## ----------------------------------------------------------------------------- set.seed(1123) source('05_d_svd_mca_code.R') ## ----05-d-mat-Z--------------------------------------------------------------- Z <- matrix( c(0,1,1,0,0,0,1,1, 1,0,0,1,1,1,0,0, 0,1,0,0,0,0,0,0, 1,0,1,1,0,0,1,0, 0,0,0,0,1,1,0,1, 0,0,1,0,0,0,1,0, 1,1,0,1,1,1,0,1), nrow = 8, ncol = 7, dimnames = list( c("i1", "i2", "i3", "i4", "i5", "i6", "i7", "i8"), c("j1-1", "j1-2", "j2-1", "j2-2", "j2-3", "j3-1", "j3-2"))) kbl(Z, caption = "Exemple jouet d'un tableau disjonctif complet", booktabs = TRUE) %>% kable_styling(latex_options = "striped") ## ----05-d-mat-C--------------------------------------------------------------- C = t(Z) %*% Z kbl(C, caption = "Matrice de Burt pour l'exemple jouet", booktabs = TRUE) %>% kable_styling(latex_options = "striped") ## ----------------------------------------------------------------------------- dat <- read.csv(file="data/housing.csv", header=TRUE) str(dat) ## ----------------------------------------------------------------------------- dat$ocean_proximity <- as.factor(dat$ocean_proximity) summary(dat) ## ----------------------------------------------------------------------------- hist(dat$longitude) ## ----------------------------------------------------------------------------- cuts <- quantile(dat$longitude, probs = seq(0,1,1/4)) hist(dat$longitude) abline(v=cuts, lwd=4) ## ----------------------------------------------------------------------------- cuts <- kcuts(x = dat$longitude, centers = 4) cuts ## ----------------------------------------------------------------------------- hist(dat$longitude) abline(v=cuts, lwd=4) ## ----------------------------------------------------------------------------- dat$c_longitude <- cut(x = dat$longitude, unique(cuts), include.lowest = TRUE) levels(dat$c_longitude) <- c('LO-W', 'LO-MW', 'LO-ME', 'LO-E') summary(dat$c_longitude) ## ----------------------------------------------------------------------------- cuts <- kcuts(x = dat$latitude, centers = 4) cuts ## ----------------------------------------------------------------------------- hist(dat$latitude) abline(v=cuts, lwd=3) ## ----------------------------------------------------------------------------- dat$c_latitude <- cut(x = dat$latitude, unique(cuts), include.lowest = TRUE) levels(dat$c_latitude) <- c('LA-S','LA-MS','LA-MN','LA-N') summary(dat$c_latitude) ## ----------------------------------------------------------------------------- hist(dat$housing_median_age) ## ----------------------------------------------------------------------------- table(dat$housing_median_age[dat$housing_median_age>45]) ## ----------------------------------------------------------------------------- nb_age_52 <- length(dat$housing_median_age[dat$housing_median_age == 52]) pc_age_52 <- round(100 * (nb_age_52 / dim(dat)[1])) hist(dat$housing_median_age, breaks = 40) ## ----------------------------------------------------------------------------- quantile(dat$housing_median_age[dat$housing_median_age<52]) ## ----------------------------------------------------------------------------- cuts <- c(min(dat$housing_median_age), 15, 25, 35, 51, 52) hist(dat$housing_median_age, breaks = 40) abline(v=cuts, lwd=3) ## ----------------------------------------------------------------------------- dat$c_age <- cut(x = dat$housing_median_age, unique(cuts), include.lowest = TRUE) levels(dat$c_age) <- c('A<=15','A(15,25]','A(25,35]','A(35,51]', 'A=52') summary(dat$c_age) ## ----------------------------------------------------------------------------- cuts <- quantile(dat$total_rooms) hist(dat$total_rooms) abline(v=cuts, lwd=3) ## ----------------------------------------------------------------------------- dat$rooms <- dat$total_rooms / dat$households nb_rooms_gt_8 <- length(dat$rooms[dat$rooms>8]) pc_rooms_gt_8 <- round(100 * (nb_rooms_gt_8 / dim(dat)[1])) quantile(dat$rooms) ## ----------------------------------------------------------------------------- cuts <- c(min(dat$rooms), 4, 6, 8, max(dat$rooms)) hist(log10(dat$rooms)) abline(v=log10(cuts), lwd=3) ## ----------------------------------------------------------------------------- dat$c_rooms <- cut(x = dat$rooms, unique(cuts), include.lowest = TRUE) levels(dat$c_rooms) <- c('R<=4','R(4,6]','R(6,8]', 