/* AngelCode Scripting Library Copyright (c) 2003-2017 Andreas Jonsson This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. The original version of this library can be located at: http://www.angelcode.com/angelscript/ Andreas Jonsson andreas@angelcode.com */ // // as_restore.cpp // // Functions for saving and restoring module bytecode // asCRestore was originally written by Dennis Bollyn, dennis@gyrbo.be #include "as_config.h" #include "as_restore.h" #include "as_bytecode.h" #include "as_scriptobject.h" #include "as_texts.h" #include "as_debug.h" BEGIN_AS_NAMESPACE // Macros for doing endianess agnostic bitmask serialization #define SAVE_TO_BIT(dst, val, bit) ((dst) |= ((val) << (bit))) #define LOAD_FROM_BIT(dst, val, bit) ((dst) = ((val) >> (bit)) & 1) asCReader::asCReader(asCModule* _module, asIBinaryStream* _stream, asCScriptEngine* _engine) : module(_module), stream(_stream), engine(_engine) { error = false; bytesRead = 0; } int asCReader::ReadData(void *data, asUINT size) { asASSERT(size == 1 || size == 2 || size == 4 || size == 8); int ret = 0; #if defined(AS_BIG_ENDIAN) for( asUINT n = 0; ret >= 0 && n < size; n++ ) ret = stream->Read(((asBYTE*)data)+n, 1); #else for( int n = size-1; ret >= 0 && n >= 0; n-- ) ret = stream->Read(((asBYTE*)data)+n, 1); #endif if (ret < 0) Error(TXT_UNEXPECTED_END_OF_FILE); bytesRead += size; return ret; } int asCReader::Read(bool *wasDebugInfoStripped) { TimeIt("asCReader::Read"); // Before starting the load, make sure that // any existing resources have been freed module->InternalReset(); // Call the inner method to do the actual loading int r = ReadInner(); if( r < 0 ) { // Something went wrong while loading the bytecode, so we need // to clean-up whatever has been created during the process. // Make sure none of the loaded functions attempt to release // references that have not yet been increased asUINT i; for( i = 0; i < module->scriptFunctions.GetLength(); i++ ) if( !dontTranslate.MoveTo(0, module->scriptFunctions[i]) ) if( module->scriptFunctions[i]->scriptData ) module->scriptFunctions[i]->scriptData->byteCode.SetLength(0); asCSymbolTable::iterator it = module->scriptGlobals.List(); for( ; it; it++ ) if( (*it)->GetInitFunc() ) if( (*it)->GetInitFunc()->scriptData ) (*it)->GetInitFunc()->scriptData->byteCode.SetLength(0); module->InternalReset(); } else { // Init system functions properly engine->PrepareEngine(); // Initialize the global variables (unless requested not to) if( engine->ep.initGlobalVarsAfterBuild ) r = module->ResetGlobalVars(0); if( wasDebugInfoStripped ) *wasDebugInfoStripped = noDebugInfo; } // Clean up the loaded string constants for (asUINT n = 0; n < usedStringConstants.GetLength(); n++) engine->stringFactory->ReleaseStringConstant(usedStringConstants[n]); usedStringConstants.SetLength(0); return r; } int asCReader::Error(const char *msg) { // Don't write if it has already been reported an error earlier if( !error ) { asCString str; str.Format(msg, bytesRead); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); error = true; } return asERROR; } int asCReader::ReadInner() { TimeIt("asCReader::ReadInner"); // This function will load each entity one by one from the stream. // If any error occurs, it will return to the caller who is // responsible for cleaning up the partially loaded entities. engine->deferValidationOfTemplateTypes = true; unsigned long i, count; asCScriptFunction* func; // Read the flag as 1 byte even on platforms with 4byte booleans noDebugInfo = ReadEncodedUInt() ? VALUE_OF_BOOLEAN_TRUE : 0; // Read enums count = ReadEncodedUInt(); module->enumTypes.Allocate(count, false); for( i = 0; i < count && !error; i++ ) { asCEnumType *et = asNEW(asCEnumType)(engine); if( et == 0 ) { error = true; return asOUT_OF_MEMORY; } bool isExternal = false; ReadTypeDeclaration(et, 1, &isExternal); // If the type is shared then we should use the original if it exists bool sharedExists = false; if( et->IsShared() ) { for( asUINT n = 0; n < engine->sharedScriptTypes.GetLength(); n++ ) { asCTypeInfo *t = engine->sharedScriptTypes[n]; if( t && t->IsShared() && t->name == et->name && t->nameSpace == et->nameSpace && (t->flags & asOBJ_ENUM) ) { asDELETE(et, asCEnumType); et = CastToEnumType(t); sharedExists = true; break; } } } if (isExternal && !sharedExists) { asCString msg; msg.Format(TXT_EXTERNAL_SHARED_s_NOT_FOUND, et->name.AddressOf()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, msg.AddressOf()); asDELETE(et, asCEnumType); error = true; return asERROR; } if( sharedExists ) { existingShared.Insert(et, true); et->AddRefInternal(); } else { if( et->IsShared() ) { engine->sharedScriptTypes.PushLast(et); et->AddRefInternal(); } // Set this module as the owner et->module = module; } module->enumTypes.PushLast(et); if (isExternal) module->externalTypes.PushLast(et); ReadTypeDeclaration(et, 2); } if( error ) return asERROR; // classTypes[] // First restore the structure names, then the properties count = ReadEncodedUInt(); module->classTypes.Allocate(count, false); for( i = 0; i < count && !error; ++i ) { asCObjectType *ot = asNEW(asCObjectType)(engine); if( ot == 0 ) { error = true; return asOUT_OF_MEMORY; } bool isExternal = false; ReadTypeDeclaration(ot, 1, &isExternal); // If the type is shared, then we should use the original if it exists bool sharedExists = false; if( ot->IsShared() ) { for( asUINT n = 0; n < engine->sharedScriptTypes.GetLength(); n++ ) { asCTypeInfo *ti = engine->sharedScriptTypes[n]; asCObjectType *t = CastToObjectType(ti); if( t && t->IsShared() && t->name == ot->name && t->nameSpace == ot->nameSpace && t->IsInterface() == ot->IsInterface() ) { asDELETE(ot, asCObjectType); ot = CastToObjectType(t); sharedExists = true; break; } } } if (isExternal && !sharedExists) { asCString msg; msg.Format(TXT_EXTERNAL_SHARED_s_NOT_FOUND, ot->name.AddressOf()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, msg.AddressOf()); asDELETE(ot, asCObjectType); error = true; return asERROR; } if( sharedExists ) { existingShared.Insert(ot, true); ot->AddRefInternal(); } else { if( ot->IsShared() ) { engine->sharedScriptTypes.PushLast(ot); ot->AddRefInternal(); } // Set this module as the owner ot->module = module; } module->classTypes.PushLast(ot); if (isExternal) module->externalTypes.PushLast(ot); } if( error ) return asERROR; // Read func defs count = ReadEncodedUInt(); module->funcDefs.Allocate(count, false); for( i = 0; i < count && !error; i++ ) { bool isNew, isExternal; asCScriptFunction *funcDef = ReadFunction(isNew, false, true, true, &isExternal); if(funcDef) { funcDef->module = module; asCFuncdefType *fdt = funcDef->funcdefType; fdt->module = module; module->funcDefs.PushLast(fdt); engine->funcDefs.PushLast(fdt); // TODO: clean up: This is also done by the builder. It should probably be moved to a method in the module // Check if there is another identical funcdef from another module and if so reuse that instead if(funcDef->IsShared()) { for( asUINT n = 0; n < engine->funcDefs.GetLength(); n++ ) { asCFuncdefType *f2 = engine->funcDefs[n]; if( f2 == 0 || fdt == f2 ) continue; if( !f2->funcdef->IsShared() ) continue; if( f2->name == fdt->name && f2->nameSpace == fdt->nameSpace && f2->parentClass == fdt->parentClass && f2->funcdef->IsSignatureExceptNameEqual(funcDef) ) { // Replace our funcdef for the existing one module->funcDefs[module->funcDefs.IndexOf(fdt)] = f2; f2->AddRefInternal(); if (isExternal) module->externalTypes.PushLast(f2); engine->funcDefs.RemoveValue(fdt); savedFunctions[savedFunctions.IndexOf(funcDef)] = f2->funcdef; if (fdt->parentClass) { // The real funcdef should already be in the object asASSERT(fdt->parentClass->childFuncDefs.IndexOf(f2) >= 0); fdt->parentClass = 0; } fdt->ReleaseInternal(); funcDef = 0; break; } } } // Add the funcdef to the parentClass if this is a child funcdef if (funcDef && fdt->parentClass) fdt->parentClass->childFuncDefs.PushLast(fdt); // Check if an external shared funcdef was really found if (isExternal && funcDef) { asCString msg; msg.Format(TXT_EXTERNAL_SHARED_s_NOT_FOUND, funcDef->name.AddressOf()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, msg.AddressOf()); error = true; return asERROR; } } else Error(TXT_INVALID_BYTECODE_d); } // Read interface methods for( i = 0; i < module->classTypes.GetLength() && !error; i++ ) { if( module->classTypes[i]->IsInterface() ) ReadTypeDeclaration(module->classTypes[i], 2); } // Read class methods and behaviours for( i = 0; i < module->classTypes.GetLength() && !error; ++i ) { if( !module->classTypes[i]->IsInterface() ) ReadTypeDeclaration(module->classTypes[i], 2); } // Read class properties for( i = 0; i < module->classTypes.GetLength() && !error; ++i ) { if( !module->classTypes[i]->IsInterface() ) ReadTypeDeclaration(module->classTypes[i], 3); } if( error ) return asERROR; // Read typedefs count = ReadEncodedUInt(); module->typeDefs.Allocate(count, false); for( i = 0; i < count && !error; i++ ) { asCTypedefType *td = asNEW(asCTypedefType)(engine); if( td == 0 ) { error = true; return asOUT_OF_MEMORY; } bool isExternal = false; ReadTypeDeclaration(td, 1, &isExternal); td->module = module; module->typeDefs.PushLast(td); ReadTypeDeclaration(td, 2); } if( error ) return asERROR; // scriptGlobals[] count = ReadEncodedUInt(); if( count && engine->ep.disallowGlobalVars ) { engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_GLOBAL_VARS_NOT_ALLOWED); Error(TXT_INVALID_BYTECODE_d); } module->scriptGlobals.Allocate(count, false); for( i = 0; i < count && !error; ++i ) { ReadGlobalProperty(); } // scriptFunctions[] count = ReadEncodedUInt(); for( i = 0; i < count && !error; ++i ) { size_t len = module->scriptFunctions.GetLength(); bool isNew, isExternal; func = ReadFunction(isNew, true, true, true, &isExternal); if( func == 0 ) { Error(TXT_INVALID_BYTECODE_d); break; } // Is the function shared and was it created now? if( func->IsShared() && len != module->scriptFunctions.GetLength() ) { // If the function already existed in another module, then // we need to replace it with previously existing one for( asUINT n = 0; n < engine->scriptFunctions.GetLength() && !error; n++ ) { asCScriptFunction *realFunc = engine->scriptFunctions[n]; if( realFunc && realFunc != func && realFunc->IsShared() && realFunc->IsSignatureEqual(func) ) { // Replace the recently created function with the pre-existing function module->scriptFunctions[module->scriptFunctions.GetLength()-1] = realFunc; realFunc->AddRefInternal(); savedFunctions[savedFunctions.GetLength()-1] = realFunc; engine->RemoveScriptFunction(func); // Insert the function in the dontTranslate array dontTranslate.Insert(realFunc, true); if (isExternal) module->externalFunctions.PushLast(realFunc); // Release the function, but make sure nothing else is released func->id = 0; if( func->scriptData ) func->scriptData->byteCode.SetLength(0); func->ReleaseInternal(); func = 0; break; } } } // Check if an external shared func was really found if (isExternal && func) { asCString msg; msg.Format(TXT_EXTERNAL_SHARED_s_NOT_FOUND, func->name.AddressOf()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, msg.AddressOf()); error = true; return asERROR; } } // globalFunctions[] count = ReadEncodedUInt(); for( i = 0; i < count && !error; ++i ) { bool isNew; func = ReadFunction(isNew, false, false); if( func ) { // All the global functions were already loaded while loading the scriptFunctions, here // we're just re-reading the references to know which goes into the globalFunctions array asASSERT( !isNew ); module->globalFunctions.Put(func); } else Error(TXT_INVALID_BYTECODE_d); } if( error ) return asERROR; // bindInformations[] count = ReadEncodedUInt(); module->bindInformations.Allocate(count, false); for( i = 0; i < count && !error; ++i ) { sBindInfo *info = asNEW(sBindInfo); if( info == 0 ) { error = true; return asOUT_OF_MEMORY; } bool isNew; info->importedFunctionSignature = ReadFunction(isNew, false, false); if( info->importedFunctionSignature == 0 ) { Error(TXT_INVALID_BYTECODE_d); break; } if( engine->freeImportedFunctionIdxs.GetLength() ) { int id = engine->freeImportedFunctionIdxs.PopLast(); info->importedFunctionSignature->id = int(FUNC_IMPORTED + id); engine->importedFunctions[id] = info; } else { info->importedFunctionSignature->id = int(FUNC_IMPORTED + engine->importedFunctions.GetLength()); engine->importedFunctions.PushLast(info); } ReadString(&info->importFromModule); info->boundFunctionId = -1; module->bindInformations.PushLast(info); } if( error ) return asERROR; // usedTypes[] count = ReadEncodedUInt(); usedTypes.Allocate(count, false); for( i = 0; i < count && !error; ++i ) { asCTypeInfo *ti = ReadTypeInfo(); usedTypes.PushLast(ti); } // usedTypeIds[] if( !error ) ReadUsedTypeIds(); // usedFunctions[] if( !error ) ReadUsedFunctions(); // usedGlobalProperties[] if( !error ) ReadUsedGlobalProps(); // usedStringConstants[] if( !error ) ReadUsedStringConstants(); // usedObjectProperties if( !error ) ReadUsedObjectProps(); // Validate the template types if( !error ) { for( i = 0; i < usedTypes.GetLength() && !error; i++ ) { asCObjectType *ot = CastToObjectType(usedTypes[i]); if( !ot || !