--- title: "19 Approximation de Nyström" author: Pierre-Edouard Portier date: mars 2022 output: beamer_presentation: incremental: false --- ```{r, include=FALSE} source("01_intro_code.R", local = knitr::knit_global()) source("04_validation_croisee_code.R", local = knitr::knit_global()) source("18_kernel_ridge_regression_code.R", local = knitr::knit_global()) ``` # Approximation de Nyström d'un noyau >- $(\mathbf{x_i},y_i) \quad \text{avec} \quad i=1,\dots,n \quad ; \quad y_i \in \mathbb{R} \quad ; \quad \mathbf{x_i} \in \mathbb{R}^d$ >- Noyau $\mathbf{K}$ $$ \mathbf{K} = \left[ \begin{array}{ccc} k(\mathbf{x_1},\mathbf{x_1}) & \dots & k(\mathbf{x_1},\mathbf{x_n}) \\ \dots & \dots & \dots \\ k(\mathbf{x_n},\mathbf{x_1}) & \dots & k(\mathbf{x_n},\mathbf{x_n}) \\ \end{array} \right] $$ >- Approximation de rang $m$ de $\mathbf{K}$ $$ \mathbf{K} \approx \mathbf{U}\boldsymbol\Lambda\mathbf{U}^T \quad ; \quad \mathbf{U} \in \mathbb{R}^{n \times m} \quad ; \quad \boldsymbol\Lambda \in \mathbb{R}^{m \times m} $$ # Approximation de Nyström d'un noyau >- Sélection de $m$ observations qui sont les centres pour les calculs de similarités $$ \mathbf{K} = \left[ \begin{array}{cc} \mathbf{K_{11}} & \mathbf{K_{21}^T} \\ \mathbf{K_{21}} & \mathbf{K_{22}} \\ \end{array} \right] \quad ; \quad \mathbf{K_{11}} \in \mathbb{R}^{m \times m} \quad ; \quad \mathbf{K_{21}} \in \mathbb{R}^{(n-m) \times m} $$ >- Objectif : ne pas évaluer $\mathbf{K_{22}}$ # Approximation de Nyström d'un noyau >- $$ \mathbf{K} \approx \left[ \begin{array}{c} \mathbf{U_1} \\ \mathbf{U_2} \\ \end{array} \right] \boldsymbol\Lambda \left[ \begin{array}{c} \mathbf{U_1} \\ \mathbf{U_2} \\ \end{array} \right]^T = \left[ \begin{array}{cc} \mathbf{U_1}\boldsymbol\Lambda\mathbf{U_1}^T & \mathbf{U_1}\boldsymbol\Lambda\mathbf{U_2}^T \\ \mathbf{U_2}\boldsymbol\Lambda\mathbf{U_1}^T & \mathbf{U_2}\boldsymbol\Lambda\mathbf{U_2}^T \\ \end{array} \right] $$ $$ \mathbf{U_1} \in \mathbb{R}^{m \times m} \quad ; \quad \mathbf{U_2} \in \mathbb{R}^{(n-m) \times m} $$ >- $\mathbf{U_2} \approx \mathbf{K_{21}} \mathbf{U_1} \boldsymbol\Lambda^{-1}$ >- $\mathbf{K_{22}} \approx \left(\mathbf{K_{21}} \mathbf{K_{11}}^{-1/2}\right) \left(\mathbf{K_{21}} \mathbf{K_{11}}^{-1/2}\right)^T$ >- $\mathbf{K} \approx \boldsymbol\Phi \boldsymbol\Phi^T$ $$ \boldsymbol\Phi = \left[ \begin{array}{c} \mathbf{K_{11}}^{1/2} \\ \mathbf{K_{21}} \mathbf{K_{11}}^{-1/2} \\ \end{array} \right] $$ # Calcul de l'approximation de Nyström >- $$ \mathbf{C} = \left[ \begin{array}{c} \mathbf{K_{11}} \\ \mathbf{K_{21}} \\ \end{array} \right] $$ >- $$ \begin{aligned} & \mathbf{K} \approx \mathbf{C} \mathbf{K_{11}}^{-1} \mathbf{C}^T \\ = \{& \mathbf{K_{11}} = \mathbf{U}\boldsymbol\Sigma\mathbf{U}^T \} \\ & \mathbf{K} \approx \mathbf{C} \mathbf{U}\boldsymbol\Sigma^{-1}\mathbf{U}^T \mathbf{C}^T \\ = \{& \mathbf{L} \triangleq \mathbf{C} \mathbf{U}\boldsymbol\Sigma^{-1/2} \} \\ & \mathbf{K} \approx \mathbf{L}\mathbf{L}^T \end{aligned} $$ # Approximation de Nyström et régression ridge à noyau >- $\mathbf{G} \triangleq \mathbf{K} + \lambda \mathbf{I_n}$ >- $\boldsymbol\alpha_\lambda = \mathbf{G}^{-1} \mathbf{y}$ >- $f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x},\mathbf{x_i})$ >- $\mathbf{G}^{-1} \approx \lambda^{-1}\mathbf{I_n} - \lambda^{-1}\mathbf{L}\left(\lambda\mathbf{I_m}+\mathbf{L}^T\mathbf{L}\right)^{-1}\mathbf{L}^T$