package cert import ( "crypto/ecdsa" "crypto/ed25519" "crypto/elliptic" "crypto/rand" "crypto/rsa" "crypto/x509" "encoding/asn1" "encoding/pem" "math/big" "time" "v2ray.com/core/common" ) //go:generate errorgen type Certificate struct { // Cerificate in ASN.1 DER format Certificate []byte // Private key in ASN.1 DER format PrivateKey []byte } func ParseCertificate(certPEM []byte, keyPEM []byte) (*Certificate, error) { certBlock, _ := pem.Decode(certPEM) if certBlock == nil { return nil, newError("failed to decode certificate") } keyBlock, _ := pem.Decode(keyPEM) if keyBlock == nil { return nil, newError("failed to decode key") } return &Certificate{ Certificate: certBlock.Bytes, PrivateKey: keyBlock.Bytes, }, nil } func (c *Certificate) ToPEM() ([]byte, []byte) { return pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: c.Certificate}), pem.EncodeToMemory(&pem.Block{Type: "RSA PRIVATE KEY", Bytes: c.PrivateKey}) } type Option func(*x509.Certificate) func Authority(isCA bool) Option { return func(cert *x509.Certificate) { cert.IsCA = isCA } } func NotBefore(t time.Time) Option { return func(c *x509.Certificate) { c.NotBefore = t } } func NotAfter(t time.Time) Option { return func(c *x509.Certificate) { c.NotAfter = t } } func DNSNames(names ...string) Option { return func(c *x509.Certificate) { c.DNSNames = names } } func CommonName(name string) Option { return func(c *x509.Certificate) { c.Subject.CommonName = name } } func KeyUsage(usage x509.KeyUsage) Option { return func(c *x509.Certificate) { c.KeyUsage = usage } } func Organization(org string) Option { return func(c *x509.Certificate) { c.Subject.Organization = []string{org} } } func MustGenerate(parent *Certificate, opts ...Option) *Certificate { cert, err := Generate(parent, opts...) common.Must(err) return cert } func publicKey(priv interface{}) interface{} { switch k := priv.(type) { case *rsa.PrivateKey: return &k.PublicKey case *ecdsa.PrivateKey: return &k.PublicKey case ed25519.PrivateKey: return k.Public().(ed25519.PublicKey) default: return nil } } func Generate(parent *Certificate, opts ...Option) (*Certificate, error) { var ( pKey interface{} parentKey interface{} err error ) // higher signing performance than RSA2048 selfKey, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader) if err != nil { return nil, newError("failed to generate self private key").Base(err) } parentKey = selfKey if parent != nil { if _, e := asn1.Unmarshal(parent.PrivateKey, &ecPrivateKey{}); e == nil { pKey, err = x509.ParseECPrivateKey(parent.PrivateKey) } else if _, e := asn1.Unmarshal(parent.PrivateKey, &pkcs8{}); e == nil { pKey, err = x509.ParsePKCS8PrivateKey(parent.PrivateKey) } else if _, e := asn1.Unmarshal(parent.PrivateKey, &pkcs1PrivateKey{}); e == nil { pKey, err = x509.ParsePKCS1PrivateKey(parent.PrivateKey) } if err != nil { return nil, newError("failed to parse parent private key").Base(err) } parentKey = pKey } serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128) serialNumber, err := rand.Int(rand.Reader, serialNumberLimit) if err != nil { return nil, newError("failed to generate serial number").Base(err) } template := &x509.Certificate{ SerialNumber: serialNumber, NotBefore: time.Now().Add(time.Hour * -1), NotAfter: time.Now().Add(time.Hour), KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature, ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth}, BasicConstraintsValid: true, } for _, opt := range opts { opt(template) } parentCert := template if parent != nil { pCert, err := x509.ParseCertificate(parent.Certificate) if err != nil { return nil, newError("failed to parse parent certificate").Base(err) } parentCert = pCert } derBytes, err := x509.CreateCertificate(rand.Reader, template, parentCert, publicKey(selfKey), parentKey) if err != nil { return nil, newError("failed to create certificate").Base(err) } privateKey, err := x509.MarshalPKCS8PrivateKey(selfKey) if err != nil { return nil, newError("Unable to marshal private key").Base(err) } return &Certificate{ Certificate: derBytes, PrivateKey: privateKey, }, nil }