1
0
mirror of https://gitlab.xiph.org/xiph/ezstream.git synced 2024-06-02 06:01:10 +00:00

Strip xalloc to something much simpler

The libxalloc was reincarnated long ago in a separate utility library.
It did a good job help make ezstream have robust memory management years ago,
but now it's time to move on and get back to basics.

The replacement introduces reallocarray(), which is an overflow-checking
alternative to both malloc (NULL ptr) and realloc().
This commit is contained in:
Moritz Grimm 2015-04-22 23:38:19 +02:00
parent c6747ef998
commit ab268e9616
12 changed files with 98 additions and 2025 deletions

View File

@ -1,7 +1,5 @@
AUTOMAKE_OPTIONS = 1.10 foreign subdir-objects
SUBDIRS = sys
EXTRA_DIST = compat.h
CLEANFILES = *~ *.core core

View File

@ -29,4 +29,8 @@ size_t strlcpy(char *, const char *, size_t);
long long strtonum(const char *, long long, long long, const char **);
#endif /* !HAVE_STROTONUM */
#ifndef HAVE_REALLOCARRAY
void * reallocarray(void *, size_t, size_t);
#endif /* !HAVE_REALLOCARRAY */
#endif /* __COMPAT_H__ */

44
compat/reallocarray.c Normal file
View File

@ -0,0 +1,44 @@
/* $OpenBSD: reallocarray.c,v 1.2 2014/12/08 03:45:00 bcook Exp $ */
/*
* Copyright (c) 2008 Otto Moerbeek <otto@drijf.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/types.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include "compat.h"
#ifndef SIZE_T_MAX
# define SIZE_T_MAX ((size_t)-1)
#endif /* !SIZE_T_MAX */
/*
* This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX
* if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW
*/
#define MUL_NO_OVERFLOW ((size_t)1 << (sizeof(size_t) * 4))
void *
reallocarray(void *optr, size_t nmemb, size_t size)
{
if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
nmemb > 0 && SIZE_MAX / nmemb < size) {
errno = ENOMEM;
return NULL;
}
return realloc(optr, size * nmemb);
}

View File

@ -1,5 +0,0 @@
AUTOMAKE_OPTIONS = 1.10 foreign subdir-objects
EXTRA_DIST = tree.h tree.3
CLEANFILES = *~ *.core core