'R>8') summary(dat$c_rooms) ## ----------------------------------------------------------------------------- dat$bedrooms <- dat$total_bedrooms / dat$households quantile(dat$bedrooms, na.rm = TRUE) ## ----------------------------------------------------------------------------- cuts <- c(min(dat$bedrooms, na.rm = TRUE), 1.1, max(dat$bedrooms, na.rm = TRUE)) hist(log10(dat$bedrooms)) abline(v=log10(cuts), lwd=3) ## ----------------------------------------------------------------------------- dat$c_bedrooms <- cut(x = dat$bedrooms, unique(cuts), include.lowest = TRUE) levels(dat$c_bedrooms) <- c('B<=1','B>1') summary(dat$c_bedrooms) ## ----------------------------------------------------------------------------- dat$pop <- dat$population / dat$households quantile(dat$pop, probs = seq(0,1,1/4)) ## ----------------------------------------------------------------------------- cuts <- c(min(dat$pop), 2, 3, 4, max(dat$pop)) hist(log10(dat$pop)) abline(v=log10(cuts), lwd=3) ## ----------------------------------------------------------------------------- dat$c_pop <- cut(x = dat$pop, unique(cuts), include.lowest = TRUE) levels(dat$c_pop) <- c('P<=2','P(2,3]', 'P(3,4]', 'P>4') summary(dat$c_pop) ## ----------------------------------------------------------------------------- quantile(dat$households, probs = seq(0,1,1/4)) ## ----------------------------------------------------------------------------- cuts <- c(min(dat$households), 300, 400, 600, max(dat$households)) hist(log10(dat$households)) abline(v=log10(cuts), lwd=3) ## ----------------------------------------------------------------------------- dat$c_households <- cut(x = dat$households, cuts, include.lowest = TRUE) levels(dat$c_households) <- c('H<=3', 'H(3,4]', 'H(4,6]', 'H>6') summary(dat$c_households) ## ----------------------------------------------------------------------------- cuts <- quantile(dat$median_income, probs = seq(0,1,1/4)) hist(dat$median_income) abline(v=cuts, lwd=3) ## ----------------------------------------------------------------------------- table(dat$median_income[dat$median_income>14]) ## ----------------------------------------------------------------------------- nb_income_gt_15 <- length(dat$median_income[dat$median_income > 15]) pc_income_gt_15 <- round(100 * (nb_income_gt_15 / dim(dat)[1]), digits = 2) hist(dat$median_income, breaks = 40) ## ----------------------------------------------------------------------------- cuts <- c(cuts[1:length(cuts)-1], 15, max(dat$median_income)) dat$c_income <- cut(x = dat$median_income, cuts, include.lowest = TRUE) levels(dat$c_income) <- c('IL', 'IML', 'IMH', 'IH', 'I>15') summary(dat$c_income) ## ----------------------------------------------------------------------------- hist(dat$median_house_value, breaks = 30) ## ----------------------------------------------------------------------------- loc_mhv_gt_50k <- dat$median_house_value > 500000 nb_house_value_gt_50k <- length(dat$median_house_value[loc_mhv_gt_50k]) pc_house_value_gt_50k <- round(100 * (nb_house_value_gt_50k / dim(dat)[1]), digits = 2) table(dat$median_house_value[dat$median_house_value>499000]) ## ----------------------------------------------------------------------------- quantile(dat$median_house_value[dat$median_house_value < 500000]) ## ----------------------------------------------------------------------------- cuts <- c(min(dat$median_house_value), 115000, 175000, 250000, 500000, max(dat$median_house_value)) dat$c_house_value <- cut(x = dat$median_house_value, cuts, include.lowest = TRUE) levels(dat$c_house_value) <- c('V<=115', 'V(115,175]', 'V(175,250]', 'V(250,500]', 'V>500') summary(dat$c_house_value) ## ----------------------------------------------------------------------------- hist(dat$median_house_value) abline(v=cuts, lwd=3) ## ----------------------------------------------------------------------------- dat.all <- dat dat <- dat.all[c('ocean_proximity', 'c_longitude', 'c_latitude', 'c_age', 'c_rooms', 'c_bedrooms', 'c_pop', 'c_households', 'c_income', 'c_house_value')] summary(dat) ## ----------------------------------------------------------------------------- c_rooms_sup <- ventilate(dat$c_rooms, "R>8") dat$c_rooms[c_rooms_sup$sup_i] <- c_rooms_sup$smpl ## ----------------------------------------------------------------------------- c_income_sup <- ventilate(dat$c_income, "I>15") dat$c_income[c_income_sup$sup_i] <- c_income_sup$smpl ocean_proximity_sup <- ventilate(dat$ocean_proximity, "ISLAND") dat$ocean_proximity[ocean_proximity_sup$sup_i] <- ocean_proximity_sup$smpl c_bedrooms_sup <- ventilate(dat$c_bedrooms, "NA") dat$c_bedrooms[c_bedrooms_sup$sup_i] <- c_bedrooms_sup$smpl dat <- droplevels(dat) summary(dat) ## ----------------------------------------------------------------------------- # les catégories supplémentaires doivent être en dernières positions # du tableau de données sup_ind <- which(names(dat) == "c_house_value") dat_act <- dat[,-sup_ind] dat_sup <- dat[,sup_ind] I <- dim(dat_act)[1] Q <- dim(dat_act)[2] dat[c(1:5, I),] ## ----------------------------------------------------------------------------- lev_n <- unlist(lapply(dat, nlevels)) n <- cumsum(lev_n) J_t <- sum(lev_n) Q_t <- dim(dat)[2] Z <- matrix(0, nrow = I, ncol = J_t) numdat <- lapply(dat, as.numeric) offset <- c(0, n[-length(n)]) for (i in 1:Q_t) Z[1:I + (I * (offset[i] + numdat[[i]] - 1))] <- 1 cn <- rep(names(dat), lev_n) ln <- unlist(lapply(dat, levels)) dimnames(Z)[[1]] <- as.character(1:I) dimnames(Z)[[2]] <- paste(cn, ln, sep = "") Z_sup_min <- n[sup_ind[1] - 1] + 1 Z_sup_max <- n[sup_ind[length(sup_ind)]] Z_sup_ind <- Z_sup_min : Z_sup_max Z_act <- Z[,-Z_sup_ind] J <- dim(Z_act)[2] # A titre d'illustration, quelques lignes et colonnes de Z_act Z_act[c(1:5, I), c(1,2,J)] ## ----------------------------------------------------------------------------- B <- t(Z_act) %*% Z_act B[1:5, 1:5] ## ----------------------------------------------------------------------------- P <- B / sum(B) r <- apply(P, 2, sum) rr <- r %*% t(r) S <- (P - rr) / sqrt(rr) dec <- eigen(S) # les Q dernières valeurs propres sont nécessairement nulles. delt <- dec$values[1 : (J-Q)] ## ----------------------------------------------------------------------------- K <- J - Q a <- sweep(dec$vectors, 1, sqrt(r), FUN = "/") a <- a[,(1 : K)] f <- a %*% diag(delt) ## ----------------------------------------------------------------------------- lbl_dic <- c( "O:<1H" = "ocean_proximity<1H OCEAN", "O:INL" = "ocean_proximityINLAND", "O:NB" = "ocean_proximityNEAR BAY", "O:NO" = "ocean_proximityNEAR OCEAN", "LO:W" = "c_longitudeLO-W", "LO:MW" = "c_longitudeLO-MW", "LO:ME" = "c_longitudeLO-ME", "LO:E" = "c_longitudeLO-E", "LA:S" = "c_latitudeLA-S", "LA:MS" = "c_latitudeLA-MS", "LA:MN" = "c_latitudeLA-MN", "LA:N" = "c_latitudeLA-N", "AG:15]" = "c_ageA<=15", "AG:25]" = "c_ageA(15,25]", "AG:35]" = "c_ageA(25,35]", "AG:51]" = "c_ageA(35,51]", "AG:52" = "c_ageA=52", "RO:4]" = "c_roomsR<=4", "RO:6]" = "c_roomsR(4,6]", "RO:8]" = "c_roomsR(6,8]", "BE:1]" = "c_bedroomsB<=1", "BE:>1" = "c_bedroomsB>1", "PO:2]" = "c_popP<=2", "PO:3]" = "c_popP(2,3]", "PO:4]" = "c_popP(3,4]", "PO:>4" = "c_popP>4", "HH:3]" = "c_householdsH<=3", "HH:4]" = "c_householdsH(3,4]", "HH:6]" = "c_householdsH(4,6]", "HH:>6" = "c_householdsH>6", "IC:L" = "c_incomeIL", "IC:ML" = "c_incomeIML", "IC:MH" = "c_incomeIMH", "IC:H" = "c_incomeIH", "HV:A" = "c_house_valueV<=115", "HV:B" = "c_house_valueV(115,175]", "HV:C" = "c_house_valueV(175,250]", "HV:D" = "c_house_valueV(250,500]", "HV:E" = "c_house_valueV>500" ) lbl_act_dic <- lbl_dic[1:J] fac_names <- paste("F", paste(1 : K), sep = "") rownames(a) <- names(lbl_act_dic) colnames(a) <- fac_names rownames(f) <- names(lbl_act_dic) colnames(f) <- fac_names ## ----------------------------------------------------------------------------- temp <- sweep(f^2, 1, r, FUN = "*") sum_ctr <- apply(temp, 2, sum) ctr <- sweep(temp, 2, sum_ctr, FUN = "/") ## ----------------------------------------------------------------------------- temp <- f^2 sum_cor <- apply(temp, 1, sum) cor <- sweep(temp, 1, sum_cor, FUN="/") ## ----------------------------------------------------------------------------- # Parts de l'inertie du plan factoriel 1-2 expliquée par chaque profil rowcon <- r * (f[,1]^2 + f[,2]^2) / sum(delt[1:2]^2) rnames <- rownames(f) rnames[rowcon < 0.01] <- "." rsize <- log(1 + exp(1) * rowcon^0.3) rsize[rowcon < 0.01] <- 1 ## ----05-d-map-1-2, fig.width = 6, fig.cap = "Carte selon les facteurs 1 (x) et 2 (y)"---- plot(f[,1], f[,2], type = "n", xlab="", ylab="", asp = 1, xaxt = "n", yaxt = "n") text(f[,1], f[,2], rnames, adj = 0, cex = rsize) points(0, 0, pch = 3)