(ot->flags & asOBJ_TEMPLATE) || !ot->beh.templateCallback ) continue; bool dontGarbageCollect = false; asCScriptFunction *callback = engine->scriptFunctions[ot->beh.templateCallback]; if( !engine->CallGlobalFunctionRetBool(ot, &dontGarbageCollect, callback->sysFuncIntf, callback) ) { asCString sub = ot->templateSubTypes[0].Format(ot->nameSpace); for( asUINT n = 1; n < ot->templateSubTypes.GetLength(); n++ ) { sub += ","; sub += ot->templateSubTypes[n].Format(ot->nameSpace); } asCString str; str.Format(TXT_INSTANCING_INVLD_TMPL_TYPE_s_s, ot->name.AddressOf(), sub.AddressOf()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); } else { // If the callback said this template instance won't be garbage collected then remove the flag if( dontGarbageCollect ) ot->flags &= ~asOBJ_GC; } } } engine->deferValidationOfTemplateTypes = false; if( error ) return asERROR; // Update the loaded bytecode to point to the correct types, property offsets, // function ids, etc. This is basically a linking stage. for( i = 0; i < module->scriptFunctions.GetLength() && !error; i++ ) if( module->scriptFunctions[i]->funcType == asFUNC_SCRIPT ) TranslateFunction(module->scriptFunctions[i]); asCSymbolTable::iterator globIt = module->scriptGlobals.List(); while( globIt && !error ) { asCScriptFunction *initFunc = (*globIt)->GetInitFunc(); if( initFunc ) TranslateFunction(initFunc); globIt++; } if( error ) return asERROR; // Add references for all functions (except for the pre-existing shared code) for( i = 0; i < module->scriptFunctions.GetLength(); i++ ) if( !dontTranslate.MoveTo(0, module->scriptFunctions[i]) ) module->scriptFunctions[i]->AddReferences(); globIt = module->scriptGlobals.List(); while( globIt ) { asCScriptFunction *initFunc = (*globIt)->GetInitFunc(); if( initFunc ) initFunc->AddReferences(); globIt++; } return error ? asERROR : asSUCCESS; } void asCReader::ReadUsedStringConstants() { TimeIt("asCReader::ReadUsedStringConstants"); asCString str; asUINT count; count = ReadEncodedUInt(); if (count > 0 && engine->stringFactory == 0) { Error(TXT_STRINGS_NOT_RECOGNIZED); return; } usedStringConstants.Allocate(count, false); for( asUINT i = 0; i < count; ++i ) { ReadString(&str); usedStringConstants.PushLast(const_cast(engine->stringFactory->GetStringConstant(str.AddressOf(), (asUINT)str.GetLength()))); } } void asCReader::ReadUsedFunctions() { TimeIt("asCReader::ReadUsedFunctions"); asUINT count; count = ReadEncodedUInt(); usedFunctions.SetLength(count); if( usedFunctions.GetLength() != count ) { // Out of memory error = true; return; } memset(usedFunctions.AddressOf(), 0, sizeof(asCScriptFunction *)*count); for( asUINT n = 0; n < usedFunctions.GetLength(); n++ ) { char c; // Read the data to be able to uniquely identify the function // Is the function from the module or the application? ReadData(&c, 1); if( c == 'n' ) { // Null function pointer usedFunctions[n] = 0; } else { asCScriptFunction func(engine, c == 'm' ? module : 0, asFUNC_DUMMY); asCObjectType *parentClass = 0; ReadFunctionSignature(&func, &parentClass); if( error ) { func.funcType = asFUNC_DUMMY; return; } // Find the correct function if( c == 'm' ) { if( func.funcType == asFUNC_IMPORTED ) { for( asUINT i = 0; i < module->bindInformations.GetLength(); i++ ) { asCScriptFunction *f = module->bindInformations[i]->importedFunctionSignature; if( func.objectType != f->objectType || func.funcType != f->funcType || func.nameSpace != f->nameSpace || !func.IsSignatureEqual(f) ) continue; usedFunctions[n] = f; break; } } else if( func.funcType == asFUNC_FUNCDEF ) { const asCArray &funcs = module->funcDefs; for( asUINT i = 0; i < funcs.GetLength(); i++ ) { asCScriptFunction *f = funcs[i]->funcdef; if( f == 0 || func.name != f->name || !func.IsSignatureExceptNameAndObjectTypeEqual(f) || funcs[i]->parentClass != parentClass ) continue; asASSERT( f->objectType == 0 ); usedFunctions[n] = f; break; } } else { // TODO: optimize: Global functions should be searched for in module->globalFunctions // TODO: optimize: funcdefs should be searched for in module->funcDefs // TODO: optimize: object methods should be searched for directly in the object type for( asUINT i = 0; i < module->scriptFunctions.GetLength(); i++ ) { asCScriptFunction *f = module->scriptFunctions[i]; if( func.objectType != f->objectType || func.funcType != f->funcType || func.nameSpace != f->nameSpace || !func.IsSignatureEqual(f) ) continue; usedFunctions[n] = f; break; } } } else if (c == 's') { // Look for shared entities in the engine, as they may not necessarily be part // of the scope of the module if they have been inhereted from other modules. if (func.funcType == asFUNC_FUNCDEF) { const asCArray &funcs = engine->funcDefs; for (asUINT i = 0; i < funcs.GetLength(); i++) { asCScriptFunction *f = funcs[i]->funcdef; if (f == 0 || func.name != f->name || !func.IsSignatureExceptNameAndObjectTypeEqual(f) || funcs[i]->parentClass != parentClass) continue; asASSERT(f->objectType == 0); usedFunctions[n] = f; break; } } else { for (asUINT i = 0; i < engine->scriptFunctions.GetLength(); i++) { asCScriptFunction *f = engine->scriptFunctions[i]; if (f == 0 || !f->IsShared() || func.objectType != f->objectType || func.funcType != f->funcType || func.nameSpace != f->nameSpace || !func.IsSignatureEqual(f)) continue; usedFunctions[n] = f; break; } } } else { asASSERT(c == 'a'); if( func.funcType == asFUNC_FUNCDEF ) { // This is a funcdef (registered or shared) const asCArray &funcs = engine->funcDefs; for( asUINT i = 0; i < funcs.GetLength(); i++ ) { asCScriptFunction *f = funcs[i]->funcdef; if( f == 0 || func.name != f->name || !func.IsSignatureExceptNameAndObjectTypeEqual(f) || funcs[i]->parentClass != parentClass ) continue; asASSERT( f->objectType == 0 ); usedFunctions[n] = f; break; } } else if( func.name[0] == '$' ) { // This is a special function if( func.name == "$beh0" && func.objectType ) { // This is a class constructor, so we can search directly in the object type's constructors for( asUINT i = 0; i < func.objectType->beh.constructors.GetLength(); i++ ) { asCScriptFunction *f = engine->scriptFunctions[func.objectType->beh.constructors[i]]; if( f == 0 || !func.IsSignatureExceptNameAndObjectTypeEqual(f) ) continue; usedFunctions[n] = f; break; } } else if( func.name == "$fact" || func.name == "$beh3" ) { // This is a factory (or stub), so look for the function in the return type's factories asCObjectType *objType = CastToObjectType(func.returnType.GetTypeInfo()); if( objType ) { for( asUINT i = 0; i < objType->beh.factories.GetLength(); i++ ) { asCScriptFunction *f = engine->scriptFunctions[objType->beh.factories[i]]; if( f == 0 || !func.IsSignatureExceptNameAndObjectTypeEqual(f) ) continue; usedFunctions[n] = f; break; } } } else if( func.name == "$list" ) { // listFactory is used for both factory is global and returns a handle and constructor that is a method asCObjectType *objType = func.objectType ? func.objectType : CastToObjectType(func.returnType.GetTypeInfo()); if( objType ) { asCScriptFunction *f = engine->scriptFunctions[objType->beh.listFactory]; if( f && func.IsSignatureExceptNameAndObjectTypeEqual(f) ) usedFunctions[n] = f; } } else if( func.name == "$beh2" ) { // This is a destructor, so check the object type's destructor asCObjectType *objType = func.objectType; if( objType ) { asCScriptFunction *f = engine->scriptFunctions[objType->beh.destruct]; if( f && func.IsSignatureExceptNameAndObjectTypeEqual(f) ) usedFunctions[n] = f; } } else if( func.name == "$beh4" ) { // This is a list factory, so check the return type's list factory asCObjectType *objType = CastToObjectType(func.returnType.GetTypeInfo()); if( objType ) { asCScriptFunction *f = engine->scriptFunctions[objType->beh.listFactory]; if( f && func.IsSignatureExceptNameAndObjectTypeEqual(f) ) usedFunctions[n] = f; } } else if( func.name == "$dlgte" ) { // This is the delegate factory asCScriptFunction *f = engine->registeredGlobalFuncs.GetFirst(engine->nameSpaces[0], DELEGATE_FACTORY); asASSERT( f && func.IsSignatureEqual(f) ); usedFunctions[n] = f; } } else if( func.objectType == 0 ) { // This is a global function const asCArray &funcs = engine->registeredGlobalFuncs.GetIndexes(func.nameSpace, func.name); for( asUINT i = 0; i < funcs.GetLength(); i++ ) { asCScriptFunction *f = engine->registeredGlobalFuncs.Get(funcs[i]); if( f == 0 || !func.IsSignatureExceptNameAndObjectTypeEqual(f) ) continue; usedFunctions[n] = f; break; } } else if( func.objectType ) { // It is a class member, so we can search directly in the object type's members // TODO: virtual function is different that implemented method for( asUINT i = 0; i < func.objectType->methods.GetLength(); i++ ) { asCScriptFunction *f = engine->scriptFunctions[func.objectType->methods[i]]; if( f == 0 || !func.IsSignatureEqual(f) ) continue; usedFunctions[n] = f; break; } } if( usedFunctions[n] == 0 ) { // TODO: clean up: This part of the code should never happen. All functions should // be found in the above logic. The only valid reason to come here // is if the bytecode is wrong and the function doesn't exist anyway. // This loop is kept temporarily until we can be certain all scenarios // are covered. for( asUINT i = 0; i < engine->scriptFunctions.GetLength(); i++ ) { asCScriptFunction *f = engine->scriptFunctions[i]; if( f == 0 || func.objectType != f->objectType || func.nameSpace != f->nameSpace || !func.IsSignatureEqual(f) ) continue; usedFunctions[n] = f; break; } // No function is expected to be found asASSERT(usedFunctions[n] == 0); } } // Set the type to dummy so it won't try to release the id func.funcType = asFUNC_DUMMY; if( usedFunctions[n] == 0 ) { Error(TXT_INVALID_BYTECODE_d); return; } } } } void asCReader::ReadFunctionSignature(asCScriptFunction *func, asCObjectType **parentClass) { asUINT i, count; asCDataType dt; int num; ReadString(&func->name); if( func->name == DELEGATE_FACTORY ) { // It's not necessary to read anymore, everything is known asCScriptFunction *f = engine->registeredGlobalFuncs.GetFirst(engine->nameSpaces[0], DELEGATE_FACTORY); asASSERT( f ); func->returnType = f->returnType; func->parameterTypes = f->parameterTypes; func->inOutFlags = f->inOutFlags; func->funcType = f->funcType; func->defaultArgs = f->defaultArgs; func->nameSpace = f->nameSpace; return; } ReadDataType(&func->returnType); count = ReadEncodedUInt(); if( count > 256 ) { // Too many arguments, must be something wrong in the file Error(TXT_INVALID_BYTECODE_d); return; } func->parameterTypes.Allocate(count, false); for( i = 0; i < count; ++i ) { ReadDataType(&dt); func->parameterTypes.PushLast(dt); } func->inOutFlags.SetLength(func->parameterTypes.GetLength()); if( func->inOutFlags.GetLength() != func->parameterTypes.GetLength() ) { // Out of memory error = true; return; } memset(func->inOutFlags.AddressOf(), 0, sizeof(asETypeModifiers)*func->inOutFlags.GetLength()); count = ReadEncodedUInt(); if( count > func->parameterTypes.GetLength() ) { // Cannot be more than the number of arguments Error(TXT_INVALID_BYTECODE_d); return; } for( i = 0; i < count; ++i ) { num = ReadEncodedUInt(); func->inOutFlags[i] = static_cast(num); } func->funcType = (asEFuncType)ReadEncodedUInt(); // Read the default args, from last to first count = ReadEncodedUInt(); if( count > func->parameterTypes.GetLength() ) { // Cannot be more than the number of arguments Error(TXT_INVALID_BYTECODE_d); return; } if( count ) { func->defaultArgs.SetLength(func->parameterTypes.GetLength()); if( func->defaultArgs.GetLength() != func->parameterTypes.GetLength() ) { // Out of memory error = true; return; } memset(func->defaultArgs.AddressOf(), 0, sizeof(asCString*)*func->defaultArgs.GetLength()); for( i = 0; i < count; i++ ) { asCString *str = asNEW(asCString); if( str == 0 ) { // Out of memory error = true; return; } func->defaultArgs[func->defaultArgs.GetLength()-1-i] = str; ReadString(str); } } func->objectType = CastToObjectType(ReadTypeInfo()); if( func->objectType ) { func->objectType->AddRefInternal(); asBYTE b; ReadData(&b, 1); func->SetReadOnly((b & 1) ? true : false); func->SetPrivate((b & 2) ? true : false); func->SetProtected((b & 4) ? true : false); func->nameSpace = engine->nameSpaces[0]; } else { if (func->funcType == asFUNC_FUNCDEF) { asBYTE b; ReadData(&b, 1); if (b == 'n') { asCString ns; ReadString(&ns); func->nameSpace = engine->AddNameSpace(ns.AddressOf()); } else if (b == 'o') { func->nameSpace = 0; if (parentClass) *parentClass = CastToObjectType(ReadTypeInfo()); else error = true; } else error = true; } else { asCString ns; ReadString(&ns); func->nameSpace = engine->AddNameSpace(ns.AddressOf()); } } } asCScriptFunction *asCReader::ReadFunction(bool &isNew, bool addToModule, bool addToEngine, bool addToGC, bool *isExternal) { isNew = false; if (isExternal) *isExternal = false; if( error ) return 0; char c; ReadData(&c, 1); if( c == '\0' ) { // There is no function, so return a null pointer return 0; } if( c == 'r' ) { // This is a reference to a previously saved function asUINT index = ReadEncodedUInt(); if( index < savedFunctions.GetLength() ) return savedFunctions[index]; else { Error(TXT_INVALID_BYTECODE_d); return 0; } } // Load the new function isNew = true; asCScriptFunction *func = asNEW(asCScriptFunction)(engine,0,asFUNC_DUMMY); if( func == 0 ) { // Out of memory error = true; return 0; } savedFunctions.PushLast(func); int i, count; asCDataType dt; int num; asCObjectType *parentClass = 0; ReadFunctionSignature(func, &parentClass); if( error ) { func->DestroyHalfCreated(); return 0; } if( func->funcType == asFUNC_SCRIPT ) { char bits; ReadData(&bits, 1); func->SetShared((bits & 1) ? true : false); func->dontCleanUpOnException = (bits & 2) ? true : false; if ((bits & 4) && isExternal) *isExternal = true; // for external shared functions the rest is not needed if (!(bits & 4)) { func->AllocateScriptFunctionData(); if (func->scriptData == 0) { // Out of memory error = true; func->DestroyHalfCreated(); return 0; } if (addToGC && !addToModule) engine->gc.AddScriptObjectToGC(func, &engine->functionBehaviours); ReadByteCode(func); func->scriptData->variableSpace = ReadEncodedUInt(); count = ReadEncodedUInt(); func->scriptData->objVariablePos.Allocate(count, false); func->scriptData->objVariableTypes.Allocate(count, false); for (i = 0; i < count; ++i) { func->scriptData->objVariableTypes.PushLast(ReadTypeInfo()); num = ReadEncodedUInt(); func->scriptData->objVariablePos.PushLast(num); if (error) { // No need to continue (the error has already been reported before) func->DestroyHalfCreated(); return 0; } } if (count > 0) func->scriptData->objVariablesOnHeap = ReadEncodedUInt(); else func->scriptData->objVariablesOnHeap = 0; int length = ReadEncodedUInt(); func->scriptData->objVariableInfo.SetLength(length); for (i = 0; i < length; ++i) { func->scriptData->objVariableInfo[i].programPos = ReadEncodedUInt(); func->scriptData->objVariableInfo[i].variableOffset = ReadEncodedUInt(); asEObjVarInfoOption option = (asEObjVarInfoOption)ReadEncodedUInt(); func->scriptData->objVariableInfo[i].option = option; if (option != asOBJ_INIT && option != asOBJ_UNINIT && option != asBLOCK_BEGIN && option != asBLOCK_END) { error = true; func->DestroyHalfCreated(); return 0; } } if (!noDebugInfo) { length = ReadEncodedUInt(); func->scriptData->lineNumbers.SetLength(length); if (int(func->scriptData->lineNumbers.GetLength()) != length) { // Out of memory error = true; func->DestroyHalfCreated(); return 0; } for (i = 0; i < length; ++i) func->scriptData->lineNumbers[i] = ReadEncodedUInt(); // Read the array of script sections length = ReadEncodedUInt(); func->scriptData->sectionIdxs.SetLength(length); if (int(func->scriptData->sectionIdxs.GetLength()) != length) { // Out of memory error = true; func->DestroyHalfCreated(); return 0; } for (i = 0; i < length; ++i) { if ((i & 1) == 0) func->scriptData->sectionIdxs[i] = ReadEncodedUInt(); else { asCString str; ReadString(&str); func->scriptData->sectionIdxs[i] = engine->GetScriptSectionNameIndex(str.AddressOf()); } } } // Read the variable information if (!noDebugInfo) { length = ReadEncodedUInt(); func->scriptData->variables.Allocate(length, false); for (i = 0; i < length; i++) { asSScriptVariable *var = asNEW(asSScriptVariable); if (var == 0) { // Out of memory error = true; func->DestroyHalfCreated(); return 0; } func->scriptData->variables.PushLast(var); var->declaredAtProgramPos = ReadEncodedUInt(); var->stackOffset = ReadEncodedUInt(); ReadString(&var->name); ReadDataType(&var->type); if (error) { // No need to continue (the error has already been reported before) func->DestroyHalfCreated(); return 0; } } } // Read script section name if (!noDebugInfo) { asCString name; ReadString(&name); func->scriptData->scriptSectionIdx = engine->GetScriptSectionNameIndex(name.AddressOf()); func->scriptData->declaredAt = ReadEncodedUInt(); } // Read parameter names if (!noDebugInfo) { asUINT countParam = asUINT(ReadEncodedUInt64()); if (countParam > func->parameterTypes.GetLength()) { error = true; func->DestroyHalfCreated(); return 0; } func->parameterNames.SetLength(countParam); for (asUINT n = 0; n < countParam; n++) ReadString(&func->parameterNames[n]); } } } else if( func->funcType == asFUNC_VIRTUAL || func->funcType == asFUNC_INTERFACE ) { func->vfTableIdx = ReadEncodedUInt(); } else if( func->funcType == asFUNC_FUNCDEF ) { asBYTE bits; ReadData(&bits, 1); if( bits & 1 ) func->SetShared(true); if ((bits & 2) && isExternal) *isExternal = true; // The asCFuncdefType constructor adds itself to the func->funcdefType member asCFuncdefType *fdt = asNEW(asCFuncdefType)(engine, func); fdt->parentClass = parentClass; } if( addToModule ) { // The refCount is already 1 module->scriptFunctions.PushLast(func); func->module = module; } if( addToEngine ) { func->id = engine->GetNextScriptFunctionId(); engine->AddScriptFunction(func); } if( func->objectType ) func->ComputeSignatureId(); return func; } void asCReader::ReadTypeDeclaration(asCTypeInfo *type, int phase, bool *isExternal) { if( phase == 1 ) { asASSERT(isExternal); if (isExternal) *isExternal = false; // Read the initial attributes ReadString(&type->name); ReadData(&type->flags, 4); type->size = ReadEncodedUInt(); asCString ns; ReadString(&ns); type->nameSpace = engine->AddNameSpace(ns.AddressOf()); // Verify that the flags match the asCTypeInfo if ((CastToEnumType(type) && !