View File

@ -1,577 +0,0 @@
.\" $OpenBSD: tree.3,v 1.26 2014/09/08 01:27:55 schwarze Exp $
.\"/*
.\" * Copyright 2002 Niels Provos <provos@citi.umich.edu>
.\" * All rights reserved.
.\" *
.\" * Redistribution and use in source and binary forms, with or without
.\" * modification, are permitted provided that the following conditions
.\" * are met:
.\" * 1. Redistributions of source code must retain the above copyright
.\" * notice, this list of conditions and the following disclaimer.
.\" * 2. Redistributions in binary form must reproduce the above copyright
.\" * notice, this list of conditions and the following disclaimer in the
.\" * documentation and/or other materials provided with the distribution.
.\" *
.\" * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
.\" * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
.\" * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
.\" * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
.\" * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
.\" * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
.\" * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
.\" * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
.\" * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
.\" * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
.\" */
.Dd $Mdocdate: September 8 2014 $
.Dt TREE 3
.Os
.Sh NAME
.Nm SPLAY_PROTOTYPE ,
.Nm SPLAY_GENERATE ,
.Nm SPLAY_ENTRY ,
.Nm SPLAY_HEAD ,
.Nm SPLAY_INITIALIZER ,
.Nm SPLAY_ROOT ,
.Nm SPLAY_EMPTY ,
.Nm SPLAY_NEXT ,
.Nm SPLAY_MIN ,
.Nm SPLAY_MAX ,
.Nm SPLAY_FIND ,
.Nm SPLAY_LEFT ,
.Nm SPLAY_RIGHT ,
.Nm SPLAY_FOREACH ,
.Nm SPLAY_INIT ,
.Nm SPLAY_INSERT ,
.Nm SPLAY_REMOVE ,
.Nm RB_PROTOTYPE ,
.Nm RB_PROTOTYPE_STATIC ,
.Nm RB_GENERATE ,
.Nm RB_GENERATE_STATIC ,
.Nm RB_ENTRY ,
.Nm RB_HEAD ,
.Nm RB_INITIALIZER ,
.Nm RB_ROOT ,
.Nm RB_EMPTY ,
.Nm RB_NEXT ,
.Nm RB_PREV ,
.Nm RB_MIN ,
.Nm RB_MAX ,
.Nm RB_FIND ,
.Nm RB_NFIND ,
.Nm RB_LEFT ,
.Nm RB_RIGHT ,
.Nm RB_PARENT ,
.Nm RB_FOREACH ,
.Nm RB_FOREACH_SAFE ,
.Nm RB_FOREACH_REVERSE ,
.Nm RB_FOREACH_REVERSE_SAFE ,
.Nm RB_INIT ,
.Nm RB_INSERT ,
.Nm RB_REMOVE
.Nd implementations of splay and red-black trees
.Sh SYNOPSIS
.In sys/tree.h
.Pp
.Fn SPLAY_PROTOTYPE "NAME" "TYPE" "FIELD" "CMP"
.Fn SPLAY_GENERATE "NAME" "TYPE" "FIELD" "CMP"
.Fn SPLAY_ENTRY "TYPE"
.Fn SPLAY_HEAD "HEADNAME" "TYPE"
.Ft "struct TYPE *"
.Fn SPLAY_INITIALIZER "SPLAY_HEAD *head"
.Fn SPLAY_ROOT "SPLAY_HEAD *head"
.Ft "int"
.Fn SPLAY_EMPTY "SPLAY_HEAD *head"
.Ft "struct TYPE *"
.Fn SPLAY_NEXT "NAME" "SPLAY_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn SPLAY_MIN "NAME" "SPLAY_HEAD *head"
.Ft "struct TYPE *"
.Fn SPLAY_MAX "NAME" "SPLAY_HEAD *head"
.Ft "struct TYPE *"
.Fn SPLAY_FIND "NAME" "SPLAY_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn SPLAY_LEFT "struct TYPE *elm" "SPLAY_ENTRY NAME"
.Ft "struct TYPE *"
.Fn SPLAY_RIGHT "struct TYPE *elm" "SPLAY_ENTRY NAME"
.Fn SPLAY_FOREACH "VARNAME" "NAME" "SPLAY_HEAD *head"
.Ft void
.Fn SPLAY_INIT "SPLAY_HEAD *head"
.Ft "struct TYPE *"
.Fn SPLAY_INSERT "NAME" "SPLAY_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn SPLAY_REMOVE "NAME" "SPLAY_HEAD *head" "struct TYPE *elm"
.Pp
.Fn RB_PROTOTYPE "NAME" "TYPE" "FIELD" "CMP"
.Fn RB_PROTOTYPE_STATIC "NAME" "TYPE" "FIELD" "CMP"
.Fn RB_GENERATE "NAME" "TYPE" "FIELD" "CMP"
.Fn RB_GENERATE_STATIC "NAME" "TYPE" "FIELD" "CMP"
.Fn RB_ENTRY "TYPE"
.Fn RB_HEAD "HEADNAME" "TYPE"
.Fn RB_INITIALIZER "RB_HEAD *head"
.Ft "struct TYPE *"
.Fn RB_ROOT "RB_HEAD *head"
.Ft "int"
.Fn RB_EMPTY "RB_HEAD *head"
.Ft "struct TYPE *"
.Fn RB_NEXT "NAME" "RB_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn RB_PREV "NAME" "RB_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn RB_MIN "NAME" "RB_HEAD *head"
.Ft "struct TYPE *"
.Fn RB_MAX "NAME" "RB_HEAD *head"
.Ft "struct TYPE *"
.Fn RB_FIND "NAME" "RB_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn RB_NFIND "NAME" "RB_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn RB_LEFT "struct TYPE *elm" "RB_ENTRY NAME"
.Ft "struct TYPE *"
.Fn RB_RIGHT "struct TYPE *elm" "RB_ENTRY NAME"
.Ft "struct TYPE *"
.Fn RB_PARENT "struct TYPE *elm" "RB_ENTRY NAME"
.Fn RB_FOREACH "VARNAME" "NAME" "RB_HEAD *head"
.Fn RB_FOREACH_SAFE "VARNAME" "NAME" "RB_HEAD *head" "TEMP_VARNAME"
.Fn RB_FOREACH_REVERSE "VARNAME" "NAME" "RB_HEAD *head"
.Fn RB_FOREACH_REVERSE_SAFE "VARNAME" "NAME" "RB_HEAD *head" "TEMP_VARNAME"
.Ft void
.Fn RB_INIT "RB_HEAD *head"
.Ft "struct TYPE *"
.Fn RB_INSERT "NAME" "RB_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn RB_REMOVE "NAME" "RB_HEAD *head" "struct TYPE *elm"
.Sh DESCRIPTION
These macros define data structures for different types of trees:
splay trees and red-black trees.
.Pp
In the macro definitions,
.Fa TYPE
is the name tag of a user defined structure that must contain a field named
.Fa FIELD ,
of type
.Li SPLAY_ENTRY
or
.Li RB_ENTRY .
The argument
.Fa HEADNAME
is the name tag of a user defined structure that must be declared
using the macros
.Fn SPLAY_HEAD
or
.Fn RB_HEAD .
The argument
.Fa NAME
has to be a unique name prefix for every tree that is defined.
.Pp
The function prototypes are declared with
.Li SPLAY_PROTOTYPE ,
.Li RB_PROTOTYPE ,
or
.Li RB_PROTOTYPE_STATIC .
The function bodies are generated with
.Li SPLAY_GENERATE ,
.Li RB_GENERATE ,
or
.Li RB_GENERATE_STATIC .
See the examples below for further explanation of how these macros are used.
.Sh SPLAY TREES
A splay tree is a self-organizing data structure.
Every operation on the tree causes a splay to happen.
The splay moves the requested node to the root of the tree and partly
rebalances it.
.Pp
This has the benefit that request locality causes faster lookups as
the requested nodes move to the top of the tree.
On the other hand, every lookup causes memory writes.
.Pp
The Balance Theorem bounds the total access time for m operations
and n inserts on an initially empty tree as O((m + n)lg n).
The amortized cost for a sequence of m accesses to a splay tree is O(lg n).
.Pp
A splay tree is headed by a structure defined by the
.Fn SPLAY_HEAD
macro.
A
.Fa SPLAY_HEAD
structure is declared as follows:
.Bd -literal -offset indent
SPLAY_HEAD(HEADNAME, TYPE) head;
.Ed
.Pp
where
.Fa HEADNAME
is the name of the structure to be defined, and struct
.Fa TYPE
is the type of the elements to be inserted into the tree.
.Pp
The
.Fn SPLAY_ENTRY
macro declares a structure that allows elements to be connected in the tree.
.Pp
In order to use the functions that manipulate the tree structure,
their prototypes need to be declared with the
.Fn SPLAY_PROTOTYPE
macro,
where
.Fa NAME
is a unique identifier for this particular tree.
The
.Fa TYPE
argument is the type of the structure that is being managed
by the tree.
The
.Fa FIELD
argument is the name of the element defined by
.Fn SPLAY_ENTRY .
.Pp
The function bodies are generated with the
.Fn SPLAY_GENERATE
macro.
It takes the same arguments as the
.Fn SPLAY_PROTOTYPE
macro, but should be used only once.
.Pp
Finally,
the
.Fa CMP
argument is the name of a function used to compare trees' nodes
with each other.
The function takes two arguments of type
.Fa "struct TYPE *" .
If the first argument is smaller than the second, the function returns a
