
||
|
return empty(), nil
|
||
|
}
|
||
|
return NewSetWithSortableFiltered(kvs, new(Sortable), filter)
|
||
|
}
|
||
|
|
||
|
// NewSetWithSortableFiltered returns a new `Set`.
|
||
|
//
|
||
|
// Duplicate keys are eliminated by taking the last value. This
|
||
|
// re-orders the input slice so that unique last-values are contiguous
|
||
|
// at the end of the slice.
|
||
|
//
|
||
|
// This ensures the following:
|
||
|
//
|
||
|
// - Last-value-wins semantics
|
||
|
// - Caller sees the reordering, but doesn't lose values
|
||
|
// - Repeated call preserve last-value wins.
|
||
|
//
|
||
|
// Note that methods are defined on `*Set`, although this returns `Set`.
|
||
|
// Callers can avoid memory allocations by:
|
||
|
//
|
||
|
// - allocating a `Sortable` for use as a temporary in this method
|
||
|
// - allocating a `Set` for storing the return value of this
|
||
|
// constructor.
|
||
|
//
|
||
|
// The result maintains a cache of encoded labels, by label.EncoderID.
|
||
|
// This value should not be copied after its first use.
|
||
|
//
|
||
|
// The second `[]KeyValue` return value is a list of labels that were
|
||
|
// excluded by the Filter (if non-nil).
|
||
|
func NewSetWithSortableFiltered(kvs []KeyValue, tmp *Sortable, filter Filter) (Set, []KeyValue) {
|
||
|
// Check for empty set.
|
||
|
if len(kvs) == 0 {
|
||
|
return empty(), nil
|
||
|
}
|
||
|
|
||
|
*tmp = kvs
|
||
|
|
||
|
// Stable sort so the following de-duplication can implement
|
||
|
// last-value-wins semantics.
|
||
|
sort.Stable(tmp)
|
||
|
|
||
|
*tmp = nil
|
||
|
|
||
|
position := len(kvs) - 1
|
||
|
offset := position - 1
|
||
|
|
||
|
// The requirements stated above require that the stable
|
||
|
// result be placed in the end of the input slice, while
|
||
|
// overwritten values are swapped to the beginning.
|
||
|
//
|
||
|
// De-duplicate with last-value-wins semantics. Preserve
|
||
|
// duplicate values at the beginning of the input slice.
|
||
|
for ; offset >= 0; offset-- {
|
||
|
if kvs[offset].Key == kvs[position].Key {
|
||
|
continue
|
||
|
}
|
||
|
position--
|
||
|
kvs[offset], kvs[position] = kvs[position], kvs[offset]
|
||
|
}
|
||
|
if filter != nil {
|
||
|
return filterSet(kvs[position:], filter)
|
||
|
}
|
||
|
return Set{
|
||
|
equivalent: computeDistinct(kvs[position:]),
|
||
|
}, nil
|
||
|
}
|
||
|
|
||
|
// filterSet reorders `kvs` so that included keys are contiguous at
|
||
|
// the end of the slice, while excluded keys precede the included keys.
|
||
|
func filterSet(kvs []KeyValue, filter Filter) (Set, []KeyValue) {
|
||
|
var excluded []KeyValue
|
||
|
|
||
|
// Move labels that do not match the filter so
|
||
|
// they're adjacent before calling computeDistinct().
|
||
|
distinctPosition := len(kvs)
|
||
|
|
||
|
// Swap indistinct keys forward and distinct keys toward the
|
||
|
// end of the slice.
|
||
|
offset := len(kvs) - 1
|
||
|
for ; offset >= 0; offset-- {
|
||
|
if filter(kvs[offset]) {
|
||
|
distinctPosition--
|
||
|
kvs[offset], kvs[distinctPosition] = kvs[distinctPosition], kvs[offset]
|
||
|
continue
|
||
|
}
|
||
|
}
|
||
|
excluded = kvs[:distinctPosition]
|
||
|
|
||
|
return Set{
|
||
|
equivalent: computeDistinct(kvs[distinctPosition:]),
|
||
|
}, excluded
|
||
|
}
|
||
|
|
||
|
// Filter returns a filtered copy of this `Set`. See the
|
||
|
// documentation for `NewSetWithSortableFiltered` for more details.