(type->flags & asOBJ_ENUM)) || (CastToFuncdefType(type) && !(type->flags & asOBJ_FUNCDEF)) || (CastToObjectType(type) && !(type->flags & (asOBJ_REF | asOBJ_VALUE)))) { error = true; return; } // Reset the size of script classes, since it will be recalculated as properties are added if( (type->flags & asOBJ_SCRIPT_OBJECT) && type->size != 0 ) type->size = sizeof(asCScriptObject); asCObjectType *ot = CastToObjectType(type); if (ot) { // Use the default script class behaviours ot->beh = engine->scriptTypeBehaviours.beh; ot->beh.construct = 0; ot->beh.factory = 0; ot->beh.constructors.PopLast(); // These will be read from the file ot->beh.factories.PopLast(); // These will be read from the file engine->scriptFunctions[ot->beh.addref]->AddRefInternal(); engine->scriptFunctions[ot->beh.release]->AddRefInternal(); engine->scriptFunctions[ot->beh.gcEnumReferences]->AddRefInternal(); engine->scriptFunctions[ot->beh.gcGetFlag]->AddRefInternal(); engine->scriptFunctions[ot->beh.gcGetRefCount]->AddRefInternal(); engine->scriptFunctions[ot->beh.gcReleaseAllReferences]->AddRefInternal(); engine->scriptFunctions[ot->beh.gcSetFlag]->AddRefInternal(); engine->scriptFunctions[ot->beh.copy]->AddRefInternal(); // TODO: weak: Should not do this if the class has been declared with 'noweak' engine->scriptFunctions[ot->beh.getWeakRefFlag]->AddRefInternal(); } // external shared flag if (type->flags & asOBJ_SHARED) { char c; ReadData(&c, 1); if (c == 'e') *isExternal = true; else if (c != ' ') { error = true; return; } } } else if( phase == 2 ) { // external shared types doesn't store this if ((type->flags & asOBJ_SHARED) && module->externalTypes.IndexOf(type) >= 0) return; if( type->flags & asOBJ_ENUM ) { asCEnumType *t = CastToEnumType(type); int count = ReadEncodedUInt(); bool sharedExists = existingShared.MoveTo(0, type); if( !sharedExists ) { t->enumValues.Allocate(count, false); for( int n = 0; n < count; n++ ) { asSEnumValue *e = asNEW(asSEnumValue); if( e == 0 ) { // Out of memory error = true; return; } ReadString(&e->name); ReadData(&e->value, 4); // TODO: Should be encoded t->enumValues.PushLast(e); } } else { // Verify that the enum values exists in the original asCString name; int value; for( int n = 0; n < count; n++ ) { ReadString(&name); ReadData(&value, 4); // TODO: Should be encoded bool found = false; for( asUINT e = 0; e < t->enumValues.GetLength(); e++ ) { if( t->enumValues[e]->name == name && t->enumValues[e]->value == value ) { found = true; break; } } if( !found ) { asCString str; str.Format(TXT_SHARED_s_DOESNT_MATCH_ORIGINAL, type->GetName()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); } } } } else if( type->flags & asOBJ_TYPEDEF ) { asCTypedefType *td = CastToTypedefType(type); asASSERT(td); eTokenType t = (eTokenType)ReadEncodedUInt(); td->aliasForType = asCDataType::CreatePrimitive(t, false); } else { asCObjectType *ot = CastToObjectType(type); asASSERT(ot); // If the type is shared and pre-existing, we should just // validate that the loaded methods match the original bool sharedExists = existingShared.MoveTo(0, type); if( sharedExists ) { asCObjectType *dt = CastToObjectType(ReadTypeInfo()); if( ot->derivedFrom != dt ) { asCString str; str.Format(TXT_SHARED_s_DOESNT_MATCH_ORIGINAL, type->GetName()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); } } else { ot->derivedFrom = CastToObjectType(ReadTypeInfo()); if( ot->derivedFrom ) ot->derivedFrom->AddRefInternal(); } // interfaces[] / interfaceVFTOffsets[] int size = ReadEncodedUInt(); if( sharedExists ) { for( int n = 0; n < size; n++ ) { asCObjectType *intf = CastToObjectType(ReadTypeInfo()); ReadEncodedUInt(); if( !type->Implements(intf) ) { asCString str; str.Format(TXT_SHARED_s_DOESNT_MATCH_ORIGINAL, type->GetName()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); } } } else { ot->interfaces.Allocate(size, false); ot->interfaceVFTOffsets.Allocate(size, false); for( int n = 0; n < size; n++ ) { asCObjectType *intf = CastToObjectType(ReadTypeInfo()); ot->interfaces.PushLast(intf); asUINT offset = ReadEncodedUInt(); ot->interfaceVFTOffsets.PushLast(offset); } } // behaviours if( !ot->IsInterface() && type->flags != asOBJ_TYPEDEF && type->flags != asOBJ_ENUM ) { bool isNew; asCScriptFunction *func = ReadFunction(isNew, !sharedExists, !sharedExists, !sharedExists); if( sharedExists ) { // Find the real function in the object, and update the savedFunctions array asCScriptFunction *realFunc = engine->GetScriptFunction(ot->beh.destruct); if( (realFunc == 0 && func == 0) || realFunc->IsSignatureEqual(func) ) { // If the function is not the last, then the substitution has already occurred before if( func && savedFunctions[savedFunctions.GetLength()-1] == func ) savedFunctions[savedFunctions.GetLength()-1] = realFunc; } else { asCString str; str.Format(TXT_SHARED_s_DOESNT_MATCH_ORIGINAL, type->GetName()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); } if( func ) { if( isNew ) { // Destroy the function without releasing any references func->id = 0; func->scriptData->byteCode.SetLength(0); func->ReleaseInternal(); } module->scriptFunctions.PushLast(realFunc); realFunc->AddRefInternal(); dontTranslate.Insert(realFunc, true); } } else { if( func ) { ot->beh.destruct = func->id; func->AddRefInternal(); } else ot->beh.destruct = 0; } size = ReadEncodedUInt(); for( int n = 0; n < size; n++ ) { func = ReadFunction(isNew, !sharedExists, !sharedExists, !sharedExists); if( func ) { if( sharedExists ) { // Find the real function in the object, and update the savedFunctions array bool found = false; for( asUINT f = 0; f < ot->beh.constructors.GetLength(); f++ ) { asCScriptFunction *realFunc = engine->GetScriptFunction(ot->beh.constructors[f]); if( realFunc->IsSignatureEqual(func) ) { // If the function is not the last, then the substitution has already occurred before if( savedFunctions[savedFunctions.GetLength()-1] == func ) savedFunctions[savedFunctions.GetLength()-1] = realFunc; found = true; module->scriptFunctions.PushLast(realFunc); realFunc->AddRefInternal(); dontTranslate.Insert(realFunc, true); break; } } if( !found ) { asCString str; str.Format(TXT_SHARED_s_DOESNT_MATCH_ORIGINAL, type->GetName()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); } if( isNew ) { // Destroy the function without releasing any references func->id = 0; func->scriptData->byteCode.SetLength(0); func->ReleaseInternal(); } } else { ot->beh.constructors.PushLast(func->id); func->AddRefInternal(); if( func->parameterTypes.GetLength() == 0 ) ot->beh.construct = func->id; } } else { Error(TXT_INVALID_BYTECODE_d); } func = ReadFunction(isNew, !sharedExists, !sharedExists, !sharedExists); if( func ) { if( sharedExists ) { // Find the real function in the object, and update the savedFunctions array bool found = false; for( asUINT f = 0; f < ot->beh.factories.GetLength(); f++ ) { asCScriptFunction *realFunc = engine->GetScriptFunction(ot->beh.factories[f]); if( realFunc->IsSignatureEqual(func) ) { // If the function is not the last, then the substitution has already occurred before if( savedFunctions[savedFunctions.GetLength()-1] == func ) savedFunctions[savedFunctions.GetLength()-1] = realFunc; found = true; module->scriptFunctions.PushLast(realFunc); realFunc->AddRefInternal(); dontTranslate.Insert(realFunc, true); break; } } if( !found ) { asCString str; str.Format(TXT_SHARED_s_DOESNT_MATCH_ORIGINAL, type->GetName()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); } if( isNew ) { // Destroy the function without releasing any references func->id = 0; func->scriptData->byteCode.SetLength(0); func->ReleaseInternal(); } } else { ot->beh.factories.PushLast(func->id); func->AddRefInternal(); if( func->parameterTypes.GetLength() == 0 ) ot->beh.factory = func->id; } } else { Error(TXT_INVALID_BYTECODE_d); } } } // methods[] size = ReadEncodedUInt(); int n; for( n = 0; n < size; n++ ) { bool isNew; asCScriptFunction *func = ReadFunction(isNew, !sharedExists, !sharedExists, !sharedExists); if( func ) { if( sharedExists ) { // Find the real function in the object, and update the savedFunctions array bool found = false; for( asUINT f = 0; f < ot->methods.GetLength(); f++ ) { asCScriptFunction *realFunc = engine->GetScriptFunction(ot->methods[f]); if( realFunc->IsSignatureEqual(func) ) { // If the function is not the last, then the substitution has already occurred before if( savedFunctions[savedFunctions.GetLength()-1] == func ) savedFunctions[savedFunctions.GetLength()-1] = realFunc; found = true; module->scriptFunctions.PushLast(realFunc); realFunc->AddRefInternal(); dontTranslate.Insert(realFunc, true); break; } } if( !found ) { asCString str; str.Format(TXT_SHARED_s_DOESNT_MATCH_ORIGINAL, type->GetName()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); } if( isNew ) { // Destroy the function without releasing any references func->id = 0; if( func->scriptData ) func->scriptData->byteCode.SetLength(0); func->ReleaseInternal(); } } else { // If the method is the assignment operator we need to replace the default implementation if( func->name == "opAssign" && func->parameterTypes.GetLength() == 1 && func->parameterTypes[0].GetTypeInfo() == func->objectType && (func->inOutFlags[0] & asTM_INREF) ) { engine->scriptFunctions[ot->beh.copy]->ReleaseInternal(); ot->beh.copy = func->id; func->AddRefInternal(); } ot->methods.PushLast(func->id); func->AddRefInternal(); } } else { Error(TXT_INVALID_BYTECODE_d); } } // virtualFunctionTable[] size = ReadEncodedUInt(); for( n = 0; n < size; n++ ) { bool isNew; asCScriptFunction *func = ReadFunction(isNew, !sharedExists, !sharedExists, !sharedExists); if( func ) { if( sharedExists ) { // Find the real function in the object, and update the savedFunctions array bool found = false; for( asUINT f = 0; f < ot->virtualFunctionTable.GetLength(); f++ ) { asCScriptFunction *realFunc = ot->virtualFunctionTable[f]; if( realFunc->IsSignatureEqual(func) ) { // If the function is not the last, then the substitution has already occurred before if( savedFunctions[savedFunctions.GetLength()-1] == func ) savedFunctions[savedFunctions.GetLength()-1] = realFunc; found = true; module->scriptFunctions.PushLast(realFunc); realFunc->AddRefInternal(); dontTranslate.Insert(realFunc, true); break; } } if( !found ) { asCString str; str.Format(TXT_SHARED_s_DOESNT_MATCH_ORIGINAL, type->GetName()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); } if( isNew ) { // Destroy the function without releasing any references func->id = 0; if( func->scriptData ) func->scriptData->byteCode.SetLength(0); func->ReleaseInternal(); } } else { ot->virtualFunctionTable.PushLast(func); func->AddRefInternal(); } } else { Error(TXT_INVALID_BYTECODE_d); } } } } else if( phase == 3 ) { // external shared types doesn't store this if ((type->flags & asOBJ_SHARED) && module->externalTypes.IndexOf(type) >= 0) return; asCObjectType *ot = CastToObjectType(type); // This is only done for object types asASSERT(ot); // properties[] asUINT size = ReadEncodedUInt(); for( asUINT n = 0; n < size; n++ ) ReadObjectProperty(ot); } } asWORD asCReader::ReadEncodedUInt16() { asDWORD dw = ReadEncodedUInt(); if( (dw>>16) != 0 && (dw>>16) != 0xFFFF ) { Error(TXT_INVALID_BYTECODE_d); } return asWORD(dw & 0xFFFF); } asUINT asCReader::ReadEncodedUInt() { asQWORD qw = ReadEncodedUInt64(); if( (qw>>32) != 0 && (qw>>32) != 0xFFFFFFFF ) { Error(TXT_INVALID_BYTECODE_d); } return asUINT(qw & 0xFFFFFFFFu); } asQWORD asCReader::ReadEncodedUInt64() { asQWORD i = 0; asBYTE b; ReadData(&b, 1); bool isNegative = ( b & 0x80 ) ? true : false; b &= 0x7F; if( (b & 0x7F) == 0x7F ) { ReadData(&b, 1); i = asQWORD(b) << 56; ReadData(&b, 1); i += asQWORD(b) << 48; ReadData(&b, 1); i += asQWORD(b) << 40; ReadData(&b, 1); i += asQWORD(b) << 32; ReadData(&b, 1); i += asUINT(b) << 24; ReadData(&b, 1); i += asUINT(b) << 16; ReadData(&b, 1); i += asUINT(b) << 8; ReadData(&b, 1); i += b; } else if( (b & 0x7E) == 0x7E ) { i = asQWORD(b & 0x01) << 48; ReadData(&b, 1); i += asQWORD(b) << 40; ReadData(&b, 1); i += asQWORD(b) << 32; ReadData(&b, 1); i += asUINT(b) << 24; ReadData(&b, 1); i += asUINT(b) << 16; ReadData(&b, 1); i += asUINT(b) << 8; ReadData(&b, 1); i += b; } else if( (b & 0x7C) == 0x7C ) { i = asQWORD(b & 0x03) << 40; ReadData(&b, 1); i += asQWORD(b) << 32; ReadData(&b, 1); i += asUINT(b) << 24; ReadData(&b, 1); i += asUINT(b) << 16; ReadData(&b, 1); i += asUINT(b) << 8; ReadData(&b, 1); i += b; } else if( (b & 0x78) == 0x78 ) { i = asQWORD(b & 0x07) << 32; ReadData(&b, 1); i += asUINT(b) << 24; ReadData(&b, 1); i += asUINT(b) << 16; ReadData(&b, 1); i += asUINT(b) << 8; ReadData(&b, 1); i += b; } else if( (b & 0x70) == 0x70 ) { i = asUINT(b & 0x0F) << 24; ReadData(&b, 1); i += asUINT(b) << 16; ReadData(&b, 1); i += asUINT(b) << 8; ReadData(&b, 1); i += b; } else if( (b & 0x60) == 0x60 ) { i = asUINT(b & 0x1F) << 16; ReadData(&b, 1); i += asUINT(b) << 8; ReadData(&b, 1); i += b; } else if( (b & 0x40) == 0x40 ) { i = asUINT(b & 0x3F) << 8; ReadData(&b, 1); i += b; } else { i = b; } if( isNegative ) i = (asQWORD)(-asINT64(i)); return i; } void asCReader::ReadString(asCString* str) { asUINT len = ReadEncodedUInt(); if( len & 1 ) { asUINT idx = len/2; if( idx < savedStrings.GetLength() ) *str = savedStrings[idx]; else Error(TXT_INVALID_BYTECODE_d); } else if( len > 0 ) { len /= 2; str->SetLength(len); int r = stream->Read(str->AddressOf(), len); if (r < 0) Error(TXT_UNEXPECTED_END_OF_FILE); savedStrings.PushLast(*str); } else str->SetLength(0); } void asCReader::ReadGlobalProperty() { asCString name; asCDataType type; ReadString(&name); asCString