value smaller than zero.
If they are equal, the function returns zero.
Otherwise, it should return a value greater than zero.
The compare function defines the order of the tree elements.
.Pp
The
.Fn SPLAY_INIT
macro initializes the tree referenced by
.Fa head .
.Pp
The splay tree can also be initialized statically by using the
.Fn SPLAY_INITIALIZER
macro like this:
.Bd -literal -offset indent
SPLAY_HEAD(HEADNAME, TYPE) head = SPLAY_INITIALIZER(&head);
.Ed
.Pp
The
.Fn SPLAY_INSERT
macro inserts the new element
.Fa elm
into the tree.
Upon success,
.Va NULL
is returned.
If a matching element already exists in the tree, the insertion is
aborted, and a pointer to the existing element is returned.
.Pp
The
.Fn SPLAY_REMOVE
macro removes the element
.Fa elm
from the tree pointed by
.Fa head .
Upon success, a pointer to the removed element is returned.
.Va NULL
is returned if
.Fa elm
is not present in the tree.
.Pp
The
.Fn SPLAY_FIND
macro can be used to find a particular element in the tree.
.Bd -literal -offset indent
struct TYPE find, *res;
find.key = 30;
res = SPLAY_FIND(NAME, &head, &find);
.Ed
.Pp
The
.Fn SPLAY_ROOT ,
.Fn SPLAY_MIN ,
.Fn SPLAY_MAX ,
and
.Fn SPLAY_NEXT
macros can be used to traverse the tree:
.Bd -literal -offset indent
for (np = SPLAY_MIN(NAME, &head); np != NULL; np = SPLAY_NEXT(NAME, &head, np))
.Ed
.Pp
Or, for simplicity, one can use the
.Fn SPLAY_FOREACH
macro:
.Bd -literal -offset indent
SPLAY_FOREACH(np, NAME, &head)
.Ed
.Pp
The
.Fn SPLAY_EMPTY
macro should be used to check whether a splay tree is empty.
.Sh RED-BLACK TREES
A red-black tree is a binary search tree with the node color as an
extra attribute.
It fulfills a set of conditions:
.Pp
.Bl -enum -compact -offset indent
.It
every search path from the root to a leaf consists of the same number of
black nodes,
.It
each red node (except for the root) has a black parent,
.It
each leaf node is black.
.El
.Pp
Every operation on a red-black tree is bounded as O(lg n).
The maximum height of a red-black tree is 2lg (n+1).
.Pp
A red-black tree is headed by a structure defined by the
.Fn RB_HEAD
macro.
A
.Fa RB_HEAD
structure is declared as follows:
.Bd -literal -offset indent
RB_HEAD(HEADNAME, TYPE) head;
.Ed
.Pp
where
.Fa HEADNAME
is the name of the structure to be defined, and struct
.Fa TYPE
is the type of the elements to be inserted into the tree.
.Pp
The
.Fn RB_ENTRY
macro declares a structure that allows elements to be connected in the tree.
.Pp
In order to use the functions that manipulate the tree structure,
their prototypes need to be declared with the
.Fn RB_PROTOTYPE
or
.Fn RB_PROTOTYPE_STATIC
macros,
where
.Fa NAME
is a unique identifier for this particular tree.
The
.Fa TYPE
argument is the type of the structure that is being managed
by the tree.
The
.Fa FIELD
argument is the name of the element defined by
.Fn RB_ENTRY .
.Pp
The function bodies are generated with the
.Fn RB_GENERATE
or
.Fn RB_GENERATE_STATIC
macros.
These macros take the same arguments as the
.Fn RB_PROTOTYPE
and
.Fn RB_PROTOTYPE_STATIC
macros, but should be used only once.
.Pp
Finally,
the
.Fa CMP
argument is the name of a function used to compare trees' nodes
with each other.
The function takes two arguments of type
.Fa "struct TYPE *" .
If the first argument is smaller than the second, the function returns a
value smaller than zero.
If they are equal, the function returns zero.
Otherwise, it should return a value greater than zero.
The compare function defines the order of the tree elements.
.Pp
The
.Fn RB_INIT
macro initializes the tree referenced by
.Fa head .
.Pp
The red-black tree can also be initialized statically by using the
.Fn RB_INITIALIZER
macro like this:
.Bd -literal -offset indent
RB_HEAD(HEADNAME, TYPE) head = RB_INITIALIZER(&head);
.Ed
.Pp
The
.Fn RB_INSERT
macro inserts the new element
.Fa elm
into the tree.
Upon success,
.Va NULL
is returned.
If a matching element already exists in the tree, the insertion is
aborted, and a pointer to the existing element is returned.
.Pp
The
.Fn RB_REMOVE
macro removes the element
.Fa elm
from the tree pointed by
.Fa head .
.Fn RB_REMOVE
returns
.Fa elm .
.Pp
The
.Fn RB_FIND
and
.Fn RB_NFIND
macros can be used to find a particular element in the tree.
.Fn RB_FIND
finds the node with the same key as
.Fa elm .
.Fn RB_NFIND
finds the first node greater than or equal to the search key.
.Bd -literal -offset indent
struct TYPE find, *res;
find.key = 30;
res = RB_FIND(NAME, &head, &find);
.Ed
.Pp
The
.Fn RB_ROOT ,
.Fn RB_MIN ,
.Fn RB_MAX ,
.Fn RB_NEXT ,
and
.Fn RB_PREV
macros can be used to traverse the tree:
.Bd -literal -offset indent
for (np = RB_MIN(NAME, &head); np != NULL; np = RB_NEXT(NAME, &head, np))
.Ed
.Pp
Or, for simplicity, one can use the
.Fn RB_FOREACH
or
.Fn RB_FOREACH_REVERSE
macros:
.Bd -literal -offset indent
RB_FOREACH(np, NAME, &head)
.Ed
.Pp
The macros
.Fn RB_FOREACH_SAFE
and
.Fn RB_FOREACH_REVERSE_SAFE
traverse the tree referenced by head
in a forward or reverse direction respectively,
assigning each element in turn to np.
However, unlike their unsafe counterparts,
they permit both the removal of np
as well as freeing it from within the loop safely
without interfering with the traversal.
.Pp
The
.Fn RB_EMPTY
macro should be used to check whether a red-black tree is empty.
.Sh EXAMPLES
The following example demonstrates how to declare a red-black tree
holding integers.
Values are inserted into it and the contents of the tree are printed
in order.
Lastly, the internal structure of the tree is printed.
.Bd -literal -offset 3n
#include <sys/tree.h>
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
struct node {
RB_ENTRY(node) entry;
int i;
};
int
intcmp(struct node *e1, struct node *e2)
{
return (e1->i < e2->i ? -1 : e1->i > e2->i);
}
RB_HEAD(inttree, node) head = RB_INITIALIZER(&head);
RB_GENERATE(inttree, node, entry, intcmp)
int testdata[] = {
20, 16, 17, 13, 3, 6, 1, 8, 2, 4, 10, 19, 5, 9, 12, 15, 18,
7, 11, 14
};
void
print_tree(struct node *n)
{
struct node *left, *right;
if (n == NULL) {
printf("nil");
return;
}
left = RB_LEFT(n, entry);
right = RB_RIGHT(n, entry);
if (left == NULL && right == NULL)
printf("%d", n->i);
else {
printf("%d(", n->i);
print_tree(left);
printf(",");
print_tree(right);
printf(")");
}
}
int
main()
{
int i;
struct node *n;
for (i = 0; i < sizeof(testdata) / sizeof(testdata[0]); i++) {
if ((n = malloc(sizeof(struct node))) == NULL)
err(1, NULL);
n->i = testdata[i];
RB_INSERT(inttree, &head, n);
}
RB_FOREACH(n, inttree, &head) {
printf("%d\en", n->i);
}
print_tree(RB_ROOT(&head));
printf("\en");
return (0);
}
.Ed
.Sh NOTES
Trying to free a tree in the following way is a common error:
.Bd -literal -offset indent
SPLAY_FOREACH(var, NAME, &head) {
SPLAY_REMOVE(NAME, &head, var);
free(var);
}
free(head);
.Ed
.Pp
Since
.Va var
is free'd, the
.Fn FOREACH
macro refers to a pointer that may have been reallocated already.
Proper code needs a second variable.
.Bd -literal -offset indent
for (var = SPLAY_MIN(NAME, &head); var != NULL; var = nxt) {
nxt = SPLAY_NEXT(NAME, &head, var);
SPLAY_REMOVE(NAME, &head, var);
free(var);
}
.Ed
.Sh AUTHORS
The author of the tree macros is
.An Niels Provos .

