Nous avons vu précédemment que la méthode de la puissance itérée permet de calculer la plus grande valeur propre et un vecteur propre associé pour une matrice carrée $\mathbf{A}$. La décomposition QR est au cœur d'une approche élégante pour étendre la méthode de la puissance itérée au calcul des $S$ plus grandes valeurs propres et leurs vecteurs propres associés.
Une itération consiste à multiplier $\mathbf{A}$ par un bloc $\mathbf{V} \in \mathbb{R}^{N \times S}$ de $S$ vecteurs colonnes. Si ce processus est répété, nous nous attendons à trouver le même résultat que pour la méthode de la puissance itérée : chaque colonne de $\mathbf{V}$ convergera vers le (même) plus grand vecteur propre.
Mais si, par une décomposition QR, nous forçons les colonnes de $\mathbf{V}$ à rester orthogonales, pour une matrice $\mathbf{A}$ symétrique, le processus itératif fera tendre ces colonnes vers différents vecteurs propres et la diagonale de $\mathbf{R}$ contiendra les valeurs propres correspondantes.
\caption{Puissance itérée par bloc pour les vecteurs propres}
\end{algorithm}
# Application à la décomposition en valeurs singulières
Nous pouvons de même adapter l'algorithme de la puissance itérée au cas du SVD pour calculer les $S$ plus grandes valeurs singulières et les vecteurs singuliers associés pour une matrice $\mathbf{A} \in \mathbb{R}^{M \times N}$.