ns; ReadString(&ns); asSNameSpace *nameSpace = engine->AddNameSpace(ns.AddressOf()); ReadDataType(&type); asCGlobalProperty *prop = module->AllocateGlobalProperty(name.AddressOf(), type, nameSpace); // Read the initialization function bool isNew; // Do not add the function to the GC at this time. It will // only be added to the GC when the module releases the property asCScriptFunction *func = ReadFunction(isNew, false, true, false); if( func ) { // Make sure the function knows it is owned by the module func->module = module; prop->SetInitFunc(func); func->ReleaseInternal(); } } void asCReader::ReadObjectProperty(asCObjectType *ot) { asCString name; ReadString(&name); asCDataType dt; ReadDataType(&dt); int flags = ReadEncodedUInt(); bool isPrivate = (flags & 1) ? true : false; bool isProtected = (flags & 2) ? true : false; bool isInherited = (flags & 4) ? true : false; // TODO: shared: If the type is shared and pre-existing, we should just // validate that the loaded methods match the original if( !existingShared.MoveTo(0, ot) ) ot->AddPropertyToClass(name, dt, isPrivate, isProtected, isInherited); } void asCReader::ReadDataType(asCDataType *dt) { // Check if this is a previously used type asUINT idx = ReadEncodedUInt(); if( idx != 0 ) { // Get the datatype from the cache *dt = savedDataTypes[idx-1]; return; } // Read the type definition eTokenType tokenType = (eTokenType)ReadEncodedUInt(); // Reserve a spot in the savedDataTypes asUINT saveSlot = savedDataTypes.GetLength(); savedDataTypes.PushLast(asCDataType()); // Read the datatype for the first time asCTypeInfo *ti = 0; if( tokenType == ttIdentifier ) ti = ReadTypeInfo(); // Read type flags as a bitmask // Endian-safe code bool isObjectHandle, isHandleToConst, isReference, isReadOnly; char b = 0; ReadData(&b, 1); LOAD_FROM_BIT(isObjectHandle, b, 0); LOAD_FROM_BIT(isHandleToConst, b, 1); LOAD_FROM_BIT(isReference, b, 2); LOAD_FROM_BIT(isReadOnly, b, 3); if( tokenType == ttIdentifier ) *dt = asCDataType::CreateType(ti, false); else *dt = asCDataType::CreatePrimitive(tokenType, false); if( isObjectHandle ) { dt->MakeReadOnly(isHandleToConst ? true : false); // Here we must allow a scoped type to be a handle // e.g. if the datatype is for a system function dt->MakeHandle(true, true); } dt->MakeReadOnly(isReadOnly ? true : false); dt->MakeReference(isReference ? true : false); // Update the previously saved slot savedDataTypes[saveSlot] = *dt; } asCTypeInfo* asCReader::ReadTypeInfo() { asCTypeInfo *ot = 0; char ch; ReadData(&ch, 1); if( ch == 'a' ) { // Read the name of the template type asCString typeName, ns; ReadString(&typeName); ReadString(&ns); asSNameSpace *nameSpace = engine->AddNameSpace(ns.AddressOf()); asCTypeInfo *tmp = engine->GetRegisteredType(typeName.AddressOf(), nameSpace); asCObjectType *tmpl = CastToObjectType(tmp); if( tmpl == 0 ) { asCString str; str.Format(TXT_TEMPLATE_TYPE_s_DOESNT_EXIST, typeName.AddressOf()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); return 0; } asUINT numSubTypes = ReadEncodedUInt(); asCArray subTypes; for( asUINT n = 0; n < numSubTypes; n++ ) { ReadData(&ch, 1); if( ch == 's' ) { asCDataType dt; ReadDataType(&dt); subTypes.PushLast(dt); } else { eTokenType tokenType = (eTokenType)ReadEncodedUInt(); asCDataType dt = asCDataType::CreatePrimitive(tokenType, false); subTypes.PushLast(dt); } } // Return the actual template if the subtypes are the template's dummy types if( tmpl->templateSubTypes == subTypes ) ot = tmpl; else { // Get the template instance type based on the loaded subtypes ot = engine->GetTemplateInstanceType(tmpl, subTypes, module); } if( ot == 0 ) { // Show all subtypes in error message asCString sub = subTypes[0].Format(nameSpace); for( asUINT n = 1; n < subTypes.GetLength(); n++ ) { sub += ","; sub += subTypes[n].Format(nameSpace); } asCString str; str.Format(TXT_INSTANCING_INVLD_TMPL_TYPE_s_s, typeName.AddressOf(), sub.AddressOf()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); return 0; } } else if( ch == 'l' ) { asCObjectType *st = CastToObjectType(ReadTypeInfo()); if( st == 0 || st->beh.listFactory == 0 ) { Error(TXT_INVALID_BYTECODE_d); return 0; } ot = engine->GetListPatternType(st->beh.listFactory); } else if( ch == 's' ) { // Read the name of the template subtype asCString typeName; ReadString(&typeName); // Find the template subtype ot = 0; for( asUINT n = 0; n < engine->templateSubTypes.GetLength(); n++ ) { if( engine->templateSubTypes[n] && engine->templateSubTypes[n]->name == typeName ) { ot = engine->templateSubTypes[n]; break; } } if( ot == 0 ) { asCString str; str.Format(TXT_TEMPLATE_SUBTYPE_s_DOESNT_EXIST, typeName.AddressOf()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); return 0; } } else if( ch == 'o' ) { // Read the object type name asCString typeName, ns; ReadString(&typeName); ReadString(&ns); asSNameSpace *nameSpace = engine->AddNameSpace(ns.AddressOf()); if( typeName.GetLength() && typeName != "$obj" && typeName != "$func" ) { // Find the object type ot = module->GetType(typeName.AddressOf(), nameSpace); if (!ot) ot = engine->GetRegisteredType(typeName.AddressOf(), nameSpace); if( ot == 0 ) { asCString str; str.Format(TXT_OBJECT_TYPE_s_DOESNT_EXIST, typeName.AddressOf()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); return 0; } } else if( typeName == "$obj" ) { ot = &engine->scriptTypeBehaviours; } else if( typeName == "$func" ) { ot = &engine->functionBehaviours; } else asASSERT( false ); } else if (ch == 'c') { // Read the object type name asCString typeName, ns; ReadString(&typeName); // Read the parent class asCObjectType *parentClass = CastToObjectType(ReadTypeInfo()); if (parentClass == 0) { Error(TXT_INVALID_BYTECODE_d); return 0; } // Find the child type in the parentClass for (asUINT n = 0; n < parentClass->childFuncDefs.GetLength(); n++) { if (parentClass->childFuncDefs[n]->name == typeName) ot = parentClass->childFuncDefs[n]; } if (ot == 0) { asCString str; str.Format(TXT_OBJECT_TYPE_s_DOESNT_EXIST, typeName.AddressOf()); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); Error(TXT_INVALID_BYTECODE_d); return 0; } } else { // No object type asASSERT( ch == '\0' || error ); ot = 0; } return ot; } void asCReader::ReadByteCode(asCScriptFunction *func) { asASSERT( func->scriptData ); // Read number of instructions asUINT total, numInstructions; total = numInstructions = ReadEncodedUInt(); // Reserve some space for the instructions func->scriptData->byteCode.AllocateNoConstruct(numInstructions, false); asUINT pos = 0; while( numInstructions ) { asBYTE b; ReadData(&b, 1); // Allocate the space for the instruction asUINT len = asBCTypeSize[asBCInfo[b].type]; asUINT newSize = asUINT(func->scriptData->byteCode.GetLength()) + len; if( func->scriptData->byteCode.GetCapacity() < newSize ) { // Determine the average size of the loaded instructions and re-estimate the final size asUINT size = asUINT(float(newSize) / (total - numInstructions) * total) + 1; func->scriptData->byteCode.AllocateNoConstruct(size, true); } if( !func->scriptData->byteCode.SetLengthNoConstruct(newSize) ) { // Out of memory error = true; return; } asDWORD *bc = func->scriptData->byteCode.AddressOf() + pos; pos += len; switch( asBCInfo[b].type ) { case asBCTYPE_NO_ARG: { *(asBYTE*)(bc) = b; bc++; } break; case asBCTYPE_W_ARG: case asBCTYPE_wW_ARG: case asBCTYPE_rW_ARG: { *(asBYTE*)(bc) = b; // Read the argument asWORD w = ReadEncodedUInt16(); *(((asWORD*)bc)+1) = w; bc++; } break; case asBCTYPE_rW_DW_ARG: case asBCTYPE_wW_DW_ARG: case asBCTYPE_W_DW_ARG: { *(asBYTE*)(bc) = b; // Read the word argument asWORD w = ReadEncodedUInt16(); *(((asWORD*)bc)+1) = w; bc++; // Read the dword argument *bc++ = ReadEncodedUInt(); } break; case asBCTYPE_DW_ARG: { *(asBYTE*)(bc) = b; bc++; // Read the argument *bc++ = ReadEncodedUInt(); } break; case asBCTYPE_DW_DW_ARG: { *(asBYTE*)(bc) = b; bc++; // Read the first argument *bc++ = ReadEncodedUInt(); // Read the second argument *bc++ = ReadEncodedUInt(); } break; case asBCTYPE_wW_rW_rW_ARG: { *(asBYTE*)(bc) = b; // Read the first argument asWORD w = ReadEncodedUInt16(); *(((asWORD*)bc)+1) = w; bc++; // Read the second argument w = ReadEncodedUInt16(); *(asWORD*)bc = w; // Read the third argument w = ReadEncodedUInt16(); *(((asWORD*)bc)+1) = w; bc++; } break; case asBCTYPE_wW_rW_ARG: case asBCTYPE_rW_rW_ARG: case asBCTYPE_wW_W_ARG: { *(asBYTE*)(bc) = b; // Read the first argument asWORD w = ReadEncodedUInt16(); *(((asWORD*)bc)+1) = w; bc++; // Read the second argument w = ReadEncodedUInt16(); *(asWORD*)bc = w; bc++; } break; case asBCTYPE_wW_rW_DW_ARG: case asBCTYPE_rW_W_DW_ARG: { *(asBYTE*)(bc) = b; // Read the first argument asWORD w = ReadEncodedUInt16(); *(((asWORD*)bc)+1) = w; bc++; // Read the second argument w = ReadEncodedUInt16(); *(asWORD*)bc = w; bc++; // Read the third argument asDWORD dw = ReadEncodedUInt(); *bc++ = dw; } break; case asBCTYPE_QW_ARG: { *(asBYTE*)(bc) = b; bc++; // Read the argument asQWORD qw = ReadEncodedUInt64(); *(asQWORD*)bc = qw; bc += 2; } break; case asBCTYPE_QW_DW_ARG: { *(asBYTE*)(bc) = b; bc++; // Read the first argument asQWORD qw = ReadEncodedUInt64(); *(asQWORD*)bc = qw; bc += 2; // Read the second argument asDWORD dw = ReadEncodedUInt(); *bc++ = dw; } break; case asBCTYPE_rW_QW_ARG: case asBCTYPE_wW_QW_ARG: { *(asBYTE*)(bc) = b; // Read the first argument asWORD w = ReadEncodedUInt16(); *(((asWORD*)bc)+1) = w; bc++; // Read the argument asQWORD qw = ReadEncodedUInt64(); *(asQWORD*)bc = qw; bc += 2; } break; case asBCTYPE_rW_DW_DW_ARG: { *(asBYTE*)(bc) = b; // Read the 1st argument asWORD w = ReadEncodedUInt16(); *(((asWORD*)bc)+1) = w; bc++; // Read the 2nd argument *bc++ = ReadEncodedUInt(); // Read the 3rd argument *bc++ = ReadEncodedUInt(); } break; default: { // This should never happen asASSERT(false); // Read the next 3 bytes asDWORD c; asBYTE t; #if defined(AS_BIG_ENDIAN) c = b << 24; ReadData(&t, 1); c += t << 16; ReadData(&t, 1); c += t << 8; ReadData(&t, 1); c += t; #else c = b; ReadData(&t, 1); c += t << 8; ReadData(&t, 1); c += t << 16; ReadData(&t, 1); c += t << 24; #endif *bc++ = c; c = *(asBYTE*)&c; // Read the bc as is for( int n = 1; n < asBCTypeSize[asBCInfo[c].type]; n++ ) ReadData(&*bc++, 4); } } numInstructions--; } // Correct the final size in case we over-estimated it func->scriptData->byteCode.SetLengthNoConstruct(pos); } void asCReader::ReadUsedTypeIds() { TimeIt("asCReader::ReadUsedTypeIds"); asUINT count = ReadEncodedUInt(); usedTypeIds.Allocate(count, false); for( asUINT n = 0; n < count; n++ ) { asCDataType dt; ReadDataType(&dt); usedTypeIds.PushLast(engine->GetTypeIdFromDataType(dt)); } } void asCReader::ReadUsedGlobalProps() { TimeIt("asCReader::ReadUsedGlobalProps"); int c = ReadEncodedUInt(); usedGlobalProperties.Allocate(c, false); for( int n = 0; n < c; n++ ) { asCString name, ns; asCDataType type; char moduleProp; ReadString(&name); ReadString(&ns); ReadDataType(&type); ReadData(&moduleProp, 1); asSNameSpace *nameSpace = engine->AddNameSpace(ns.AddressOf()); // Find the real property asCGlobalProperty *globProp = 0; if( moduleProp ) globProp = module->scriptGlobals.GetFirst(nameSpace, name); else globProp = engine->registeredGlobalProps.GetFirst(nameSpace, name); void *prop = 0; if( globProp && globProp->type == type ) prop = globProp->GetAddressOfValue(); usedGlobalProperties.PushLast(prop); if( prop == 0 ) { Error(TXT_INVALID_BYTECODE_d); } } } void asCReader::ReadUsedObjectProps() { TimeIt("asCReader::ReadUsedObjectProps"); asUINT c = ReadEncodedUInt(); usedObjectProperties.SetLength(c); for( asUINT n = 0; n < c; n++ ) { asCObjectType *objType = CastToObjectType(ReadTypeInfo()); if( objType == 0 ) { Error(TXT_INVALID_BYTECODE_d); break; } asCString name; ReadString(&name); // Find the property bool found = false; for( asUINT p = 0; p < objType->properties.GetLength(); p++ ) { if( objType->properties[p]->name == name ) { usedObjectProperties[n].objType = objType; usedObjectProperties[n].prop = objType->properties[p]; found = true; break; } } if( !found ) { Error(TXT_INVALID_BYTECODE_d); return; } } } short asCReader::FindObjectPropOffset(asWORD index) { static asCObjectProperty *lastCompositeProp = 0; if (lastCompositeProp) { if (index != 0) { Error(TXT_INVALID_BYTECODE_d); return 0; } short offset = (short)lastCompositeProp->byteOffset; lastCompositeProp = 0; return offset; } if( index >= usedObjectProperties.GetLength() ) { Error(TXT_INVALID_BYTECODE_d); return 0; } if (usedObjectProperties[index].prop->compositeOffset || usedObjectProperties[index].prop->isCompositeIndirect) { lastCompositeProp = usedObjectProperties[index].prop; return (short)lastCompositeProp->compositeOffset; } return (short)usedObjectProperties[index].prop->byteOffset; } asCScriptFunction *asCReader::FindFunction(int idx) { if( idx >= 0 && idx < (int)usedFunctions.GetLength() ) return usedFunctions[idx]; else { Error(TXT_INVALID_BYTECODE_d); return 0; } } void asCReader::TranslateFunction(asCScriptFunction *func) { // Skip this if the function is part of an pre-existing shared object if( dontTranslate.MoveTo(0, func) ) return; asASSERT( func->scriptData ); // Pre-compute the size of each instruction in order to translate jump offsets asUINT n; asDWORD *bc = func->scriptData->byteCode.AddressOf(); asUINT bcLength = (asUINT)func->scriptData->byteCode.GetLength(); asCArray bcSizes(bcLength); asCArray instructionNbrToPos(bcLength); for( n = 0; n < bcLength; ) { int c = *(asBYTE*)&bc[n]; asUINT size = asBCTypeSize[asBCInfo[c].type]; if( size == 0 ) { Error(TXT_INVALID_BYTECODE_d); return; } bcSizes.PushLast(size); instructionNbrToPos.PushLast(n); n += size; } asUINT bcNum = 0; for( n = 0; n < bcLength; bcNum++ ) { int c = *(asBYTE*)&bc[n]; if( c == asBC_REFCPY || c == asBC_RefCpyV || c == asBC_OBJTYPE ) { // Translate the index to the true object type asPWORD *ot = (asPWORD*)&bc[n+1]; *(asCObjectType**)ot = CastToObjectType(FindType(int(*ot))); } else if( c == asBC_TYPEID || c == asBC_Cast ) { // Translate the index to the type id int *tid = (int*)&bc[n+1]; *tid = FindTypeId(*tid); } else if( c == asBC_ADDSi || c == asBC_LoadThisR ) { // Translate the index to the type id int *tid = (int*)&bc[n+1]; *tid = FindTypeId(*tid); // Translate the prop index into the property offset *(((short*)&bc[n])+1) = FindObjectPropOffset(*(((short*)&bc[n])+1)); } else if( c == asBC_LoadRObjR || c == asBC_LoadVObjR ) { // Translate the index to the type id int *tid = (int*)&bc[n+2]; *tid = FindTypeId(*tid); asCObjectType *ot = engine->GetObjectTypeFromTypeId(*tid); if( ot && (ot->flags & asOBJ_LIST_PATTERN) ) { // List patterns have a different way of adjusting the offsets SListAdjuster *listAdj = listAdjusters[listAdjusters.GetLength()-1]; *(((short*)&bc[n])+2) = (short)listAdj->AdjustOffset(*(((short*)&bc[n])+2)); } else { // Translate the prop index into the property offset *(((short*)&bc[n])+2) = FindObjectPropOffset(*(((short*)&bc[n])+2)); } } else if( c == asBC_COPY ) { // Translate the index to the type id int *tid = (int*)&bc[n+1]; *tid = FindTypeId(*tid); // COPY