View File

@ -1,748 +0,0 @@
/* $OpenBSD: tree.h,v 1.13 2011/07/09 00:19:45 pirofti Exp $ */
/*
* Copyright 2002 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SYS_TREE_H_
#define _SYS_TREE_H_
/*
* This file defines data structures for different types of trees:
* splay trees and red-black trees.
*
* A splay tree is a self-organizing data structure. Every operation
* on the tree causes a splay to happen. The splay moves the requested
* node to the root of the tree and partly rebalances it.
*
* This has the benefit that request locality causes faster lookups as
* the requested nodes move to the top of the tree. On the other hand,
* every lookup causes memory writes.
*
* The Balance Theorem bounds the total access time for m operations
* and n inserts on an initially empty tree as O((m + n)lg n). The
* amortized cost for a sequence of m accesses to a splay tree is O(lg n);
*
* A red-black tree is a binary search tree with the node color as an
* extra attribute. It fulfills a set of conditions:
* - every search path from the root to a leaf consists of the
* same number of black nodes,
* - each red node (except for the root) has a black parent,
* - each leaf node is black.
*
* Every operation on a red-black tree is bounded as O(lg n).
* The maximum height of a red-black tree is 2lg (n+1).
*/
#define SPLAY_HEAD(name, type) \
struct name { \
struct type *sph_root; /* root of the tree */ \
}
#define SPLAY_INITIALIZER(root) \
{ NULL }
#define SPLAY_INIT(root) do { \
(root)->sph_root = NULL; \
} while (0)
#define SPLAY_ENTRY(type) \
struct { \
struct type *spe_left; /* left element */ \
struct type *spe_right; /* right element */ \
}
#define SPLAY_LEFT(elm, field) (elm)->field.spe_left
#define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
#define SPLAY_ROOT(head) (head)->sph_root
#define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
#define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (0)
#define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (0)
#define SPLAY_LINKLEFT(head, tmp, field) do { \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
} while (0)
#define SPLAY_LINKRIGHT(head, tmp, field) do { \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
} while (0)
#define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
} while (0)
/* Generates prototypes and inline functions */
#define SPLAY_PROTOTYPE(name, type, field, cmp) \
void name##_SPLAY(struct name *, struct type *); \
void name##_SPLAY_MINMAX(struct name *, int); \
struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
\
/* Finds the node with the same key as elm */ \
static __inline struct type * \
name##_SPLAY_FIND(struct name *head, struct type *elm) \
{ \
if (SPLAY_EMPTY(head)) \
return(NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) \
return (head->sph_root); \
return (NULL); \
} \
\
static __inline struct type * \
name##_SPLAY_NEXT(struct name *head, struct type *elm) \
{ \
name##_SPLAY(head, elm); \
if (SPLAY_RIGHT(elm, field) != NULL) { \
elm = SPLAY_RIGHT(elm, field); \
while (SPLAY_LEFT(elm, field) != NULL) { \
elm = SPLAY_LEFT(elm, field); \
} \
} else \
elm = NULL; \
return (elm); \
} \
\
static __inline struct type * \
name##_SPLAY_MIN_MAX(struct name *head, int val) \
{ \
name##_SPLAY_MINMAX(head, val); \
return (SPLAY_ROOT(head)); \
}
/* Main splay operation.
* Moves node close to the key of elm to top
*/
#define SPLAY_GENERATE(name, type, field, cmp) \
struct type * \
name##_SPLAY_INSERT(struct name *head, struct type *elm) \
{ \
if (SPLAY_EMPTY(head)) { \
SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
} else { \
int __comp; \
name##_SPLAY(head, elm); \
__comp = (cmp)(elm, (head)->sph_root); \
if(__comp < 0) { \
SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
SPLAY_RIGHT(elm, field) = (head)->sph_root; \
SPLAY_LEFT((head)->sph_root, field) = NULL; \
} else if (__comp > 0) { \
SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
SPLAY_LEFT(elm, field) = (head)->sph_root; \
SPLAY_RIGHT((head)->sph_root, field) = NULL; \
} else \
return ((head)->sph_root); \
} \
(head)->sph_root = (elm); \
return (NULL); \
} \
\
struct type * \
name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *__tmp; \
if (SPLAY_EMPTY(head)) \
return (NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) { \
if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
} else { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
name##_SPLAY(head, elm); \
SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
} \
return (elm); \
} \
return (NULL); \
} \
\
void \
name##_SPLAY(struct name *head, struct type *elm) \
{ \
struct type __node, *__left, *__right, *__tmp; \
int __comp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while ((__comp = (cmp)(elm, (head)->sph_root))) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) < 0){ \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) > 0){ \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
} \
\
/* Splay with either the minimum or the maximum element \
* Used to find minimum or maximum element in tree. \
*/ \
void name##_SPLAY_MINMAX(struct name *head, int __comp) \
{ \
struct type __node, *__left, *__right, *__tmp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while (1) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp < 0){ \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp > 0) { \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
}
#define SPLAY_NEGINF -1
#define SPLAY_INF 1
#define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
#define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
#define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
#define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
#define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
#define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
#define SPLAY_FOREACH(x, name, head) \
for ((x) = SPLAY_MIN(name, head); \
(x) != NULL; \
(x) = SPLAY_NEXT(name, head, x))
/* Macros that define a red-black tree */
#define RB_HEAD(name, type) \
struct name { \
struct type *rbh_root; /* root of the tree */ \
}
#define RB_INITIALIZER(root) \
{ NULL }
#define RB_INIT(root) do { \
(root)->rbh_root = NULL; \
} while (0)
#define RB_BLACK 0
#define RB_RED 1
#define RB_ENTRY(type) \
struct { \
struct type *rbe_left; /* left element */ \
struct type *rbe_right; /* right element */ \
struct type *rbe_parent; /* parent element */ \
int rbe_color; /* node color */ \
}
#define RB_LEFT(elm, field) (elm)->field.rbe_left
#define RB_RIGHT(elm, field) (elm)->field.rbe_right
#define RB_PARENT(elm, field) (elm)->field.rbe_parent
#define RB_COLOR(elm, field) (elm)->field.rbe_color
#define RB_ROOT(head) (head)->rbh_root
#define RB_EMPTY(head) (RB_ROOT(head) == NULL)
#define RB_SET(elm, parent, field) do { \
RB_PARENT(elm, field) = parent; \
RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
RB_COLOR(elm, field) = RB_RED; \
} while (0)
#define RB_SET_BLACKRED(black, red, field) do { \
RB_COLOR(black, field) = RB_BLACK; \
RB_COLOR(red, field) = RB_RED; \
} while (0)
#ifndef RB_AUGMENT
#define RB_AUGMENT(x) do {} while (0)
#endif
#define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
(tmp) = RB_RIGHT(elm, field); \
if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) { \
RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
} \
RB_AUGMENT(elm); \
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
else \
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
RB_LEFT(tmp, field) = (elm); \
RB_PARENT(elm, field) = (tmp); \
RB_AUGMENT(tmp); \
if ((RB_PARENT(tmp, field))) \
RB_AUGMENT(RB_PARENT(tmp, field)); \
} while (0)
#define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
(tmp) = RB_LEFT(elm, field); \
if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field))) { \
RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
} \
RB_AUGMENT(elm); \
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
else \
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
RB_RIGHT(tmp, field) = (elm); \
RB_PARENT(elm, field) = (tmp); \
RB_AUGMENT(tmp); \
if ((RB_PARENT(tmp, field))) \
RB_AUGMENT(RB_PARENT(tmp, field)); \
} while (0)
/* Generates prototypes and inline functions */
#define RB_PROTOTYPE(name, type, field, cmp) \
RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
#define RB_PROTOTYPE_STATIC(name, type, field, cmp) \
RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __attribute__((__unused__)) static)
#define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \
attr void name##_RB_INSERT_COLOR(struct name *, struct type *); \
attr void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
attr struct type *name##_RB_REMOVE(struct name *, struct type *); \
attr struct type *name##_RB_INSERT(struct name *, struct type *); \
attr struct type *name##_RB_FIND(struct name *, struct type *); \
attr struct type *name##_RB_NFIND(struct name *, struct type *); \
attr struct type *name##_RB_NEXT(struct type *); \
attr struct type *name##_RB_PREV(struct type *); \
attr struct type *name##_RB_MINMAX(struct name *, int); \
\
/* Main rb operation.
* Moves node close to the key of elm to top
*/
#define RB_GENERATE(name, type, field, cmp) \
RB_GENERATE_INTERNAL(name, type, field, cmp,)
#define RB_GENERATE_STATIC(name, type, field, cmp) \
RB_GENERATE_INTERNAL(name, type, field, cmp, __attribute__((__unused__)) static)
#define RB_GENERATE_INTERNAL(name, type, field, cmp, attr) \
attr void \
name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
{ \
struct type *parent, *gparent, *tmp; \
while ((parent = RB_PARENT(elm, field)) && \
RB_COLOR(parent, field) == RB_RED) { \
gparent = RB_PARENT(parent, field); \
if (parent == RB_LEFT(gparent, field)) { \
tmp = RB_RIGHT(gparent, field); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field);\
elm = gparent; \
continue; \
} \
if (RB_RIGHT(parent, field) == elm) { \
RB_ROTATE_LEFT(head, parent, tmp, field);\
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_RIGHT(head, gparent, tmp, field); \
} else { \
tmp = RB_LEFT(gparent, field); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field);\
elm = gparent; \
continue; \
} \
if (RB_LEFT(parent, field) == elm) { \
RB_ROTATE_RIGHT(head, parent, tmp, field);\
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_LEFT(head, gparent, tmp, field); \
} \
} \
RB_COLOR(head->rbh_root, field) = RB_BLACK; \
} \
\
attr void \
name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
{ \
struct type *tmp; \
while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
elm != RB_ROOT(head)) { \
if (RB_LEFT(parent, field) == elm) { \
tmp = RB_RIGHT(parent, field); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_LEFT(head, parent, tmp, field);\
tmp = RB_RIGHT(parent, field); \
} \
if ((RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
(RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT(elm, field); \
} else { \
if (RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
struct type *oleft; \
if ((oleft = RB_LEFT(tmp, field)))\
RB_COLOR(oleft, field) = RB_BLACK;\
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_RIGHT(head, tmp, oleft, field);\
tmp = RB_RIGHT(parent, field); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_RIGHT(tmp, field)) \
RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
RB_ROTATE_LEFT(head, parent, tmp, field);\
elm = RB_ROOT(head); \
break; \
} \
} else { \
tmp = RB_LEFT(parent, field); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_RIGHT(head, parent, tmp, field);\
tmp = RB_LEFT(parent, field); \
} \
if ((RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
(RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT(elm, field); \
} else { \
if (RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
struct type *oright; \
if ((oright = RB_RIGHT(tmp, field)))\
RB_COLOR(oright, field) = RB_BLACK;\
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_LEFT(head, tmp, oright, field);\
tmp = RB_LEFT(parent, field); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_LEFT(tmp, field)) \
RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
RB_ROTATE_RIGHT(head, parent, tmp, field);\
elm = RB_ROOT(head); \
break; \
} \
} \
} \
if (elm) \
RB_COLOR(elm, field) = RB_BLACK; \
} \
\
attr struct type * \
name##_RB_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *child, *parent, *old = elm; \
int color; \
if (RB_LEFT(elm, field) == NULL) \
child = RB_RIGHT(elm, field); \
else if (RB_RIGHT(elm, field) == NULL) \
child = RB_LEFT(elm, field); \
else { \
struct type *left; \
elm = RB_RIGHT(elm, field); \
while ((left = RB_LEFT(elm, field))) \
elm = left; \
child = RB_RIGHT(elm, field); \
parent = RB_PARENT(elm, field); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT(child, field) = parent; \
if (parent) { \
if (RB_LEFT(parent, field) == elm) \
RB_LEFT(parent, field) = child; \
else \
RB_RIGHT(parent, field) = child; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = child; \
if (RB_PARENT(elm, field) == old) \
parent = elm; \
(elm)->field = (old)->field; \
if (RB_PARENT(old, field)) { \
if (RB_LEFT(RB_PARENT(old, field), field) == old)\
RB_LEFT(RB_PARENT(old, field), field) = elm;\
else \
RB_RIGHT(RB_PARENT(old, field), field) = elm;\
RB_AUGMENT(RB_PARENT(old, field)); \
} else \
RB_ROOT(head) = elm; \
RB_PARENT(RB_LEFT(old, field), field) = elm; \
if (RB_RIGHT(old, field)) \
RB_PARENT(RB_RIGHT(old, field), field) = elm; \
if (parent) { \
left = parent; \
do { \
RB_AUGMENT(left); \
} while ((left = RB_PARENT(left, field))); \
} \
goto color; \
} \
parent = RB_PARENT(elm, field); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT(child, field) = parent; \
if (parent) { \
if (RB_LEFT(parent, field) == elm) \
RB_LEFT(parent, field) = child; \
else \
RB_RIGHT(parent, field) = child; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = child; \
color: \
if (color == RB_BLACK) \
name##_RB_REMOVE_COLOR(head, parent, child); \
return (old); \
} \
\
/* Inserts a node into the RB tree */ \
attr struct type * \
name##_RB_INSERT(struct name *head, struct type *elm) \
{ \
struct type *tmp; \
struct type *parent = NULL; \
int comp = 0; \
tmp = RB_ROOT(head); \
while (tmp) { \
parent = tmp; \
comp = (cmp)(elm, parent); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
RB_SET(elm, parent, field); \
if (parent != NULL) { \
if (comp < 0) \
RB_LEFT(parent, field) = elm; \
else \
RB_RIGHT(parent, field) = elm; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = elm; \
name##_RB_INSERT_COLOR(head, elm); \
return (NULL); \
} \
\
/* Finds the node with the same key as elm */ \
attr struct type * \
name##_RB_FIND(struct name *head, struct type *elm) \
{ \
struct type *tmp = RB_ROOT(head); \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (NULL); \
} \
\
/* Finds the first node greater than or equal to the search key */ \
attr struct type * \
name##_RB_NFIND(struct name *head, struct type *elm) \
{ \
struct type *tmp = RB_ROOT(head); \
struct type *res = NULL; \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) { \
res = tmp; \
tmp = RB_LEFT(tmp, field); \
} \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (res); \
} \
\
/* ARGSUSED */ \
attr struct type * \
name##_RB_NEXT(struct type *elm) \
{ \
if (RB_RIGHT(elm, field)) { \
elm = RB_RIGHT(elm, field); \
while (RB_LEFT(elm, field)) \
elm = RB_LEFT(elm, field); \
} else { \
if (RB_PARENT(elm, field) && \
(elm == RB_LEFT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
else { \
while (RB_PARENT(elm, field) && \
(elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
elm = RB_PARENT(elm, field); \
elm = RB_PARENT(elm, field); \
} \
} \
return (elm); \
} \
\
/* ARGSUSED */ \
attr struct type * \
name##_RB_PREV(struct type *elm) \
{ \
if (RB_LEFT(elm, field)) { \
elm = RB_LEFT(elm, field); \
while (RB_RIGHT(elm, field)) \
elm = RB_RIGHT(elm, field); \
} else { \
if (RB_PARENT(elm, field) && \
(elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
else { \
while (RB_PARENT(elm, field) && \
(elm == RB_LEFT(RB_PARENT(elm, field), field)))\
elm = RB_PARENT(elm, field); \
elm = RB_PARENT(elm, field); \
} \
} \
return (elm); \
} \
\
attr struct type * \
name##_RB_MINMAX(struct name *head, int val) \
{ \
struct type *tmp = RB_ROOT(head); \
struct type *parent = NULL; \
while (tmp) { \
parent = tmp; \
if (val < 0) \
tmp = RB_LEFT(tmp, field); \
else \
tmp = RB_RIGHT(tmp, field); \
} \
return (parent); \
}
#define RB_NEGINF -1
#define RB_INF 1
#define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
#define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
#define RB_FIND(name, x, y) name##_RB_FIND(x, y)
#define RB_NFIND(name, x, y) name##_RB_NFIND(x, y)
#define RB_NEXT(name, x, y) name##_RB_NEXT(y)
#define RB_PREV(name, x, y) name##_RB_PREV(y)
#define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
#define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
#define RB_FOREACH(x, name, head) \
for ((x) = RB_MIN(name, head); \
(x) != NULL; \
(x) = name##_RB_NEXT(x))
#define RB_FOREACH_SAFE(x, name, head, y) \
for ((x) = RB_MIN(name, head); \
((x) != NULL) && ((y) = name##_RB_NEXT(x), 1); \
(x) = (y))
#define RB_FOREACH_REVERSE(x, name, head) \
for ((x) = RB_MAX(name, head); \
(x) != NULL; \
(x) = name##_RB_PREV(x))
#define RB_FOREACH_REVERSE_SAFE(x, name, head, y) \
for ((x) = RB_MAX(name, head); \
((x) != NULL) && ((y) = name##_RB_PREV(x), 1); \
(x) = (y))
#endif /* _SYS_TREE_H_ */