|
||
|
func (l *Set) Filter(re Filter) (Set, []KeyValue) {
|
||
|
if re == nil {
|
||
|
return Set{
|
||
|
equivalent: l.equivalent,
|
||
|
}, nil
|
||
|
}
|
||
|
|
||
|
// Note: This could be refactored to avoid the temporary slice
|
||
|
// allocation, if it proves to be expensive.
|
||
|
return filterSet(l.ToSlice(), re)
|
||
|
}
|
||
|
|
||
|
// computeDistinct returns a `Distinct` using either the fixed- or
|
||
|
// reflect-oriented code path, depending on the size of the input.
|
||
|
// The input slice is assumed to already be sorted and de-duplicated.
|
||
|
func computeDistinct(kvs []KeyValue) Distinct {
|
||
|
iface := computeDistinctFixed(kvs)
|
||
|
if iface == nil {
|
||
|
iface = computeDistinctReflect(kvs)
|
||
|
}
|
||
|
return Distinct{
|
||
|
iface: iface,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// computeDistinctFixed computes a `Distinct` for small slices. It
|
||
|
// returns nil if the input is too large for this code path.
|
||
|
func computeDistinctFixed(kvs []KeyValue) interface{} {
|
||
|
switch len(kvs) {
|
||
|
case 1:
|
||
|
ptr := new([1]KeyValue)
|
||
|
copy((*ptr)[:], kvs)
|
||
|
return *ptr
|
||
|
case 2:
|
||
|
ptr := new([2]KeyValue)
|
||
|
copy((*ptr)[:], kvs)
|
||
|
return *ptr
|
||
|
case 3:
|
||
|
ptr := new([3]KeyValue)
|
||
|
copy((*ptr)[:], kvs)
|
||
|
return *ptr
|
||
|
case 4:
|
||
|
ptr := new([4]KeyValue)
|
||
|
copy((*ptr)[:], kvs)
|
||
|
return *ptr
|
||
|
case 5:
|
||
|
ptr := new([5]KeyValue)
|
||
|
copy((*ptr)[:], kvs)
|
||
|
return *ptr
|
||
|
case 6:
|
||
|
ptr := new([6]KeyValue)
|
||
|
copy((*ptr)[:], kvs)
|
||
|
return *ptr
|
||
|
case 7:
|
||
|
ptr := new([7]KeyValue)
|
||
|
copy((*ptr)[:], kvs)
|
||
|
return *ptr
|
||
|
case 8:
|
||
|
ptr := new([8]KeyValue)
|
||
|
copy((*ptr)[:], kvs)
|
||
|
return *ptr
|
||
|
case 9:
|
||
|
ptr := new([9]KeyValue)
|
||
|
copy((*ptr)[:], kvs)
|
||
|
return *ptr
|
||
|
case 10:
|
||
|
ptr := new([10]KeyValue)
|
||
|
copy((*ptr)[:], kvs)
|
||
|
return *ptr
|
||
|
default:
|
||
|
return nil
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// computeDistinctReflect computes a `Distinct` using reflection,
|
||
|
// works for any size input.
|
||
|
func computeDistinctReflect(kvs []KeyValue) interface{} {
|
||
|
at := reflect.New(reflect.ArrayOf(len(kvs), keyValueType)).Elem()
|
||
|
for i, keyValue := range kvs {
|
||
|
*(at.Index(i).Addr().Interface().(*KeyValue)) = keyValue
|
||
|
}
|
||
|
return at.Interface()
|
||
|
}
|
||
|
|
||
|
// MarshalJSON returns the JSON encoding of the `*Set`.
|
||
|
func (l *Set) MarshalJSON() ([]byte, error) {
|
||
|
return json.Marshal(l.equivalent.iface)
|
||
|
}
|
||
|
|
||
|
// Len implements `sort.Interface`.
|
||
|
func (l *Sortable) Len() int {
|
||
|
return len(*l)
|
||
|
}
|
||
|
|
||
|
// Swap implements `sort.Interface`.
|
||
|
func (l *Sortable) Swap(i, j int) {
|
||
|
(*l)[i], (*l)[j] = (*l)[j], (*l)[i]
|
||
|
}
|
||
|
|
||
|
// Less implements `sort.Interface`.
|
||
|
func (l *Sortable) Less(i, j int) bool {
|
||
|
return (*l)[i].Key < (*l)[j].Key
|
||
|
}
|