is used to copy POD types that don't have the opAssign method. It is // also used to copy references to scoped types during variable initializations. // Update the number of dwords to copy as it may be different on the target platform if( (*tid) & asTYPEID_OBJHANDLE ) { // It is the actual reference that is being copied, not the object itself asBC_SWORDARG0(&bc[n]) = AS_PTR_SIZE; } else { asCDataType dt = engine->GetDataTypeFromTypeId(*tid); if( !dt.IsValid() ) { Error(TXT_INVALID_BYTECODE_d); } else asBC_SWORDARG0(&bc[n]) = (short)dt.GetSizeInMemoryDWords(); } } else if( c == asBC_RET ) { // Determine the correct amount of DWORDs to pop asWORD dw = (asWORD)func->GetSpaceNeededForArguments(); if( func->DoesReturnOnStack() ) dw += AS_PTR_SIZE; if( func->objectType ) dw += AS_PTR_SIZE; asBC_WORDARG0(&bc[n]) = dw; } else if( c == asBC_CALL || c == asBC_CALLINTF || c == asBC_CALLSYS || c == asBC_Thiscall1 ) { // Translate the index to the func id int *fid = (int*)&bc[n+1]; asCScriptFunction *f = FindFunction(*fid); if( f ) *fid = f->id; else { Error(TXT_INVALID_BYTECODE_d); return; } } else if( c == asBC_FuncPtr ) { // Translate the index to the func pointer asPWORD *fid = (asPWORD*)&bc[n+1]; *fid = (asPWORD)FindFunction(int(*fid)); } else if( c == asBC_ALLOC ) { // Translate the index to the true object type asPWORD *arg = (asPWORD*)&bc[n+1]; *(asCObjectType**)arg = CastToObjectType(FindType(int(*arg))); // The constructor function id must be translated, unless it is zero int *fid = (int*)&bc[n+1+AS_PTR_SIZE]; if( *fid != 0 ) { // Subtract 1 from the id, as it was incremented during the writing asCScriptFunction *f = FindFunction(*fid-1); if( f ) *fid = f->id; else { Error(TXT_INVALID_BYTECODE_d); return; } } } else if( c == asBC_STR ) { Error(TXT_INVALID_BYTECODE_d); return; } else if( c == asBC_CALLBND ) { // Translate the function id asUINT *fid = (asUINT*)&bc[n+1]; if( *fid < module->bindInformations.GetLength() ) { sBindInfo *bi = module->bindInformations[*fid]; if( bi ) *fid = bi->importedFunctionSignature->id; else { Error(TXT_INVALID_BYTECODE_d); return; } } else { Error(TXT_INVALID_BYTECODE_d); return; } } else if( c == asBC_PGA || c == asBC_PshGPtr || c == asBC_LDG || c == asBC_PshG4 || c == asBC_LdGRdR4 || c == asBC_CpyGtoV4 || c == asBC_CpyVtoG4 || c == asBC_SetG4 ) { // Translate the index to pointer asPWORD *index = (asPWORD*)&bc[n + 1]; if ((*index & 1)) { if ((asUINT(*index)>>1) < usedGlobalProperties.GetLength()) *(void**)index = usedGlobalProperties[asUINT(*index)>>1]; else { Error(TXT_INVALID_BYTECODE_d); return; } } else { // Only PGA and PshGPtr can hold string constants asASSERT(c == asBC_PGA || c == asBC_PshGPtr); if ((asUINT(*index)>>1) < usedStringConstants.GetLength()) *(void**)index = usedStringConstants[asUINT(*index)>>1]; else { Error(TXT_INVALID_BYTECODE_d); return; } } } else if( c == asBC_JMP || c == asBC_JZ || c == asBC_JNZ || c == asBC_JLowZ || c == asBC_JLowNZ || c == asBC_JS || c == asBC_JNS || c == asBC_JP || c == asBC_JNP ) // The JMPP instruction doesn't need modification { // Get the offset int offset = int(bc[n+1]); // Count the instruction sizes to the destination instruction int size = 0; if( offset >= 0 ) // If moving ahead, then start from next instruction for( asUINT num = bcNum+1; offset-- > 0; num++ ) size += bcSizes[num]; else // If moving backwards, then start at current instruction for( asUINT num = bcNum; offset++ < 0; num-- ) size -= bcSizes[num]; // The size is dword offset bc[n+1] = size; } else if( c == asBC_AllocMem ) { // The size of the allocated memory is only known after all the elements has been seen. // This helper class will collect this information and adjust the size when the // corresponding asBC_FREE is encountered // The adjuster also needs to know the list type so it can know the type of the elements asCObjectType *ot = CastToObjectType(func->GetTypeInfoOfLocalVar(asBC_SWORDARG0(&bc[n]))); listAdjusters.PushLast(asNEW(SListAdjuster)(this, &bc[n], ot)); } else if( c == asBC_FREE ) { // Translate the index to the true object type asPWORD *pot = (asPWORD*)&bc[n+1]; *(asCObjectType**)pot = CastToObjectType(FindType(int(*pot))); asCObjectType *ot = *(asCObjectType**)pot; if( ot && (ot->flags & asOBJ_LIST_PATTERN) ) { if( listAdjusters.GetLength() == 0 ) { Error(TXT_INVALID_BYTECODE_d); return; } // Finalize the adjustment of the list buffer that was initiated with asBC_AllocMem SListAdjuster *list = listAdjusters.PopLast(); list->AdjustAllocMem(); asDELETE(list, SListAdjuster); } } else if( c == asBC_SetListSize ) { // Adjust the offset in the list where the size is informed SListAdjuster *listAdj = listAdjusters[listAdjusters.GetLength()-1]; bc[n+1] = listAdj->AdjustOffset(bc[n+1]); // Inform the list adjuster how many values will be repeated listAdj->SetRepeatCount(bc[n+2]); } else if( c == asBC_PshListElmnt ) { // Adjust the offset in the list where the size is informed SListAdjuster *listAdj = listAdjusters[listAdjusters.GetLength()-1]; bc[n+1] = listAdj->AdjustOffset(bc[n+1]); } else if( c == asBC_SetListType ) { // Adjust the offset in the list where the typeid is informed SListAdjuster *listAdj = listAdjusters[listAdjusters.GetLength()-1]; bc[n+1] = listAdj->AdjustOffset(bc[n+1]); // Translate the type id bc[n+2] = FindTypeId(bc[n+2]); // Inform the list adjuster the type id of the next element listAdj->SetNextType(bc[n+2]); } n += asBCTypeSize[asBCInfo[c].type]; } // Calculate the stack adjustments CalculateAdjustmentByPos(func); // Adjust all variable positions in the bytecode bc = func->scriptData->byteCode.AddressOf(); for( n = 0; n < bcLength; ) { int c = *(asBYTE*)&bc[n]; switch( asBCInfo[c].type ) { case asBCTYPE_wW_ARG: case asBCTYPE_rW_DW_ARG: case asBCTYPE_wW_QW_ARG: case asBCTYPE_rW_ARG: case asBCTYPE_wW_DW_ARG: case asBCTYPE_wW_W_ARG: case asBCTYPE_rW_QW_ARG: case asBCTYPE_rW_W_DW_ARG: case asBCTYPE_rW_DW_DW_ARG: { asBC_SWORDARG0(&bc[n]) = (short)AdjustStackPosition(asBC_SWORDARG0(&bc[n])); } break; case asBCTYPE_wW_rW_ARG: case asBCTYPE_wW_rW_DW_ARG: case asBCTYPE_rW_rW_ARG: { asBC_SWORDARG0(&bc[n]) = (short)AdjustStackPosition(asBC_SWORDARG0(&bc[n])); asBC_SWORDARG1(&bc[n]) = (short)AdjustStackPosition(asBC_SWORDARG1(&bc[n])); } break; case asBCTYPE_wW_rW_rW_ARG: { asBC_SWORDARG0(&bc[n]) = (short)AdjustStackPosition(asBC_SWORDARG0(&bc[n])); asBC_SWORDARG1(&bc[n]) = (short)AdjustStackPosition(asBC_SWORDARG1(&bc[n])); asBC_SWORDARG2(&bc[n]) = (short)AdjustStackPosition(asBC_SWORDARG2(&bc[n])); } break; default: // The other types don't treat variables so won't be modified break; } n += asBCTypeSize[asBCInfo[c].type]; } // Adjust the space needed for local variables func->scriptData->variableSpace = AdjustStackPosition(func->scriptData->variableSpace); // Adjust the variable information. This will be used during the adjustment below for( n = 0; n < func->scriptData->variables.GetLength(); n++ ) { func->scriptData->variables[n]->declaredAtProgramPos = instructionNbrToPos[func->scriptData->variables[n]->declaredAtProgramPos]; func->scriptData->variables[n]->stackOffset = AdjustStackPosition(func->scriptData->variables[n]->stackOffset); } // objVariablePos for( n = 0; n < func->scriptData->objVariablePos.GetLength(); n++ ) func->scriptData->objVariablePos[n] = AdjustStackPosition(func->scriptData->objVariablePos[n]); // Adjust the get offsets. This must be done in the second iteration because // it relies on the function ids and variable position already being correct in the // bytecodes that come after the GET instructions. // TODO: optimize: Instead of doing a full extra loop. We can push the GET instructions // on a stack, and then when a call instruction is found update all of them. // This will also make the AdjustGetOffset() function quicker as it can // receive the called function directly instead of having to search for it. bc = func->scriptData->byteCode.AddressOf(); for( n = 0; n < bcLength; ) { int c = *(asBYTE*)&bc[n]; if( c == asBC_GETREF || c == asBC_GETOBJ || c == asBC_GETOBJREF || c == asBC_ChkNullS ) { asBC_WORDARG0(&bc[n]) = (asWORD)AdjustGetOffset(asBC_WORDARG0(&bc[n]), func, n); } n += asBCTypeSize[asBCInfo[c].type]; } for( n = 0; n < func->scriptData->objVariableInfo.GetLength(); n++ ) { // The program position must be adjusted as it is stored in number of instructions func->scriptData->objVariableInfo[n].programPos = instructionNbrToPos[func->scriptData->objVariableInfo[n].programPos]; func->scriptData->objVariableInfo[n].variableOffset = AdjustStackPosition(func->scriptData->objVariableInfo[n].variableOffset); } // The program position (every even number) needs to be adjusted // for the line numbers to be in number of dwords instead of number of instructions for( n = 0; n < func->scriptData->lineNumbers.GetLength(); n += 2 ) func->scriptData->lineNumbers[n] = instructionNbrToPos[func->scriptData->lineNumbers[n]]; for( n = 0; n < func->scriptData->sectionIdxs.GetLength(); n += 2 ) func->scriptData->sectionIdxs[n] = instructionNbrToPos[func->scriptData->sectionIdxs[n]]; CalculateStackNeeded(func); } asCReader::SListAdjuster::SListAdjuster(asCReader *rd, asDWORD *bc, asCObjectType *listType) : reader(rd), allocMemBC(bc), maxOffset(0), patternType(listType), repeatCount(0), lastOffset(-1), nextOffset(0), nextTypeId(-1) { asASSERT( patternType && (patternType->flags & asOBJ_LIST_PATTERN) ); // Find the first expected value in the list asSListPatternNode *node = patternType->engine->scriptFunctions[patternType->templateSubTypes[0].GetBehaviour()->listFactory]->listPattern; asASSERT( node && node->type == asLPT_START ); patternNode = node->next; } int asCReader::SListAdjuster::AdjustOffset(int offset) { if( offset < lastOffset ) { reader->Error(TXT_INVALID_BYTECODE_d); return 0; } // If it is the same offset being accessed again, just return the same adjusted value if( lastOffset == offset ) return lastAdjustedOffset; lastOffset = offset; lastAdjustedOffset = maxOffset; // What is being expected at this position? if( patternNode->type == asLPT_REPEAT || patternNode->type == asLPT_REPEAT_SAME ) { // Align the offset to 4 bytes boundary if( maxOffset & 0x3 ) { maxOffset += 4 - (maxOffset & 0x3); lastAdjustedOffset = maxOffset; } // Don't move the patternNode yet because the caller must make a call to SetRepeatCount too maxOffset += 4; nextOffset = offset+1; return lastAdjustedOffset; } else if( patternNode->type == asLPT_TYPE ) { const asCDataType &dt = reinterpret_cast(patternNode)->dataType; if( dt.GetTokenType() == ttQuestion ) { if( nextTypeId != -1 ) { if( repeatCount > 0 ) repeatCount--; asCDataType nextdt = patternType->engine->GetDataTypeFromTypeId(nextTypeId); asUINT size; if(nextdt.IsObjectHandle() || (nextdt.GetTypeInfo() && (nextdt.GetTypeInfo()->flags & asOBJ_REF)) ) size = AS_PTR_SIZE*4; else size = nextdt.GetSizeInMemoryBytes(); // Align the offset to 4 bytes boundary if( size >= 4 && (maxOffset & 0x3) ) { maxOffset += 4 - (maxOffset & 0x3); lastAdjustedOffset = maxOffset; } // Only move the patternNode if we're not expecting any more repeated entries if( repeatCount == 0 ) patternNode = patternNode->next; nextTypeId = -1; maxOffset += size; nextOffset = offset+1; return lastAdjustedOffset; } else { // Align the offset to 4 bytes boundary if( maxOffset & 0x3 ) { maxOffset += 4 - (maxOffset & 0x3); lastAdjustedOffset = maxOffset; } // The first adjustment is for the typeId maxOffset += 4; nextOffset = offset+1; return lastAdjustedOffset; } } else { // Determine the size of the element asUINT size; if( dt.IsObjectHandle() || (dt.GetTypeInfo() && (dt.GetTypeInfo()->flags & asOBJ_REF)) ) size = AS_PTR_SIZE*4; else size = dt.GetSizeInMemoryBytes(); // If values are skipped, the offset needs to be incremented while( nextOffset <= offset ) { if( repeatCount > 0 ) repeatCount--; // Align the offset to 4 bytes boundary if( size >= 4 && (maxOffset & 0x3) ) maxOffset += 4 - (maxOffset & 0x3); lastAdjustedOffset = maxOffset; nextOffset += 1; maxOffset += size; } // Only move the patternNode if we're not expecting any more repeated entries if( repeatCount == 0 ) patternNode = patternNode->next; nextOffset = offset+1; return lastAdjustedOffset; } } else if( patternNode->type == asLPT_START ) { if( repeatCount > 0 ) repeatCount--; SInfo info = {repeatCount, patternNode}; stack.PushLast(info); repeatCount = 0; patternNode = patternNode->next; lastOffset--; return AdjustOffset(offset); } else if( patternNode->type == asLPT_END ) { if( stack.GetLength() == 0 ) { reader->Error(TXT_INVALID_BYTECODE_d); return 0; } SInfo info = stack.PopLast(); repeatCount = info.repeatCount; if( repeatCount ) patternNode = info.startNode; else patternNode = patternNode->next; lastOffset--; return AdjustOffset(offset); } else { // Something is wrong with the pattern list declaration reader->Error(TXT_INVALID_BYTECODE_d); return 0; } UNREACHABLE_RETURN; } void asCReader::SListAdjuster::SetRepeatCount(asUINT rc) { // Make sure the list is expecting a repeat at this location asASSERT( patternNode->type == asLPT_REPEAT || patternNode->type == asLPT_REPEAT_SAME ); // Now move to the next patternNode patternNode = patternNode->next; repeatCount = rc; } void asCReader::SListAdjuster::AdjustAllocMem() { allocMemBC[1] = maxOffset; } void asCReader::SListAdjuster::SetNextType(int typeId) { asASSERT( nextTypeId == -1 ); nextTypeId = typeId; } void asCReader::CalculateStackNeeded(asCScriptFunction *func) { asASSERT( func->scriptData ); int largestStackUsed = 0; // Clear the known stack size for each bytecode asCArray stackSize; stackSize.SetLength(func->scriptData->byteCode.GetLength()); memset(&stackSize[0], -1, stackSize.GetLength()*4); // Add the first instruction to the list of unchecked code // paths and set the stack size at that instruction to variableSpace asCArray paths; paths.PushLast(0); stackSize[0] = func->scriptData->variableSpace; // Go through each of the code paths for( asUINT p = 0; p < paths.GetLength(); ++p ) { asUINT pos = paths[p]; int currStackSize = stackSize[pos]; asBYTE bc = *(asBYTE*)&func->scriptData->byteCode[pos]; if( bc == asBC_RET ) continue; // Determine the change in stack size for this instruction int stackInc = asBCInfo[bc].stackInc; if( stackInc == 0xFFFF ) { // Determine the true delta from the instruction arguments if( bc == asBC_CALL || bc == asBC_CALLSYS || bc == asBC_Thiscall1 || bc == asBC_CALLBND || bc == asBC_ALLOC || bc == asBC_CALLINTF || bc == asBC_CallPtr ) { asCScriptFunction *called = GetCalledFunction(func, pos); if( called ) { stackInc = -called->GetSpaceNeededForArguments(); if( called->objectType ) stackInc -= AS_PTR_SIZE; if( called->DoesReturnOnStack() ) stackInc -= AS_PTR_SIZE; } else { // It is an allocation for an object without a constructor asASSERT( bc == asBC_ALLOC ); stackInc = -AS_PTR_SIZE; } } } currStackSize += stackInc; asASSERT( currStackSize >= 0 ); if( currStackSize > largestStackUsed ) largestStackUsed = currStackSize; if( bc == asBC_JMP ) { // Find the label that we should jump to int offset = asBC_INTARG(&func->scriptData->byteCode[pos]); pos += 2 + offset; // Add the destination as a new path if( stackSize[pos] == -1 ) { stackSize[pos] = currStackSize; paths.PushLast(pos); } else asASSERT(stackSize[pos] == currStackSize); continue; } else if( bc == asBC_JZ || bc == asBC_JNZ || bc == asBC_JLowZ || bc == asBC_JLowNZ || bc == asBC_JS || bc == asBC_JNS || bc == asBC_JP || bc == asBC_JNP ) { // Find the label that is being jumped to int offset = asBC_INTARG(&func->scriptData->byteCode[pos]); // Add both paths to the code paths pos += 2; if( stackSize[pos] == -1 ) { stackSize[pos] = currStackSize; paths.PushLast(pos); } else asASSERT(stackSize[pos] == currStackSize); pos += offset; if( stackSize[pos] == -1 ) { stackSize[pos] = currStackSize; paths.PushLast(pos); } else asASSERT(stackSize[pos] == currStackSize); continue; } else if( bc == asBC_JMPP ) { pos++; // Add all subsequent JMP instructions to the path while( *(asBYTE*)&func->scriptData->byteCode[pos] == asBC_JMP ) { if( stackSize[pos] == -1 ) { stackSize[pos] = currStackSize; paths.PushLast(pos); } else asASSERT(stackSize[pos] == currStackSize); pos += 2; } continue; } else { // Add next instruction to the paths pos += asBCTypeSize[asBCInfo[bc].type]; if( stackSize[pos] == -1 ) { stackSize[pos] = currStackSize; paths.PushLast(pos); } else asASSERT(stackSize[pos] == currStackSize); continue; } } func->scriptData->stackNeeded = largestStackUsed; } void asCReader::CalculateAdjustmentByPos(asCScriptFunction *func) { // Adjust the offset of all negative variables (parameters) as // all pointers have been stored as having a size of 1 dword asUINT n; asCArray adjustments; asUINT offset = 0; if( func->objectType ) { adjustments.PushLast(offset); adjustments.PushLast(1-AS_PTR_SIZE); offset += 1; } if( func->DoesReturnOnStack() ) { adjustments.PushLast(offset); adjustments.PushLast(1-AS_PTR_SIZE); offset += 1; } for( n = 0; n < func->parameterTypes.GetLength(); n++ ) { if( !func->parameterTypes[n].IsPrimitive() || func->parameterTypes[n].IsReference() ) { adjustments.PushLast(offset); adjustments.PushLast(1-AS_PTR_SIZE); offset += 1; } else { asASSERT( func->parameterTypes[n].IsPrimitive() ); offset += func->parameterTypes[n].GetSizeOnStackDWords(); } } // Build look-up table with the adjustments for each stack position adjustNegativeStackByPos.SetLength(offset); memset(adjustNegativeStackByPos.AddressOf(), 0, adjustNegativeStackByPos.GetLength()*sizeof(int)); for( n = 0; n < adjustments.GetLength(); n+=2 ) { int pos = adjustments[n]; int adjust = adjustments[n+1]; for( asUINT i = pos+1; i < adjustNegativeStackByPos.GetLength(); i++ ) adjustNegativeStackByPos[i] += adjust; } // The bytecode has been stored as if all object variables take up only 1 dword. // It is necessary to adjust to the size according to the current platform. adjustments.SetLength(0); int highestPos = 0; for( n = 0; n < func->scriptData->objVariableTypes.GetLength(); n++ ) { // Determine the size the variable currently occupies on the stack int size = AS_PTR_SIZE; // objVariableTypes is null if the type is a null pointer if( func->scriptData->objVariableTypes[n] && (func->scriptData->objVariableTypes[n]->GetFlags() & asOBJ_VALUE) && n >= func->scriptData->objVariablesOnHeap ) { size = func->scriptData->objVariableTypes[n]->GetSize(); if( size < 4 ) size = 1; else size /= 4; } // Check if type has a different size than stored if( size > 1 ) { if( func->scriptData->objVariablePos[n] > highestPos ) highestPos = func->scriptData->objVariablePos[n]; adjustments.PushLast(func->scriptData->objVariablePos[n]); adjustments.PushLast(size-1); } } // Count position 0 too adjustByPos.SetLength(highestPos+1); memset(adjustByPos.AddressOf(), 0, adjustByPos.GetLength()*sizeof(int)); // Build look-up table with the adjustments for each stack position for( n = 0; n < adjustments.GetLength(); n+=2 ) { int pos = adjustments[n]; int adjust = adjustments[n+1]; for( asUINT i = pos; i < adjustByPos.GetLength(); i++ ) adjustByPos[i] += adjust; } } int asCReader::AdjustStackPosition(int pos) { if( pos >= (int)adjustByPos.GetLength() ) { // It can be higher for primitives allocated on top of highest object variable if( adjustByPos.GetLength() ) pos += (short)adjustByPos[adjustByPos.GetLength()-1]; } else if( pos >= 0 ) pos += (short)adjustByPos[pos]; else if( -pos >= (int)adjustNegativeStackByPos.GetLength() ) Error(TXT_INVALID_BYTECODE_d); else pos += (short)adjustNegativeStackByPos[-pos]; return pos; } asCScriptFunction *asCReader::GetCalledFunction(asCScriptFunction *func, asDWORD programPos) { asBYTE bc = *(asBYTE*)&func->scriptData->byteCode[programPos]; if( bc == asBC_CALL || bc == asBC_CALLSYS || bc == asBC_Thiscall1 || bc == asBC_CALLINTF ) { // Find the function from the function id in bytecode int funcId = asBC_INTARG(&func->scriptData->byteCode[programPos]); return engine->scriptFunctions[funcId]; } else if( bc == asBC_ALLOC ) { // Find the function from the function id in the bytecode int funcId = asBC_INTARG(&func->scriptData->byteCode[programPos+AS_PTR_SIZE]); return engine->scriptFunctions[funcId]; } else if( bc == asBC_CALLBND ) { // Find the function from the engine's bind array int funcId = asBC_INTARG(&func->scriptData->byteCode[programPos]); return engine->importedFunctions[funcId & ~FUNC_IMPORTED]->importedFunctionSignature; } else if( bc == asBC_CallPtr ) { asUINT v; int var = asBC_SWORDARG0(&func->scriptData->byteCode[programPos]); // Find the funcdef from the local variable for( v = 0; v < func->scriptData->objVariablePos.GetLength(); v++ ) if( func->scriptData->objVariablePos[v] == var ) return CastToFuncdefType(func->scriptData->objVariableTypes[v])->funcdef; // Look in parameters int paramPos = 0; if( func->objectType ) paramPos -= AS_PTR_SIZE; if( func->DoesReturnOnStack() ) paramPos -= AS_PTR_SIZE; for( v = 0; v < func->parameterTypes.GetLength(); v++ ) { if (var == paramPos) { if (func->parameterTypes[v].IsFuncdef()) return CastToFuncdefType(func->parameterTypes[v].GetTypeInfo())->funcdef; else { error = true; return 0; } } paramPos -= func->parameterTypes[v].GetSizeOnStackDWords(); } } return 0; } int asCReader::AdjustGetOffset(int offset, asCScriptFunction *func, asDWORD programPos) { // TODO: optimize: multiple instructions for the same function doesn't need to look for the function everytime // the function can remember where it found the function and check if the programPos is still valid // Get offset 0 doesn't need adjustment if( offset == 0 ) return 0; bool bcAlloc = false; // Find out which function that will be called asCScriptFunction *calledFunc = 0; int stackDelta = 0; for( asUINT n = programPos; func->scriptData->byteCode.GetLength(); ) { asBYTE bc = *(asBYTE*)&func->scriptData->byteCode[n]; if( bc == asBC_CALL || bc == asBC_CALLSYS || bc == asBC_Thiscall1 || bc == asBC_CALLINTF || bc == asBC_ALLOC || bc == asBC_CALLBND || bc == asBC_CallPtr ) { // The alloc instruction allocates the object memory // so it doesn't take the this pointer as input if (bc == asBC_ALLOC) bcAlloc = true; calledFunc = GetCalledFunction(func, n); break; } else if( bc == asBC_REFCPY || bc == asBC_COPY ) { // In this case we know there is only 1 pointer on the stack above asASSERT( offset == 1 ); return offset - (1 - AS_PTR_SIZE); } // Keep track of the stack size between the // instruction that needs to be adjusted and the call stackDelta += asBCInfo[bc].stackInc; n += asBCTypeSize[asBCInfo[bc].type]; } if( calledFunc == 0 ) { Error(TXT_INVALID_BYTECODE_d); return offset; } // Count the number of pointers pushed on the stack above the // current offset, and then adjust the offset accordingly asUINT numPtrs = 0; int currOffset = -stackDelta; if( offset > currOffset && calledFunc->GetObjectType() && !bcAlloc ) { currOffset++; if( currOffset > 0 ) numPtrs++; #if AS_PTR_SIZE == 2 // For 64bit platforms it is necessary to increment the currOffset by one more // DWORD since the stackDelta was counting the full 64bit size of the pointer else if( stackDelta ) currOffset++; #endif } if( offset > currOffset && calledFunc->DoesReturnOnStack() ) { currOffset++; if( currOffset > 0 ) numPtrs++; #if AS_PTR_SIZE == 2 // For 64bit platforms it is necessary to increment the currOffset by one more // DWORD since the stackDelta was counting the full 64bit size of the pointer else if( stackDelta ) currOffset++; #endif } for( asUINT p = 0; p < calledFunc->parameterTypes.GetLength(); p++ ) { if( offset <= currOffset ) break; if( !calledFunc->parameterTypes[p].IsPrimitive() || calledFunc->parameterTypes[p].IsReference() ) { currOffset++; if( currOffset > 0 ) numPtrs++; #if AS_PTR_SIZE == 2 // For 64bit platforms it is necessary to increment the currOffset by one more // DWORD since the stackDelta was counting the full 64bit size of the pointer else if( stackDelta ) currOffset++; #endif // The variable arg ? has an additiona 32bit integer with the typeid if( calledFunc->parameterTypes[p].IsAnyType() ) currOffset += 1; } else { // Enums or built-in primitives are passed by value asASSERT( calledFunc->parameterTypes[p].IsPrimitive() ); currOffset += calledFunc->parameterTypes[p].GetSizeOnStackDWords(); } } return offset - numPtrs * (1 - AS_PTR_SIZE); } int asCReader::FindTypeId(int idx) { if( idx >= 0 && idx < (int)usedTypeIds.GetLength() ) return usedTypeIds[idx]; else { Error(TXT_INVALID_BYTECODE_d); return 0; } } asCTypeInfo *asCReader::FindType(int idx) { if( idx < 0 || idx >= (int)usedTypes.GetLength() ) { Error(TXT_INVALID_BYTECODE_d); return 0; } return usedTypes[idx]; } #ifndef AS_NO_COMPILER asCWriter::asCWriter(asCModule* _module, asIBinaryStream* _stream, asCScriptEngine* _engine, bool _stripDebug) : module(_module), stream(_stream), engine(_engine), stripDebugInfo(_stripDebug), error(false), bytesWritten(0) { } int asCWriter::Error(const char *msg) { // Don't write if it has already been reported an error earlier if (!error) { asCString str; str.Format(msg, bytesWritten); engine->WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); error = true; } return asERROR; } int asCWriter::WriteData(const void *data, asUINT size) { asASSERT(size == 1 || size == 2 || size == 4 || size == 8); int ret = 0; #if defined(AS_BIG_ENDIAN) for( asUINT n = 0; ret >= 0 && n < size; n++ ) ret = stream->Write(((asBYTE*)data)+n, 1); #else for( int n = size-1; ret >= 0 && n >= 0; n-- ) ret = stream->Write(((asBYTE*)data)+n, 1); #endif if (ret < 0) Error(TXT_UNEXPECTED_END_OF_FILE); bytesWritten += size; return ret; } int asCWriter::Write() { TimeIt("asCWriter::Write"); unsigned long i, count; // Store everything in the same order that the builder parses scripts // TODO: Should be possible to skip saving the enum values. They are usually not needed after the script is compiled anyway // TODO: Should be possible to skip saving the typedefs. They are usually not needed after the script is compiled anyway // TODO: Should be possible to skip saving constants. They are usually not needed after the script is compiled anyway // Write the flag as 1byte even on platforms with 4byte booleans WriteEncodedInt64(stripDebugInfo ? 1 : 0); // Store enums { TimeIt("store enums"); count = (asUINT)module->enumTypes.GetLength(); WriteEncodedInt64(count); for( i = 0; i < count; i++ ) { WriteTypeDeclaration(module->enumTypes[i], 1); WriteTypeDeclaration(module->enumTypes[i], 2); } } // Store type declarations first { TimeIt("type declarations"); count = (asUINT)module->classTypes.GetLength(); WriteEncodedInt64(count); for( i = 0; i < count; i++ ) { // Store only the name of the class/interface types WriteTypeDeclaration(module->classTypes[i], 1); } } // Store func defs { TimeIt("func defs"); count = (asUINT)module->funcDefs.GetLength(); WriteEncodedInt64(count); for( i = 0; i < count; i++ ) WriteFunction(module->funcDefs[i]->funcdef); } // Now store all interface methods { TimeIt("interface methods"); count = (asUINT)module->classTypes.GetLength(); for( i = 0; i < count; i++ ) { if( module->classTypes[i]->IsInterface() ) WriteTypeDeclaration(module->classTypes[i], 2); } } // Then store the class methods and behaviours { TimeIt("class methods and behaviours"); for( i = 0; i < count; ++i ) { if( !module->classTypes[i]->IsInterface() ) WriteTypeDeclaration(module->classTypes[i], 2); } } // Then store the class properties { TimeIt("class properties"); for( i = 0; i < count; ++i ) { if( !module->classTypes[i]->IsInterface() ) WriteTypeDeclaration(module->classTypes[i], 3); } } // Store typedefs { TimeIt("type defs"); count = (asUINT)module->typeDefs.GetLength(); WriteEncodedInt64(count); for( i = 0; i < count; i++ ) { WriteTypeDeclaration(module->typeDefs[i], 1); WriteTypeDeclaration(module->typeDefs[i], 2); } } // scriptGlobals[] { TimeIt("script globals"); count = (asUINT)module->scriptGlobals.GetSize(); WriteEncodedInt64(count); asCSymbolTable::iterator it = module->scriptGlobals.List(); for( ; it; it++ ) WriteGlobalProperty(*it); } // scriptFunctions[] { TimeIt("scriptFunctions"); count = 0; for( i = 0; i < module->scriptFunctions.GetLength(); i++ ) if( module->scriptFunctions[i]->objectType == 0 ) count++; WriteEncodedInt64(count); for( i = 0; i < module->scriptFunctions.GetLength(); ++i ) if( module->scriptFunctions[i]->objectType == 0 ) WriteFunction(module->scriptFunctions[i]); } // globalFunctions[] { TimeIt("globalFunctions"); count = (int)module->globalFunctions.GetSize(); asCSymbolTable::iterator funcIt = module->globalFunctions.List(); WriteEncodedInt64(count); while( funcIt ) { WriteFunction(*funcIt); funcIt++; } } // bindInformations[] { TimeIt("bindInformations"); count = (asUINT)module->bindInformations.GetLength(); WriteEncodedInt64(count); for( i = 0; i < count; ++i ) { WriteFunction(module->bindInformations[i]->importedFunctionSignature); WriteString(&module->bindInformations[i]->importFromModule); } } // usedTypes[] { TimeIt("usedTypes"); count = (asUINT)usedTypes.GetLength(); WriteEncodedInt64(count); for( i = 0; i < count; ++i ) WriteTypeInfo(usedTypes[i]); } // usedTypeIds[] WriteUsedTypeIds(); // usedFunctions[] WriteUsedFunctions(); // usedGlobalProperties[] WriteUsedGlobalProps(); // usedStringConstants[] WriteUsedStringConstants(); // usedObjectProperties[] WriteUsedObjectProps(); return error ? asERROR : asSUCCESS; } int asCWriter::FindStringConstantIndex(void *str) { asSMapNode *cursor = 0; if (stringToIndexMap.MoveTo(&cursor, str)) return cursor->value; usedStringConstants.PushLast(str); int index = int(usedStringConstants.GetLength() - 1); stringToIndexMap.Insert(str, index); return index; } void asCWriter::WriteUsedStringConstants() { TimeIt("asCWriter::WriteUsedStringConstants"); asUINT count = (asUINT)usedStringConstants.GetLength(); WriteEncodedInt64(count); asCString str; for (asUINT i = 0; i < count; ++i) { asUINT length; engine->stringFactory->GetRawStringData(usedStringConstants[i], 0, &length); str.SetLength(length); engine->stringFactory->GetRawStringData(usedStringConstants[i], str.AddressOf(), &length); WriteString(&str); } } void asCWriter::WriteUsedFunctions() { TimeIt("asCWriter::WriteUsedFunctions"); asUINT count = (asUINT)usedFunctions.GetLength(); WriteEncodedInt64(count); for( asUINT n = 0; n < usedFunctions.GetLength(); n++ ) { char c; // Write enough data to be able to uniquely identify the function upon load asCScriptFunction *func = usedFunctions[n]; if(func) { // Is the function from the module or the application? c = func->module ? 