View File

@ -248,6 +248,7 @@ AC_CHECK_FUNCS([ \
AC_REPLACE_FUNCS([ \
getopt \
reallocarray \
strlcat \
strlcpy \
strtonum \
@ -285,7 +286,6 @@ AC_CONFIG_FILES([
Makefile
build-aux/Makefile
compat/Makefile
compat/sys/Makefile
doc/Makefile
doc/ezstream-file.sh.1.in
doc/ezstream.1.in

View File

@ -994,7 +994,6 @@ ez_shutdown(int exitval)
shout_shutdown();
playlist_shutdown();
freeConfig(pezConfig);
xalloc_shutdown();
log_exit();
return (exitval);
@ -1022,11 +1021,6 @@ main(int argc, char *argv[])
return (ret);
log_init();
#ifdef XALLOC_DEBUG
xalloc_initialize_debug(2, NULL);
#else
xalloc_initialize();
#endif /* XALLOC_DEBUG */
playlist_init();
shout_init();

View File

@ -330,7 +330,7 @@ metadata_normalize_string(char **s)
tmpstr[strlen(tmpstr) - 1] = '\0';
xfree(str);
*s = xrealloc(tmpstr, strlen(tmpstr) + 1, sizeof (char));
*s = xreallocarray(tmpstr, strlen(tmpstr) + 1, sizeof(char));
}
metadata_t *

View File

@ -70,7 +70,7 @@ playlist_add(playlist_t *pl, const char *entry)
if (pl->size / sizeof(char *) <= num) {
size_t i;
pl->list = xrealloc(pl->list, 2UL, pl->size);
pl->list = xreallocarray(pl->list, 2UL, pl->size);
pl->size = 2 * pl->size;
for (i = num; i < pl->size / sizeof(char *); i++)

