// From "An Efficient Representation for Irradiance Environment Maps" article // See http://graphics.stanford.edu/papers/envmap/ // Coefficients are calculated in IBL.cpp uniform float blueLmn[9]; uniform float greenLmn[9]; uniform float redLmn[9]; uniform mat4 TransposeViewMatrix; mat4 getMatrix(float L[9]) { float c1 = 0.429043, c2 = 0.511664, c3 = 0.743125, c4 = 0.886227, c5 = 0.247708; return mat4( c1 * L[8] /*L22*/, c1 * L[4] /*L2-2*/, c1 * L[7] /*L21*/, c2 * L[3] /*L11*/, c1 * L[4], - c1 * L[8], c1 * L[5] /*L2-1*/, c2 * L[1] /*L1-1*/, c1 * L[7], c1 * L[5], c3 * L[6] /*L20*/, c2 * L[2] /*L10*/, c2 * L[3], c2 * L[1], c2 * L[2], c4 * L[0] /*L00*/ - c5 * L[6] ); } vec3 DiffuseIBL(vec3 normal) { // Convert normal in world space (where SH coordinates were computed) vec4 extendednormal = TransposeViewMatrix * vec4(normal, 0.); extendednormal.w = 1.; mat4 rmat = getMatrix(redLmn); mat4 gmat = getMatrix(greenLmn); mat4 bmat = getMatrix(blueLmn); float r = dot(extendednormal, rmat * extendednormal); float g = dot(extendednormal, gmat * extendednormal); float b = dot(extendednormal, bmat * extendednormal); return max(vec3(r, g, b), vec3(0.)); }