#include "tuner.h" #include #include "nano_gui.h" #include "pin_definitions.h" static const uint32_t THRESHOLD_USB_LSB = 10000000L; void saveVFOs() { SaveSettingsToEeprom(); } void switchVFO(Vfo_e new_vfo){ ritDisable();//If we are in RIT mode, we need to disable it before setting the active VFO so that the correct VFO gets it's frequency restored globalSettings.activeVfo = new_vfo; setFrequency(GetActiveVfoFreq()); redrawVFOs(); saveVFOs(); } /** * Select the properly tx harmonic filters * The four harmonic filters use only three relays * the four LPFs cover 30-21 Mhz, 18 - 14 Mhz, 7-10 MHz and 3.5 to 5 Mhz * Briefly, it works like this, * - When KT1 is OFF, the 'off' position routes the PA output through the 30 MHz LPF * - When KT1 is ON, it routes the PA output to KT2. Which is why you will see that * the KT1 is on for the three other cases. * - When the KT1 is ON and KT2 is off, the off position of KT2 routes the PA output * to 18 MHz LPF (That also works for 14 Mhz) * - When KT1 is On, KT2 is On, it routes the PA output to KT3 * - KT3, when switched on selects the 7-10 Mhz filter * - KT3 when switched off selects the 3.5-5 Mhz filter * See the circuit to understand this */ void setTXFilters(unsigned long freq){ if (freq > 21000000L){ // the default filter is with 35 MHz cut-off digitalWrite(PIN_TX_LPF_A, 0); digitalWrite(PIN_TX_LPF_B, 0); digitalWrite(PIN_TX_LPF_C, 0); } else if (freq >= 14000000L){ //thrown the KT1 relay on, the 30 MHz LPF is bypassed and the 14-18 MHz LPF is allowd to go through digitalWrite(PIN_TX_LPF_A, 1); digitalWrite(PIN_TX_LPF_B, 0); digitalWrite(PIN_TX_LPF_C, 0); } else if (freq > 7000000L){ digitalWrite(PIN_TX_LPF_A, 0); digitalWrite(PIN_TX_LPF_B, 1); digitalWrite(PIN_TX_LPF_C, 0); } else { digitalWrite(PIN_TX_LPF_A, 0); digitalWrite(PIN_TX_LPF_B, 0); digitalWrite(PIN_TX_LPF_C, 1); } } /** * This is the most frequently called function that configures the * radio to a particular frequeny, sideband and sets up the transmit filters * * The transmit filter relays are powered up only during the tx so they dont * draw any current during rx. * * The carrier oscillator of the detector/modulator is permanently fixed at * uppper sideband. The sideband selection is done by placing the second oscillator * either 12 Mhz below or above the 45 Mhz signal thereby inverting the sidebands * through mixing of the second local oscillator. */ void setFrequency(const unsigned long freq, const bool transmit){ static const unsigned long FIRST_IF = 45005000UL; setTXFilters(freq); //Nominal values for the oscillators uint32_t local_osc_freq = FIRST_IF + freq; uint32_t ssb_osc_freq = FIRST_IF;//will be changed depending on sideband uint32_t bfo_osc_freq = globalSettings.usbCarrierFreq; if(TuningMode_e::TUNE_CW == globalSettings.tuningMode){ if(transmit){ //We don't do any mixing or converting when transmitting local_osc_freq = freq; ssb_osc_freq = 0; bfo_osc_freq = 0; } else{ //We offset when receiving CW so that it's audible if(VfoMode_e::VFO_MODE_USB == GetActiveVfoMode()){ local_osc_freq -= globalSettings.cwSideToneFreq; ssb_osc_freq += globalSettings.usbCarrierFreq; } else{ local_osc_freq += globalSettings.cwSideToneFreq; ssb_osc_freq -= globalSettings.usbCarrierFreq; } } } else{//SSB mode if(VfoMode_e::VFO_MODE_USB == GetActiveVfoMode()){ ssb_osc_freq += globalSettings.usbCarrierFreq; } else{ ssb_osc_freq -= globalSettings.usbCarrierFreq; } } si5351bx_setfreq(2, local_osc_freq); si5351bx_setfreq(1, ssb_osc_freq); si5351bx_setfreq(0, bfo_osc_freq); SetActiveVfoFreq(freq); } /** * startTx is called by the PTT, cw keyer and CAT protocol to * put the uBitx in tx mode. It takes care of rit settings, sideband settings * Note: In cw mode, doesnt key the radio, only puts it in tx mode * CW offest is calculated as lower than the operating frequency when in LSB mode, and vice versa in USB mode */ void startTx(TuningMode_e tx_mode){ globalSettings.tuningMode = tx_mode; if (globalSettings.ritOn){ //save the current as the rx frequency uint32_t rit_tx_freq = globalSettings.ritFrequency; globalSettings.ritFrequency = GetActiveVfoFreq(); setFrequency(rit_tx_freq,true); } else{ if(globalSettings.splitOn){ if(Vfo_e::VFO_B == globalSettings.activeVfo){ globalSettings.activeVfo = Vfo_e::VFO_A; } else{ globalSettings.activeVfo = Vfo_e::VFO_B; } } setFrequency(GetActiveVfoFreq(),true); } digitalWrite(PIN_TX_RXn, 1);//turn on the tx globalSettings.txActive = true; drawTx(); } void stopTx(){ digitalWrite(PIN_TX_RXn, 0);//turn off the tx globalSettings.txActive = false; if(globalSettings.ritOn){ uint32_t rit_rx_freq = globalSettings.ritFrequency; globalSettings.ritFrequency = GetActiveVfoFreq(); setFrequency(rit_rx_freq); } else{ if(globalSettings.splitOn){ if(Vfo_e::VFO_B == globalSettings.activeVfo){ globalSettings.activeVfo = Vfo_e::VFO_A; } else{ globalSettings.activeVfo = Vfo_e::VFO_B; } } setFrequency(GetActiveVfoFreq()); } drawTx(); } /** * ritEnable is called with a frequency parameter that determines * what the tx frequency will be */ void ritEnable(unsigned long freq){ globalSettings.ritOn = true; //save the non-rit frequency back into the VFO memory //as RIT is a temporary shift, this is not saved to EEPROM globalSettings.ritFrequency = freq; } // this is called by the RIT menu routine void ritDisable(){ if(globalSettings.ritOn){ globalSettings.ritOn = false; setFrequency(globalSettings.ritFrequency); updateDisplay(); } } bool autoSelectSidebandChanged(const uint32_t old_frequency) { const uint32_t new_freq = GetActiveVfoFreq(); //Transition from below to above the traditional threshold for USB if(old_frequency < THRESHOLD_USB_LSB && new_freq >= THRESHOLD_USB_LSB){ SetActiveVfoMode(VfoMode_e::VFO_MODE_USB); setFrequency(new_freq);//Refresh tuning to activate the new sideband mode return true; } //Transition from above to below the traditional threshold for USB if(old_frequency >= THRESHOLD_USB_LSB && new_freq < THRESHOLD_USB_LSB){ SetActiveVfoMode(VfoMode_e::VFO_MODE_LSB); setFrequency(new_freq);//Refresh tuning to activate the new sideband mode return true; } return false; }