View File

@ -18,630 +18,75 @@
# include "config.h"
#endif
#include "ezstream.h"
#include "compat.h"
#include <stdlib.h>
#include <string.h>
#include "log.h"
#include "xalloc.h"
#ifndef SIZE_T_MAX
# define SIZE_T_MAX ((size_t)-1)
#endif
#ifndef va_copy
# define va_copy(d, s) (d) = (s)
#endif
#define XALLOC_DBGLVL_MAX 2
#if defined(XALLOC_DEBUG) && defined(XALLOC_SILENT)
# undef XALLOC_SILENT
#endif /* XALLOC_DEBUG && XALLOC_SILENT */
#ifdef XALLOC_DEBUG
# include <sys/tree.h>
int _memory_cmp(void *, void *);
struct memory {
RB_ENTRY(memory) entry;
void *ptr;
unsigned int id;
size_t size;
const char *allocated_by;
unsigned int allocated_in_line;
const char *reallocated_by;
unsigned int reallocated_in_line;
const char *freed_by;
unsigned int freed_in_line;
};
RB_HEAD(memory_tree, memory) memory_tree_head = RB_INITIALIZER(&memory_tree_head);
RB_PROTOTYPE(memory_tree, memory, entry, _memory_cmp)
void _memory_free(struct memory **);
#endif /* XALLOC_DEBUG */
void _xalloc_warn(const char *, ...);
void _xalloc_error(int, const char *, ...);
void _xalloc_fatal(const char *, ...);
void _xalloc_debug_printf(unsigned int, const char *, ...);
#ifdef XALLOC_WITH_XASPRINTF
int _xalloc_vasprintf(char **, const char *, va_list, size_t *);
#endif /* XALLOC_WITH_XASPRINTF */
static unsigned int debug_level = 0;
static FILE *debug_output = NULL;
#ifdef XALLOC_DEBUG
static unsigned int xalloc_next_id = 0;
#endif
static int xalloc_initialized = 0;
static size_t xalloc_allocated;
static size_t xalloc_total;
static size_t xalloc_peak;
static size_t xalloc_freed;
static void * (*real_malloc)(size_t) = NULL;
static void * (*real_calloc)(size_t, size_t) = NULL;
static void * (*real_realloc)(void *, size_t) = NULL;
static void (*real_free)(void *) = NULL;
static const char *unknown_file = "<unknown>";
#ifdef XALLOC_DEBUG
RB_GENERATE(memory_tree, memory, entry, _memory_cmp)
int
_memory_cmp(void *arg_a, void *arg_b)
{
struct memory *a = (struct memory *)arg_a;
struct memory *b = (struct memory *)arg_b;
if (a->ptr < b->ptr)
return (-1);
else if (a->ptr > b->ptr)
return (1);
return (0);
}
void
_memory_free(struct memory **mem_p)
{
struct memory *mem = *mem_p;
if (mem->allocated_by != NULL)
mem->allocated_by = NULL;
if (mem->reallocated_by != NULL)
mem->reallocated_by = NULL;
if (mem->freed_by != NULL)
mem->freed_by = NULL;
real_free(mem);
*mem_p = NULL;
}
#endif /* XALLOC_DEBUG */
void
_xalloc_warn(const char *fmt, ...)
{
va_list ap;
if (debug_output == NULL)
debug_output = XALLOC_DEFAULT_OUTPUT;
va_start(ap, fmt);
#ifndef XALLOC_SILENT
vfprintf(debug_output, fmt, ap);
fflush(debug_output);
#endif /* !XALLOC_SILENT */
va_end(ap);
}
void
_xalloc_error(int errnum, const char *fmt, ...)
{
va_list ap;
if (debug_output == NULL)
debug_output = XALLOC_DEFAULT_OUTPUT;
va_start(ap, fmt);
#ifndef XALLOC_SILENT
vfprintf(debug_output, fmt, ap);
if (errnum > 0)
fprintf(debug_output, ": %s\n", strerror(errnum));
fflush(debug_output);
#endif /* !XALLOC_SILENT */
va_end(ap);
exit(1);
}
void
_xalloc_fatal(const char *fmt, ...)
{
va_list ap;
if (debug_output == NULL)
debug_output = XALLOC_DEFAULT_OUTPUT;
va_start(ap, fmt);
#ifndef XALLOC_SILENT
vfprintf(debug_output, fmt, ap);
fflush(debug_output);
#endif /* !XALLOC_SILENT */
va_end(ap);
abort();
}
void
_xalloc_debug_printf(unsigned int level, const char *fmt, ...)
{
va_list ap;
if (level > debug_level)
return;
va_start(ap, fmt);
#ifdef XALLOC_DEBUG
vfprintf(debug_output, fmt, ap);
fflush(debug_output);
#endif /* XALLOC_DEBUG */
va_end(ap);
}
#ifdef XALLOC_WITH_XASPRINTF
int
_xalloc_vasprintf(char **str_p, const char *fmt, va_list ap, size_t *strsiz)
{
int ret = -1;
va_list ap_local;
*str_p = NULL;
va_copy(ap_local, ap);
*strsiz = vsnprintf(NULL, (size_t)0, fmt, ap_local) + 1;
va_end(ap_local);
#ifdef HAVE_ASPRINTF
if ((ret = vasprintf(str_p, fmt, ap)) == -1)
*str_p = NULL;
#else
if ((*str_p = real_calloc(*strsiz, sizeof(char))) == NULL)
return (-1);
ret = vsnprintf(*str_p, *strsiz, fmt, ap);
#endif /* HAVE_ASPRINTF */
return (ret);
}
#endif /* XALLOC_WITH_XASPRINTF */
void
xalloc_initialize_debug(unsigned int level, FILE *output)
{
if (xalloc_initialized)
_xalloc_fatal("XALLOC: xalloc_initialize(): Xalloc library already initialized\n");
if ((debug_level = level) > XALLOC_DBGLVL_MAX)
debug_level = XALLOC_DBGLVL_MAX;
if (output == NULL)
debug_output = XALLOC_DEFAULT_OUTPUT;
else
debug_output = output;
real_malloc = malloc;
real_calloc = calloc;
real_realloc = realloc;
real_free = free;
xalloc_allocated = 0;
xalloc_total = 0;
xalloc_peak = 0;
xalloc_freed = 0;
xalloc_initialized = 1;
}
void
xalloc_set_functions(void *(*malloc_func)(size_t),
void *(*calloc_func)(size_t, size_t),
void *(*realloc_func)(void *, size_t),
void (*free_func)(void *))
{
if (!xalloc_initialized)
_xalloc_fatal("XALLOC: xalloc_set_functions(): Xalloc library not initialized\n");
if (malloc_func == NULL ||
calloc_func == NULL ||
realloc_func == NULL)
_xalloc_fatal("XALLOC: xalloc_set_functions(): Bad argument(s)\n");
real_malloc = malloc_func;
real_calloc = calloc_func;
real_realloc = realloc_func;
real_free = free_func;
}
void
xalloc_shutdown(void)
{
if (!xalloc_initialized)
_xalloc_fatal("XALLOC: xalloc_shutdown(): Xalloc library not initialized\n");
#ifdef XALLOC_DEBUG
if (debug_level > 0) {
struct memory *mem, *mem_next;
size_t leaked_bytes = 0;
for (mem = RB_MIN(memory_tree, &memory_tree_head);
mem != NULL;
mem = mem_next) {
mem_next = RB_NEXT(memory_tree, &memory_tree_head, mem);
RB_REMOVE(memory_tree, &memory_tree_head, mem);
if (mem->freed_by == NULL) {
_xalloc_debug_printf(1, "XALLOC: MEMORY LEAK (%p:%u): allocated in %s:%u, ",
mem->ptr,
mem->id,
mem->allocated_by,
mem->allocated_in_line);
if (mem->reallocated_by != NULL)
_xalloc_debug_printf(1, "last reallocated in %s:%u, ",
mem->reallocated_by,
mem->reallocated_in_line);
_xalloc_debug_printf(1, "leaks %lu bytes\n",
(unsigned long)mem->size);
leaked_bytes += mem->size;
real_free(mem->ptr);
}
_memory_free(&mem);
}
if (leaked_bytes != xalloc_allocated)
_xalloc_fatal("XALLOC: Internal error: xalloc_shutdown(): leaked_bytes(%lu) != xalloc_allocated(%lu)\n",
(unsigned long)leaked_bytes,
(unsigned long)xalloc_allocated);
_xalloc_debug_printf(1, "XALLOC: STATS: leaked: %lu bytes, peak allocation: %lu bytes (freed/total: %lu/%lu bytes)\n",
(unsigned long)xalloc_allocated,
(unsigned long)xalloc_peak,
(unsigned long)xalloc_freed,
(unsigned long)xalloc_total);
}
#endif /* XALLOC_DEBUG */
xalloc_initialized = 0;
}
void *
xmalloc_c(size_t size, const char *file, unsigned int line)
{
void *ret;
void *ret = malloc(size);
if (!xalloc_initialized)
_xalloc_fatal("XALLOC: xmalloc(): Xalloc library not initialized\n");
if (size == 0)
_xalloc_fatal("XALLOC: xmalloc(): %s:%u: Zero size\n",
file ? file : unknown_file, line);
if ((ret = real_malloc(size)) == NULL)
_xalloc_error(errno, "XALLOC: xmalloc(): %s:%u: Allocating %lu bytes",
file ? file : unknown_file, line,
(unsigned long)(size));
#ifdef XALLOC_DEBUG
if (debug_level > 0) {
struct memory *mem, *mem_exists;
if ((mem = real_calloc(1, sizeof(struct memory))) == NULL)
_xalloc_error(errno, "XALLOC: Internal error");
mem->ptr = ret;
mem->size = size;
if (file)
mem->allocated_by = file;
else
mem->allocated_by = unknown_file;
mem->allocated_in_line = line;
mem->id = ++xalloc_next_id;
if ((mem_exists = RB_INSERT(memory_tree, &memory_tree_head, mem)) != NULL) {
/* Freed pointer is being reused: */
if (mem_exists->id != 0)
_xalloc_fatal("XALLOC: Internal error: Assertion (mem_exists->id == 0) in %s:%u failed!\n",
__FILE__, __LINE__);
RB_REMOVE(memory_tree, &memory_tree_head, mem_exists);
_memory_free(&mem_exists);
RB_INSERT(memory_tree, &memory_tree_head, mem);
}
xalloc_allocated += size;
xalloc_total += size;
if (xalloc_allocated > xalloc_peak)
xalloc_peak = xalloc_allocated;
if (NULL == ret) {
log_alert("%s[%u]: cannot allocate %zu bytes",
file, line, size);
exit(1);
}
#endif /* XALLOC_DEBUG */
return (ret);
}
void *
xcalloc_c(size_t nmemb, size_t size, int may_fail,
const char *file, unsigned int line)
xcalloc_c(size_t nmemb, size_t size, const char *file, unsigned int line)
{
void *ret;
void *ret = calloc(nmemb, size);
if (!xalloc_initialized)
_xalloc_fatal("XALLOC: xcalloc(): Xalloc library not initialized\n");
if (nmemb == 0 || size == 0)
_xalloc_fatal("XALLOC: xcalloc(): %s:%u: Zero size\n",
file ? file : unknown_file, line);
if (SIZE_T_MAX / nmemb < size)
_xalloc_fatal("XALLOC: xcalloc(): %s:%u: Integer overflow (nmemb * size > SIZE_T_MAX)\n",
file ? file : unknown_file, line);
if ((ret = real_calloc(nmemb, size)) == NULL && may_fail == 0)
_xalloc_error(errno, "XALLOC: xcalloc(): %s:%u: Allocating %lu bytes",
file ? file : unknown_file, line,
(unsigned long)(nmemb * size));
#ifdef XALLOC_DEBUG
if (ret != NULL && debug_level > 0) {
struct memory *mem, *mem_exists;
if ((mem = real_calloc(1, sizeof(struct memory))) == NULL)
_xalloc_error(errno, "XALLOC: Internal error");
mem->ptr = ret;
mem->size = nmemb * size;
if (file)
mem->allocated_by = file;
else
mem->allocated_by = unknown_file;
mem->allocated_in_line = line;
mem->id = ++xalloc_next_id;
if ((mem_exists = RB_INSERT(memory_tree, &memory_tree_head, mem)) != NULL) {
/* Freed pointer is being reused: */
if (mem_exists->id != 0)
_xalloc_fatal("XALLOC: Internal error: Assertion (mem_exists->id == 0) in %s:%u failed!\n",
__FILE__, __LINE__);
RB_REMOVE(memory_tree, &memory_tree_head, mem_exists);
_memory_free(&mem_exists);
RB_INSERT(memory_tree, &memory_tree_head, mem);
}
xalloc_allocated += nmemb * size;
xalloc_total += nmemb * size;
if (xalloc_allocated > xalloc_peak)
xalloc_peak = xalloc_allocated;
if (NULL == ret) {
log_alert("%s[%u]: cannot allocate %zu * %zu bytes",
file, line, nmemb, size);
exit(1);
}
#endif /* XALLOC_DEBUG */
return (ret);
}
void *
xrealloc_c(void *ptr, size_t nmemb, size_t size,
const char *file, unsigned int line)
xreallocarray_c(void *ptr, size_t nmemb, size_t size, const char *file,
unsigned int line)
{
void *ret;
size_t nsiz = nmemb * size;
#ifdef XALLOC_DEBUG
struct memory *mem = NULL;
#endif /* XALLOC_DEBUG */
void *ret = reallocarray(ptr, nmemb, size);
if (!xalloc_initialized)
_xalloc_fatal("XALLOC: xrealloc(): Xalloc library not initialized\n");
if (nmemb == 0 || size == 0)
_xalloc_fatal("XALLOC: xrealloc(): %s:%u: Zero size\n",
file ? file : unknown_file, line);
if (SIZE_T_MAX / nmemb < size)
_xalloc_fatal("XALLOC: xrealloc(): %s:%u: Integer overflow (nmemb * size > SIZE_T_MAX)\n",
file ? file : unknown_file, line);
if (ptr == NULL) {
ret = real_malloc(nsiz);
#ifdef XALLOC_DEBUG
if (debug_level > 0) {
if ((mem = real_calloc(1, sizeof(struct memory))) == NULL)
_xalloc_error(errno, "XALLOC: Internal error");
mem->ptr = ret;
mem->id = ++xalloc_next_id;
if (file)
mem->allocated_by = file;
else
mem->allocated_by = unknown_file;
mem->allocated_in_line = line;
}
#endif /* XALLOC_DEBUG */
} else {
#ifdef XALLOC_DEBUG
struct memory find_mem;
if (debug_level > 0) {
find_mem.ptr = ptr;
if ((mem = RB_FIND(memory_tree, &memory_tree_head, &find_mem)) == NULL)
_xalloc_fatal("XALLOC: xrealloc(): %s:%u: Junk pointer %p not accounted for\n",
file ? file : unknown_file,
line, ptr);
RB_REMOVE(memory_tree, &memory_tree_head, mem);
}
#endif /* XALLOC_DEBUG */
ret = real_realloc(ptr, nsiz);
#ifdef XALLOC_DEBUG
if (debug_level > 0) {
mem->ptr = ret;
if (file)
mem->reallocated_by = file;
else
mem->reallocated_by = unknown_file;
mem->reallocated_in_line = line;
}
#endif /* XALLOC_DEBUG */
if (NULL == ret) {
log_alert("%s[%u]: cannot allocate %zu * %zu bytes",
file, line, nmemb, size);
exit(1);
}
if (ret == NULL)
_xalloc_error(errno, "XALLOC: xrealloc(): %s:%u: (Re)allocating %lu bytes",
file ? file : unknown_file, line,
(unsigned long)(nmemb * size));
#ifdef XALLOC_DEBUG
if (debug_level > 0) {
struct memory *mem_exists;
ssize_t diff = (ssize_t)(nsiz - mem->size);
xalloc_allocated += diff;
if (diff < 0)
xalloc_freed += -diff;
else
xalloc_total += diff;
if (xalloc_allocated > xalloc_peak)
xalloc_peak = xalloc_allocated;
mem->size = nsiz;
if ((mem_exists = RB_INSERT(memory_tree, &memory_tree_head, mem)) != NULL) {
/* Freed pointer is being reused: */
if (mem_exists->id != 0)
_xalloc_fatal("XALLOC: Internal error: Assertion (mem_exists->id == 0) in %s:%u failed!\n",
__FILE__, __LINE__);
RB_REMOVE(memory_tree, &memory_tree_head, mem_exists);
_memory_free(&mem_exists);
RB_INSERT(memory_tree, &memory_tree_head, mem);
}
}
#endif /* XALLOC_DEBUG */
return (ret);
}
char *
xstrdup_c(const char *str, const char *file, unsigned int line)
{
size_t len;
char *nstr;
char *ret = strdup(str);
if (!xalloc_initialized)
_xalloc_fatal("XALLOC: xstrdup(): Xalloc library not initialized\n");
len = strlen(str) + 1;
if ((nstr = xcalloc_c(len, sizeof(char), 0, file, line)) == NULL)
_xalloc_error(errno, "XALLOC: xstrdup(): %s:%u: Allocating %lu bytes: %s\n",
file ? file : unknown_file, line,
(unsigned long)(len));
memcpy(nstr, str, len);
return (nstr);
}
void
xfree_c(void **ptr_p, const char *file, unsigned int line)
{
if (!xalloc_initialized)
_xalloc_fatal("XALLOC: xfree(): Xalloc library not initialized\n");
if (ptr_p == NULL)
_xalloc_fatal("XALLOC: xfree(): Bad argument(s)\n");
if (*ptr_p == NULL) {
_xalloc_warn("XALLOC: xfree(): Warning: %s:%u: Freeing NULL pointer\n",
file ? file : unknown_file, line);
return;
if (NULL == ret) {
log_error("%s[%u]: cannot allocate %zu bytes",
file, line, strlen(str) + 1);
exit(1);
}
#ifdef XALLOC_DEBUG
if (debug_level > 0) {
struct memory *mem = NULL, find_mem;
find_mem.ptr = *ptr_p;
if ((mem = RB_FIND(memory_tree, &memory_tree_head, &find_mem)) == NULL)
_xalloc_fatal("XALLOC: xfree(): %s:%u: Junk pointer %p not accounted for\n",
file ? file : unknown_file, line,
*ptr_p);
if (mem->freed_by != NULL && mem->id == 0) {
_xalloc_debug_printf(2, "XALLOC: DOUBLE FREE of pointer %p in %s:%u: allocated in %s:%u, ",
mem->ptr,
file ? file : unknown_file, line,
mem->allocated_by,
mem->allocated_in_line);
if (mem->reallocated_by != NULL)
_xalloc_debug_printf(2, "last reallocated in %s:%u, ",
mem->reallocated_by,
mem->reallocated_in_line);
_xalloc_debug_printf(2, "already freed in %s:%u\n",
mem->freed_by,
mem->freed_in_line);
abort();
}
xalloc_freed += mem->size;
xalloc_allocated -= mem->size;
mem->id = 0;
mem->size = 0;
if (debug_level > 1) {
if (file)
mem->freed_by = file;
else
mem->freed_by = unknown_file;
mem->freed_in_line = line;
} else {
RB_REMOVE(memory_tree, &memory_tree_head, mem);
_memory_free(&mem);
}
}
#endif /* XALLOC_DEBUG */
real_free(*ptr_p);
#ifdef XALLOC_DEBUG
if (debug_level <= 1)
#endif /* XALLOC_DEBUG */
{
*ptr_p = NULL;
}
}
#ifdef XALLOC_WITH_XASPRINTF
int
xasprintf_c(const char *file, unsigned int line,
char **str_p, const char *fmt, ...)
{
int ret;
va_list ap;
size_t strsiz = 0;
if (!xalloc_initialized)
_xalloc_fatal("XALLOC: xasprintf(): Xalloc library not initialized\n");
if (str_p == NULL || fmt == NULL)
_xalloc_fatal("XALLOC: xasprintf(): Bad argument(s)\n");
va_start(ap, fmt);
ret = _xalloc_vasprintf(str_p, fmt, ap, &strsiz);
va_end(ap);
if (ret == -1)
_xalloc_error(errno, "XALLOC: xasprintf(): %s:%u: Allocating %lu bytes",
file ? file : unknown_file, line, strsiz);
# ifdef XALLOC_DEBUG
if (debug_level > 0) {
struct memory *mem, *mem_exists;
if ((mem = real_calloc(1, sizeof(struct memory))) == NULL)
_xalloc_error(errno, "XALLOC: Internal error");
mem->ptr = *str_p;
mem->size = strsiz;
if (file)
mem->allocated_by = file;
else
mem->allocated_by = unknown_file;
mem->allocated_in_line = line;
mem->id = ++xalloc_next_id;
if ((mem_exists = RB_INSERT(memory_tree, &memory_tree_head, mem)) != NULL) {
/* Freed pointer is being reused: */
if (mem_exists->id != 0)
_xalloc_fatal("XALLOC: Internal error: Assertion (mem_exists->id == 0) in %s:%u failed!\n",
__FILE__, __LINE__);
RB_REMOVE(memory_tree, &memory_tree_head, mem_exists);
_memory_free(&mem_exists);
RB_INSERT(memory_tree, &memory_tree_head, mem);
}
xalloc_allocated += strsiz;
xalloc_total += strsiz;
if (xalloc_allocated > xalloc_peak)
xalloc_peak = xalloc_allocated;
}
# endif /* XALLOC_DEBUG */
return (ret);
}
#endif /* XALLOC_WITH_XASPRINTF */
void
xfree_c(void *ptr, const char *file, unsigned int line)
{
(void)file;
(void)line;
free(ptr);
}

View File

@ -1,12 +1,5 @@
/*
* libxalloc - Portable memory allocation wrapper library, with extensive
* error checking, debugging facilities and hooks for 3rd party
* memory allocation functions.
* This library also detects and prevents double-free errors,
* and ensures that out-of-memory issues always cause the
* application to exit.
*
* Copyright (C) 2007 Moritz Grimm <mgrimm@mrsserver.net>
* Copyright (C) 2015 Moritz Grimm <mgrimm@mrsserver.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@ -24,91 +17,16 @@
#ifndef __XALLOC_H__
#define __XALLOC_H__
/*
* Define XALLOC_DEBUG to compile the debugging features. Doing so will make
* this library more expensive in every case, but not change its (visible)
* behavior unless the debugging level is set > 0. The debugging levels are:
* 0: disable debugging
* 1: enable most debugging features
* 2: additionally enable double-free checking
* (Warning: This requires libxalloc to keep track of all allocations
* and frees, which means that memory usage may increase a lot
* over time!)
*
* Define XALLOC_SILENT to suppress all messages, which makes libxalloc
* abort() and exit() silently.
*
* Define XALLOC_WITH_XASPRINTF to expose the xasprintf() interface. Doing
* so will require libxalloc to be compiled with a compiler that supports C99
* variadic macros, and work only on systems with vasprintf() or vsnprintf(),
* and MS Windows. Note that doing so constitutes an incompatible ABI change!
*
* Note that none of the x*_c() functions should be used directly, unless it
* is ensured that /file/ is a const char * to a real string constant.
*/
/* #define XALLOC_DEBUG 1 */
/* #define XALLOC_SILENT 1 */
/* #define XALLOC_WITH_XASPRINTF 1 */
#define xmalloc(s) xmalloc_c(s, __FILE__, __LINE__)
#define xcalloc(n, s) xcalloc_c(n, s, __FILE__, __LINE__)
#define xreallocarray(p, n, s) xreallocarray_c(p, n, s, __FILE__, __LINE__)
#define xstrdup(str) xstrdup_c(str, __FILE__, __LINE__)
#define xfree(p) xfree_c(p, __FILE__, __LINE__)
/* The default output stream for messages: */
#define XALLOC_DEFAULT_OUTPUT stderr
/*
* Library initialization and shutdown.
*/
#define xalloc_initialize() \
xalloc_initialize_debug(0, NULL)
void xalloc_initialize_debug(unsigned int /* level */,
FILE * /* output stream */);
void xalloc_set_functions(void *(*)(size_t) /* malloc function */,
void *(*)(size_t, size_t) /* calloc function */,
void *(*)(void *, size_t) /* realloc function */,
void (*)(void *) /* free function */);
/* Memory leak checks happen during shutdown! */
void xalloc_shutdown(void);
/*
* Memory management functions.
* Note that xrealloc() has calloc() semantics, to detect and prevent integer
* overflows.
*/
#define xmalloc(s) \
xmalloc_c(s, __FILE__, __LINE__)
void * xmalloc_c(size_t /* size */,
const char * /* file */, unsigned int /* line */);
#define xcalloc(n, s) \
xcalloc_c(n, s, 0, __FILE__, __LINE__)
void * xcalloc_c(size_t /* nmemb */, size_t /* size */, int /* may fail */,
const char * /* file */, unsigned int /* line */);
#define xrealloc(p, n, s) \
xrealloc_c(p, n, s, __FILE__, __LINE__)
void * xrealloc_c(void *, size_t /* nmemb */, size_t /* size */,
const char * /* file */, unsigned int /* line */);
#define xstrdup(s) \
xstrdup_c(s, __FILE__, __LINE__)
char * xstrdup_c(const char *,
const char * /* file */, unsigned int /* line */);
#define xfree(p) \
xfree_c((void *)&(p), __FILE__, __LINE__)
void xfree_c(void **,
const char * /* file */, unsigned int /* line */);
#ifdef XALLOC_WITH_XASPRINTF
# define xasprintf(s, f, ...) \
xasprintf_c(__FILE__, __LINE__, s, f, __VA_ARGS__)
int xasprintf_c(const char * /* file */, unsigned int /* line */,
char ** /* string pointer */, const char * /* format */,
...);
#endif /* XALLOC_WITH_XASPRINTF */
void * xmalloc_c(size_t, const char *, unsigned int);
void * xcalloc_c(size_t, size_t, const char *, unsigned int);
void * xreallocarray_c(void *, size_t, size_t, const char *, unsigned int);
char * xstrdup_c(const char *, const char *, unsigned int);
void xfree_c(void *, const char *, unsigned int);
#endif /* __XALLOC_H__ */