'm' : 'a'; // Functions and methods that are shared and not owned by the module can be // stored as 's' to tell the reader that these are received from other modules. if (c == 'm' && func->IsShared() && module->scriptFunctions.IndexOf(func) < 0 ) c = 's'; WriteData(&c, 1); WriteFunctionSignature(func); } else { // null function pointer c = 'n'; WriteData(&c, 1); } } } void asCWriter::WriteFunctionSignature(asCScriptFunction *func) { asUINT i, count; WriteString(&func->name); if( func->name == DELEGATE_FACTORY ) { // It's not necessary to write anything else return; } WriteDataType(&func->returnType); count = (asUINT)func->parameterTypes.GetLength(); WriteEncodedInt64(count); for( i = 0; i < count; ++i ) WriteDataType(&func->parameterTypes[i]); // Only write the inout flags if any of them are set count = 0; for( i = asUINT(func->inOutFlags.GetLength()); i > 0; i-- ) if( func->inOutFlags[i-1] != asTM_NONE ) { count = i; break; } WriteEncodedInt64(count); for( i = 0; i < count; ++i ) WriteEncodedInt64(func->inOutFlags[i]); WriteEncodedInt64(func->funcType); // Write the default args, from last to first count = 0; for( i = (asUINT)func->defaultArgs.GetLength(); i-- > 0; ) if( func->defaultArgs[i] ) count++; WriteEncodedInt64(count); for( i = (asUINT)func->defaultArgs.GetLength(); i-- > 0; ) if( func->defaultArgs[i] ) WriteString(func->defaultArgs[i]); WriteTypeInfo(func->objectType); if( func->objectType ) { asBYTE b = 0; b += func->IsReadOnly() ? 1 : 0; b += func->IsPrivate() ? 2 : 0; b += func->IsProtected() ? 4 : 0; WriteData(&b, 1); } else { if (func->funcType == asFUNC_FUNCDEF) { if (func->nameSpace) { // This funcdef was declared as global entity asBYTE b = 'n'; WriteData(&b, 1); WriteString(&func->nameSpace->name); } else { // This funcdef was declared as class member asBYTE b = 'o'; WriteData(&b, 1); WriteTypeInfo(func->funcdefType->parentClass); } } else WriteString(&func->nameSpace->name); } } void asCWriter::WriteFunction(asCScriptFunction* func) { char c; // If there is no function, then store a null char if( func == 0 ) { c = '\0'; WriteData(&c, 1); return; } // First check if the function has been saved already for( asUINT f = 0; f < savedFunctions.GetLength(); f++ ) { if( savedFunctions[f] == func ) { c = 'r'; WriteData(&c, 1); WriteEncodedInt64(f); return; } } // Keep a reference to the function in the list savedFunctions.PushLast(func); c = 'f'; WriteData(&c, 1); asUINT i, count; WriteFunctionSignature(func); if( func->funcType == asFUNC_SCRIPT ) { char bits = 0; bits += func->IsShared() ? 1 : 0; bits += func->dontCleanUpOnException ? 2 : 0; if (module->externalFunctions.IndexOf(func) >= 0) bits += 4; WriteData(&bits, 1); // For external shared functions the rest is not needed if (bits & 4) return; // Calculate the adjustment by position lookup table CalculateAdjustmentByPos(func); WriteByteCode(func); asDWORD varSpace = AdjustStackPosition(func->scriptData->variableSpace); WriteEncodedInt64(varSpace); count = (asUINT)func->scriptData->objVariablePos.GetLength(); WriteEncodedInt64(count); for( i = 0; i < count; ++i ) { WriteTypeInfo(func->scriptData->objVariableTypes[i]); WriteEncodedInt64(AdjustStackPosition(func->scriptData->objVariablePos[i])); } if( count > 0 ) WriteEncodedInt64(func->scriptData->objVariablesOnHeap); WriteEncodedInt64((asUINT)func->scriptData->objVariableInfo.GetLength()); for( i = 0; i < func->scriptData->objVariableInfo.GetLength(); ++i ) { // The program position must be adjusted to be in number of instructions WriteEncodedInt64(bytecodeNbrByPos[func->scriptData->objVariableInfo[i].programPos]); WriteEncodedInt64(AdjustStackPosition(func->scriptData->objVariableInfo[i].variableOffset)); WriteEncodedInt64(func->scriptData->objVariableInfo[i].option); } // The program position (every even number) needs to be adjusted // to be in number of instructions instead of DWORD offset if( !stripDebugInfo ) { asUINT length = (asUINT)func->scriptData->lineNumbers.GetLength(); WriteEncodedInt64(length); for( i = 0; i < length; ++i ) { if( (i & 1) == 0 ) WriteEncodedInt64(bytecodeNbrByPos[func->scriptData->lineNumbers[i]]); else WriteEncodedInt64(func->scriptData->lineNumbers[i]); } // Write the array of script sections length = (asUINT)func->scriptData->sectionIdxs.GetLength(); WriteEncodedInt64(length); for( i = 0; i < length; ++i ) { if( (i & 1) == 0 ) WriteEncodedInt64(bytecodeNbrByPos[func->scriptData->sectionIdxs[i]]); else { if( func->scriptData->sectionIdxs[i] >= 0 ) WriteString(engine->scriptSectionNames[func->scriptData->sectionIdxs[i]]); else { c = 0; WriteData(&c, 1); } } } } // Write the variable information if( !stripDebugInfo ) { WriteEncodedInt64((asUINT)func->scriptData->variables.GetLength()); for( i = 0; i < func->scriptData->variables.GetLength(); i++ ) { // The program position must be adjusted to be in number of instructions WriteEncodedInt64(bytecodeNbrByPos[func->scriptData->variables[i]->declaredAtProgramPos]); // The stack position must be adjusted according to the pointer sizes WriteEncodedInt64(AdjustStackPosition(func->scriptData->variables[i]->stackOffset)); WriteString(&func->scriptData->variables[i]->name); WriteDataType(&func->scriptData->variables[i]->type); } } // Store script section name if( !stripDebugInfo ) { if( func->scriptData->scriptSectionIdx >= 0 ) WriteString(engine->scriptSectionNames[func->scriptData->scriptSectionIdx]); else { c = 0; WriteData(&c, 1); } WriteEncodedInt64(func->scriptData->declaredAt); } // Store the parameter names if( !stripDebugInfo ) { count = asUINT(func->parameterNames.GetLength()); WriteEncodedInt64(count); for( asUINT n = 0; n < count; n++ ) WriteString(&func->parameterNames[n]); } } else if( func->funcType == asFUNC_VIRTUAL || func->funcType == asFUNC_INTERFACE ) { // TODO: Do we really need to store this? It can probably be reconstructed by the reader WriteEncodedInt64(func->vfTableIdx); } else if( func->funcType == asFUNC_FUNCDEF ) { char bits = 0; bits += func->IsShared() ? 1 : 0; if (module->externalTypes.IndexOf(func->funcdefType) >= 0) bits += 2; WriteData(&bits,1); } } void asCWriter::WriteTypeDeclaration(asCTypeInfo *type, int phase) { if( phase == 1 ) { // name WriteString(&type->name); // flags WriteData(&type->flags, 4); // size // TODO: Do we really need to store this? The reader should be able to // determine the correct size from the object type's flags if( (type->flags & asOBJ_SCRIPT_OBJECT) && type->size > 0 ) { // The size for script objects may vary from platform to platform so // only store 1 to diferentiate from interfaces that have size 0. WriteEncodedInt64(1); } else { // Enums, typedefs, and interfaces have fixed sizes independently // of platform so it is safe to serialize the size directly. WriteEncodedInt64(type->size); } // namespace WriteString(&type->nameSpace->name); // external shared flag if ((type->flags & asOBJ_SHARED)) { char c = ' '; if (module->externalTypes.IndexOf(type) >= 0) c = 'e'; WriteData(&c, 1); } } else if( phase == 2 ) { // external shared types doesn't need to save this if ((type->flags & asOBJ_SHARED) && module->externalTypes.IndexOf(type) >= 0) return; if(type->flags & asOBJ_ENUM ) { // enumValues[] asCEnumType *t = CastToEnumType(type); int size = (int)t->enumValues.GetLength(); WriteEncodedInt64(size); for( int n = 0; n < size; n++ ) { WriteString(&t->enumValues[n]->name); WriteData(&t->enumValues[n]->value, 4); } } else if(type->flags & asOBJ_TYPEDEF ) { asCTypedefType *td = CastToTypedefType(type); eTokenType t = td->aliasForType.GetTokenType(); WriteEncodedInt64(t); } else { asCObjectType *t = CastToObjectType(type); WriteTypeInfo(t->derivedFrom); // interfaces[] / interfaceVFTOffsets[] // TOOD: Is it really necessary to store the VFTOffsets? Can't the reader calculate those? int size = (asUINT)t->interfaces.GetLength(); WriteEncodedInt64(size); asUINT n; asASSERT( t->interfaces.GetLength() == t->interfaceVFTOffsets.GetLength() ); for( n = 0; n < t->interfaces.GetLength(); n++ ) { WriteTypeInfo(t->interfaces[n]); WriteEncodedInt64(t->interfaceVFTOffsets[n]); } // behaviours // TODO: Default behaviours should just be stored as a indicator // to avoid storing the actual function object if( !t->IsInterface() && type->flags != asOBJ_TYPEDEF && type->flags != asOBJ_ENUM ) { WriteFunction(engine->scriptFunctions[t->beh.destruct]); size = (int)t->beh.constructors.GetLength(); WriteEncodedInt64(size); for( n = 0; n < t->beh.constructors.GetLength(); n++ ) { WriteFunction(engine->scriptFunctions[t->beh.constructors[n]]); WriteFunction(engine->scriptFunctions[t->beh.factories[n]]); } } // methods[] // TODO: Avoid storing inherited methods in interfaces, as the reader // can add those directly from the base interface size = (int)t->methods.GetLength(); WriteEncodedInt64(size); for( n = 0; n < t->methods.GetLength(); n++ ) { WriteFunction(engine->scriptFunctions[t->methods[n]]); } // virtualFunctionTable[] // TODO: Is it really necessary to store this? Can't it be easily rebuilt by the reader size = (int)t->virtualFunctionTable.GetLength(); WriteEncodedInt64(size); for( n = 0; n < (asUINT)size; n++ ) { WriteFunction(t->virtualFunctionTable[n]); } } } else if( phase == 3 ) { // external shared types doesn't need to save this if ((type->flags & asOBJ_SHARED) && module->externalTypes.IndexOf(type) >= 0) return; // properties[] asCObjectType *t = CastToObjectType(type); // This is only done for object types asASSERT(t); asUINT size = (asUINT)t->properties.GetLength(); WriteEncodedInt64(size); for (asUINT n = 0; n < t->properties.GetLength(); n++) { WriteObjectProperty(t->properties[n]); } } } void asCWriter::WriteEncodedInt64(asINT64 i) { asBYTE signBit = ( i & asINT64(1)<<63 ) ? 0x80 : 0; if( signBit ) i = -i; asBYTE b; if( i < (1<<6) ) { b = (asBYTE)(signBit + i); WriteData(&b, 1); } else if( i < (1<<13) ) { b = asBYTE(0x40 + signBit + (i >> 8)); WriteData(&b, 1); b = asBYTE(i & 0xFF); WriteData(&b, 1); } else if( i < (1<<20) ) { b = asBYTE(0x60 + signBit + (i >> 16)); WriteData(&b, 1); b = asBYTE((i >> 8) & 0xFF); WriteData(&b, 1); b = asBYTE(i & 0xFF); WriteData(&b, 1); } else if( i < (1<<27) ) { b = asBYTE(0x70 + signBit + (i >> 24)); WriteData(&b, 1); b = asBYTE((i >> 16) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 8) & 0xFF); WriteData(&b, 1); b = asBYTE(i & 0xFF); WriteData(&b, 1); } else if( i < (asINT64(1)<<34) ) { b = asBYTE(0x78 + signBit + (i >> 32)); WriteData(&b, 1); b = asBYTE((i >> 24) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 16) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 8) & 0xFF); WriteData(&b, 1); b = asBYTE(i & 0xFF); WriteData(&b, 1); } else if( i < (asINT64(1)<<41) ) { b = asBYTE(0x7C + signBit + (i >> 40)); WriteData(&b, 1); b = asBYTE((i >> 32) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 24) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 16) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 8) & 0xFF); WriteData(&b, 1); b = asBYTE(i & 0xFF); WriteData(&b, 1); } else if( i < (asINT64(1)<<48) ) { b = asBYTE(0x7E + signBit + (i >> 48)); WriteData(&b, 1); b = asBYTE((i >> 40) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 32) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 24) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 16) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 8) & 0xFF); WriteData(&b, 1); b = asBYTE(i & 0xFF); WriteData(&b, 1); } else { b = asBYTE(0x7F + signBit); WriteData(&b, 1); b = asBYTE((i >> 56) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 48) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 40) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 32) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 24) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 16) & 0xFF); WriteData(&b, 1); b = asBYTE((i >> 8) & 0xFF); WriteData(&b, 1); b = asBYTE(i & 0xFF); WriteData(&b, 1); } } void asCWriter::WriteString(asCString* str) { // First check if the string hasn't been saved already asSMapNode *cursor = 0; if (stringToIdMap.MoveTo(&cursor, *str)) { // Save a reference to the existing string // The lowest bit is set to 1 to indicate a reference WriteEncodedInt64(cursor->value*2+1); return; } // Save a new string // The lowest bit is set to 0 to indicate a new string asUINT len = (asUINT)str->GetLength(); WriteEncodedInt64(len*2); if( len > 0 ) { stream->Write(str->AddressOf(), (asUINT)len); bytesWritten += len; savedStrings.PushLast(*str); stringToIdMap.Insert(*str, int(savedStrings.GetLength()) - 1); } } void asCWriter::WriteGlobalProperty(asCGlobalProperty* prop) { // TODO: We might be able to avoid storing the name and type of the global // properties twice if we merge this with the WriteUsedGlobalProperties. WriteString(&prop->name); WriteString(&prop->nameSpace->name); WriteDataType(&prop->type); // Store the initialization function WriteFunction(prop->GetInitFunc()); } void asCWriter::WriteObjectProperty(asCObjectProperty* prop) { WriteString(&prop->name); WriteDataType(&prop->type); int flags = 0; if( prop->isPrivate ) flags |= 1; if( prop->isProtected ) flags |= 2; if( prop->isInherited ) flags |= 4; WriteEncodedInt64(flags); } void asCWriter::WriteDataType(const asCDataType *dt) { // First check if the datatype has already been saved for( asUINT n = 0; n < savedDataTypes.GetLength(); n++ ) { if( *dt == savedDataTypes[n] ) { WriteEncodedInt64(n+1); return; } } // Indicate a new type with a null byte asUINT c = 0; WriteEncodedInt64(c); // Save the new datatype savedDataTypes.PushLast(*dt); int t = dt->GetTokenType(); WriteEncodedInt64(t); if( t == ttIdentifier ) WriteTypeInfo(dt->GetTypeInfo()); // Endianess safe bitmask char bits = 0; SAVE_TO_BIT(bits, dt->IsObjectHandle(), 0); SAVE_TO_BIT(bits, dt->IsHandleToConst(), 1); SAVE_TO_BIT(bits, dt->IsReference(), 2); SAVE_TO_BIT(bits, dt->IsReadOnly(), 3); WriteData(&bits, 1); } void asCWriter::WriteTypeInfo(asCTypeInfo* ti) { char ch; if( ti ) { // Check for template instances/specializations asCObjectType *ot = CastToObjectType(ti); if( ot && ot->templateSubTypes.GetLength() ) { // Check for list pattern type or template type if( ot->flags & asOBJ_LIST_PATTERN ) { ch = 'l'; // list WriteData(&ch, 1); WriteTypeInfo(ot->templateSubTypes[0].GetTypeInfo()); } else { ch = 'a'; // array WriteData(&ch, 1); WriteString(&ot->name); WriteString(&ot->nameSpace->name); WriteEncodedInt64(ot->templateSubTypes.GetLength()); for( asUINT n = 0; n < ot->templateSubTypes.GetLength(); n++ ) { if( !ot->templateSubTypes[n].IsPrimitive() || ot->templateSubTypes[n].IsEnumType() ) { ch = 's'; // sub type WriteData(&ch, 1); WriteDataType(&ot->templateSubTypes[n]); } else { ch = 't'; // token WriteData(&ch, 1); eTokenType t = ot->templateSubTypes[n].GetTokenType(); WriteEncodedInt64(t); } } } } else if( ti->flags & asOBJ_TEMPLATE_SUBTYPE ) { ch = 's'; // sub type WriteData(&ch, 1); WriteString(&ti->name); } else if( !ti->GetParentType() ) { ch = 'o'; // object WriteData(&ch, 1); WriteString(&ti->name); WriteString(&ti->nameSpace->name); } else { asASSERT(ti->flags & asOBJ_FUNCDEF); ch = 'c'; // child type WriteData(&ch, 1); WriteString(&ti->name); WriteTypeInfo(CastToFuncdefType(ti)->parentClass); } } else { ch = '\0'; WriteData(&ch, 1); } } void asCWriter::CalculateAdjustmentByPos(asCScriptFunction *func) { // Adjust the offset of all negative variables (parameters) so all pointers will have a size of 1 dword asUINT n; asCArray adjustments; asUINT offset = 0; if( func->objectType ) { adjustments.PushLast(offset); adjustments.PushLast(1-AS_PTR_SIZE); offset += AS_PTR_SIZE; } if( func->DoesReturnOnStack() ) { adjustments.PushLast(offset); adjustments.PushLast(1-AS_PTR_SIZE); offset += AS_PTR_SIZE; } for( n = 0; n < func->parameterTypes.GetLength(); n++ ) { if( !func->parameterTypes[n].IsPrimitive() || func->parameterTypes[n].IsReference() ) { adjustments.PushLast(offset); adjustments.PushLast(1-AS_PTR_SIZE); offset += AS_PTR_SIZE; } else { asASSERT( func->parameterTypes[n].IsPrimitive() ); offset += func->parameterTypes[n].GetSizeOnStackDWords(); } } // Build look-up table with the adjustments for each stack position adjustNegativeStackByPos.SetLength(offset); memset(adjustNegativeStackByPos.AddressOf(), 0, adjustNegativeStackByPos.GetLength()*sizeof(int)); for( n = 0; n < adjustments.GetLength(); n+=2 ) { int pos = adjustments[n]; int adjust = adjustments[n+1]; for( asUINT i = pos+1; i < adjustNegativeStackByPos.GetLength(); i++ ) adjustNegativeStackByPos[i] += adjust; } // Adjust the offset of all positive variables so that all object types and handles have a size of 1 dword // This is similar to how the adjustment is done in the asCReader::TranslateFunction, only the reverse adjustments.SetLength(0); for( n = 0; n < func->scriptData->objVariableTypes.GetLength(); n++ ) { // Determine the size the variable currently occupies on the stack int size = AS_PTR_SIZE; // objVariableTypes is null if the variable type is a null pointer if( func->scriptData->objVariableTypes[n] && (func->scriptData->objVariableTypes[n]->GetFlags() & asOBJ_VALUE) && n >= func->scriptData->objVariablesOnHeap ) { size = func->scriptData->objVariableTypes[n]->GetSize(); if( size < 4 ) size = 1; else size /= 4; } // If larger than 1 dword, adjust the offsets accordingly if (size > 1) { // How much needs to be adjusted? adjustments.PushLast(func->scriptData->objVariablePos[n]); adjustments.PushLast(-(size - 1)); } } // Build look-up table with the adjustments for each stack position adjustStackByPos.SetLength(func->scriptData->stackNeeded); memset(adjustStackByPos.AddressOf(), 0, adjustStackByPos.GetLength()*sizeof(int)); for( n = 0; n < adjustments.GetLength(); n+=2 ) { int pos = adjustments[n]; int adjust = adjustments[n+1]; for( asUINT i = pos; i < adjustStackByPos.GetLength(); i++ ) adjustStackByPos[i] += adjust; } // Compute the sequence number of each bytecode instruction in order to update the jump offsets asUINT length = func->scriptData->byteCode.GetLength(); asDWORD *bc = func->scriptData->byteCode.AddressOf(); bytecodeNbrByPos.SetLength(length); asUINT num; for( offset = 0, num = 0; offset < length; ) { bytecodeNbrByPos[offset] = num; offset += asBCTypeSize[asBCInfo[*(asBYTE*)(bc+offset)].type]; num++; } // The last instruction is always a BC_RET. This make it possible to query // the number of instructions by checking the last entry in bytecodeNbrByPos asASSERT(*(asBYTE*)(bc+length-1) == asBC_RET); } int asCWriter::AdjustStackPosition(int pos) { if( pos >= (int)adjustStackByPos.GetLength() ) { // This happens for example if the function only have temporary variables // The adjustByPos can also be empty if the function doesn't have any variables at all, but receive a handle by parameter if( adjustStackByPos.GetLength() > 0 ) pos += adjustStackByPos[adjustStackByPos.GetLength()-1]; } else if( pos >= 0 ) pos += adjustStackByPos[pos]; else { asASSERT( -pos < (int)adjustNegativeStackByPos.GetLength() ); pos -= (short)adjustNegativeStackByPos[-pos]; } return pos; } int asCWriter::AdjustGetOffset(int offset, asCScriptFunction *func, asDWORD programPos) { // TODO: optimize: multiple instructions for the same function doesn't need to look for the function everytime // the function can remember where it found the function and check if the programPos is still valid // Get offset 0 doesn't need adjustment if( offset == 0 ) return 0; bool bcAlloc = false; // Find out which function that will be called asCScriptFunction *calledFunc = 0; int stackDelta = 0; for( asUINT n = programPos; n < func->scriptData->byteCode.GetLength(); ) { asBYTE bc = *(asBYTE*)&func->scriptData->byteCode[n]; if( bc == asBC_CALL || bc == asBC_CALLSYS || bc == asBC_Thiscall1 || bc == asBC_CALLINTF ) { // Find the function from the function id in bytecode int funcId = asBC_INTARG(&func->scriptData->byteCode[n]); calledFunc = engine->scriptFunctions[funcId]; break; } else if( bc == asBC_ALLOC ) { // The alloc instruction doesn't take the object pointer on the stack, // as the memory will be allocated by the instruction itself bcAlloc = true; // Find the function from the function id in the bytecode int funcId = asBC_INTARG(&func->scriptData->byteCode[n+AS_PTR_SIZE]); calledFunc = engine->scriptFunctions[funcId]; break; } else if( bc == asBC_CALLBND ) { // Find the function from the engine's bind array int funcId = asBC_INTARG(&func->scriptData->byteCode[n]); calledFunc = engine->importedFunctions[funcId & ~FUNC_IMPORTED]->importedFunctionSignature; break; } else if( bc == asBC_CallPtr ) { int var = asBC_SWORDARG0(&func->scriptData->byteCode[n]); asUINT v; // Find the funcdef from the local variable for( v = 0; v < func->scriptData->objVariablePos.GetLength(); v++ ) { if( func->scriptData->objVariablePos[v] == var ) { calledFunc = CastToFuncdefType(func->scriptData->objVariableTypes[v])->funcdef; break; } } if( !calledFunc ) { // Look in parameters int paramPos = 0; if( func->objectType ) paramPos -= AS_PTR_SIZE; if( func->DoesReturnOnStack() ) paramPos -= AS_PTR_SIZE; for( v = 0; v < func->parameterTypes.GetLength(); v++ ) { if( var == paramPos ) { calledFunc = CastToFuncdefType(func->parameterTypes[v].GetTypeInfo())->funcdef; break; } paramPos -= func->parameterTypes[v].GetSizeOnStackDWords(); } } break; } else if( bc == asBC_REFCPY || bc == asBC_COPY ) { // In this case we know there is only 1 pointer on the stack above asASSERT( offset == AS_PTR_SIZE ); return offset + (1 - AS_PTR_SIZE); } // Keep track of the stack size between the // instruction that needs to be adjusted and the call stackDelta += asBCInfo[bc].stackInc; n += asBCTypeSize[asBCInfo[bc].type]; } asASSERT( calledFunc ); // Count the number of pointers pushed on the stack above the // current offset, and then adjust the offset accordingly asUINT numPtrs = 0; int currOffset = -stackDelta; if( offset > currOffset && calledFunc->GetObjectType() && !bcAlloc ) { currOffset += AS_PTR_SIZE; if( currOffset > 0 ) numPtrs++; } if( offset > currOffset && calledFunc->DoesReturnOnStack() ) { currOffset += AS_PTR_SIZE; if( currOffset > 0 ) numPtrs++; } for( asUINT p = 0; p < calledFunc->parameterTypes.GetLength(); p++ ) { if( offset <= currOffset ) break; if( !calledFunc->parameterTypes[p].IsPrimitive() || calledFunc->parameterTypes[p].IsReference() ) { // objects and references are passed by pointer currOffset += AS_PTR_SIZE; if( currOffset > 0 ) numPtrs++; // The variable arg ? has an additional 32bit int with the typeid if( calledFunc->parameterTypes[p].IsAnyType() ) currOffset += 1; } else { // built-in primitives or enums are passed by value asASSERT( calledFunc->parameterTypes[p].IsPrimitive() ); currOffset += calledFunc->parameterTypes[p].GetSizeOnStackDWords(); } } // The get offset must match one of the parameter offsets asASSERT( offset == currOffset ); return offset + numPtrs * (1 - AS_PTR_SIZE); } void asCWriter::WriteByteCode(asCScriptFunction *func) { asDWORD *bc = func->scriptData->byteCode.AddressOf(); size_t length = func->scriptData->byteCode.GetLength(); // The length cannot be stored, because it is platform dependent, // instead we store the number of instructions asUINT count = bytecodeNbrByPos[bytecodeNbrByPos.GetLength()-1] + 1; WriteEncodedInt64(count); asDWORD *startBC = bc; while( length ) { asDWORD tmpBC[4]; // The biggest instructions take up 4 DWORDs asDWORD c = *(asBYTE*)bc; // Copy the instruction to a temp buffer so we can work on it before saving memcpy(tmpBC, bc, asBCTypeSize[asBCInfo[c].type]*sizeof(asDWORD)); if( c == asBC_ALLOC ) // PTR_DW_ARG { // Translate the object type asCObjectType *ot = *(asCObjectType**)(tmpBC+1); *(asPWORD*)(tmpBC+1) = FindTypeInfoIdx(ot); // Translate the constructor func id, unless it is 0 if( *(int*)&tmpBC[1+AS_PTR_SIZE] != 0 ) { // Increment 1 to the translated function id, as 0 will be reserved for no function *(int*)&tmpBC[1+AS_PTR_SIZE] = 1+FindFunctionIndex(engine->scriptFunctions[*(int*)&tmpBC[1+AS_PTR_SIZE]]); } } else if( c == asBC_REFCPY || // PTR_ARG c == asBC_RefCpyV || // wW_PTR_ARG c == asBC_OBJTYPE ) // PTR_ARG { // Translate object type pointers into indices *(asPWORD*)(tmpBC+1) = FindTypeInfoIdx(*(asCObjectType**)(tmpBC+1)); } else if( c == asBC_JitEntry ) // PTR_ARG { // We don't store the JIT argument *(asPWORD*)(tmpBC+1) = 0; } else if( c == asBC_TYPEID || // DW_ARG c == asBC_Cast ) // DW_ARG { // Translate type ids into indices *(int*)(tmpBC+1) = FindTypeIdIdx(*(int*)(tmpBC+1)); } else if( c == asBC_ADDSi || // W_DW_ARG c == asBC_LoadThisR ) // W_DW_ARG { // Translate property offsets into indices *(((short*)tmpBC)+1) = (short)FindObjectPropIndex(*(((short*)tmpBC)+1), *(int*)(tmpBC+1), bc); // Translate type ids into indices *(int*)(tmpBC+1) = FindTypeIdIdx(*(int*)(tmpBC+1)); } else if( c == asBC_LoadRObjR || // rW_W_DW_ARG c == asBC_LoadVObjR ) // rW_W_DW_ARG { asCObjectType *ot = engine->GetObjectTypeFromTypeId(*(int*)(tmpBC+2)); if( ot->flags & asOBJ_LIST_PATTERN ) { // List patterns have a different way of translating the offsets SListAdjuster *listAdj = listAdjusters[listAdjusters.GetLength()-1]; *(((short*)tmpBC)+2) = (short)listAdj->AdjustOffset(*(((short*)tmpBC)+2), ot); } else { // Translate property offsets into indices *(((short*)tmpBC)+2) = (short)FindObjectPropIndex(*(((short*)tmpBC)+2), *(int*)(tmpBC+2), bc); } // Translate type ids into indices *(int*)(tmpBC+2) = FindTypeIdIdx(*(int*)(tmpBC+2)); } else if( c == asBC_COPY ) // W_DW_ARG { // Translate type ids into indices *(int*)(tmpBC+1) = FindTypeIdIdx(*(int*)(tmpBC+1)); // Update the WORDARG0 to 0, as this will be recalculated on the target platform asBC_WORDARG0(tmpBC) = 0; } else if( c == asBC_RET ) // W_ARG { // Save with arg 0, as this will be recalculated on the target platform asBC_WORDARG0(tmpBC) = 0; } else if( c == asBC_CALL || // DW_ARG c == asBC_CALLINTF || // DW_ARG c == asBC_CALLSYS || // DW_ARG c == asBC_Thiscall1 ) // DW_ARG { // Translate the function id *(int*)(tmpBC+1) = FindFunctionIndex(engine->scriptFunctions[*(int*)(tmpBC+1)]); } else if( c == asBC_FuncPtr ) // PTR_ARG { // Translate the function pointer *(asPWORD*)(tmpBC+1) = FindFunctionIndex(*(asCScriptFunction**)(tmpBC+1)); } else if( c == asBC_CALLBND ) // DW_ARG { // Translate the function id int funcId = tmpBC[1]; for( asUINT n = 0; n < module->bindInformations.GetLength(); n++ ) if( module->bindInformations[n]->importedFunctionSignature->id == funcId ) { funcId = n; break; } tmpBC[1] = funcId; } else if( c == asBC_PGA || // PTR_ARG c == asBC_PshGPtr || // PTR_ARG c == asBC_LDG || // PTR_ARG c == asBC_PshG4 || // PTR_ARG c == asBC_LdGRdR4 || // wW_PTR_ARG c == asBC_CpyGtoV4 || // wW_PTR_ARG c == asBC_CpyVtoG4 || // rW_PTR_ARG c == asBC_SetG4 ) // PTR_DW_ARG { // Check if the address is a global property or a string constant void *ptr = *(void**)(tmpBC + 1); if (engine->varAddressMap.MoveTo(0, ptr)) { // Translate global variable pointers into indices // Flag the first bit to signal global property *(asPWORD*)(tmpBC + 1) = (FindGlobalPropPtrIndex(*(void**)(tmpBC + 1)) << 1) + 1; } else { // Only PGA and PshGPtr can hold string constants asASSERT(c == asBC_PGA || c == asBC_PshGPtr); // Translate string constants into indices // Leave the first bit clear to signal string constant *(asPWORD*)(tmpBC + 1) = FindStringConstantIndex(*(void**)(tmpBC + 1)) << 1; } } else if( c == asBC_JMP || // DW_ARG c == asBC_JZ || c == asBC_JNZ || c == asBC_JLowZ || c == asBC_JLowNZ || c == asBC_JS || c == asBC_JNS || c == asBC_JP || c == asBC_JNP ) // The JMPP instruction doesn't need modification { // Get the DWORD offset from arg int offset = *(int*)(tmpBC+1); // Determine instruction number for next instruction and destination int bcSeqNum = bytecodeNbrByPos[asUINT(bc - startBC)] + 1; asDWORD *targetBC = bc + 2 + offset; int targetBcSeqNum = bytecodeNbrByPos[asUINT(targetBC - startBC)]; // Set the offset in number of instructions *(int*)(tmpBC+1) = targetBcSeqNum - bcSeqNum; } else if( c == asBC_GETOBJ || // W_ARG c == asBC_GETOBJREF || c == asBC_GETREF || c == asBC_ChkNullS ) { // Adjust the offset according to the function call that comes after asBC_WORDARG0(tmpBC) = (asWORD)AdjustGetOffset(asBC_WORDARG0(tmpBC), func, asDWORD(bc - startBC)); } else if( c == asBC_AllocMem ) { // It's not necessary to store the size of the list buffer, as it will be recalculated in the reader asBC_DWORDARG(tmpBC) = 0; // Determine the type of the list pattern from the variable short var = asBC_WORDARG0(tmpBC); asCObjectType *ot = CastToObjectType(func->GetTypeInfoOfLocalVar(var)); // Create this helper object to adjust the offset of the elements accessed in the buffer listAdjusters.PushLast(asNEW(SListAdjuster)(ot)); } else if( c == asBC_FREE ) // wW_PTR_ARG { // Translate object type pointers into indices asCObjectType *ot = *(asCObjectType**)(tmpBC+1); *(asPWORD*)(tmpBC+1) = FindTypeInfoIdx(ot); // Pop and destroy the list adjuster helper that was created with asBC_AllocMem if( ot && (ot->flags & asOBJ_LIST_PATTERN) ) { SListAdjuster *list = listAdjusters.PopLast(); asDELETE(list, SListAdjuster); } } else if( c == asBC_SetListSize ) { // Adjust the offset in the initialization list SListAdjuster *listAdj = listAdjusters[listAdjusters.GetLength()-1]; tmpBC[1] = listAdj->AdjustOffset(tmpBC[1], listAdj->patternType); // Tell the adjuster how many repeated values there are listAdj->SetRepeatCount(tmpBC[2]); } else if( c == asBC_PshListElmnt ) // W_DW_ARG { // Adjust the offset in the initialization list SListAdjuster *listAdj = listAdjusters[listAdjusters.GetLength()-1]; tmpBC[1] = listAdj->AdjustOffset(tmpBC[1], listAdj->patternType); } else if( c == asBC_SetListType ) { // Adjust the offset in the initialization list SListAdjuster *listAdj = listAdjusters[listAdjusters.GetLength()-1]; tmpBC[1] = listAdj->AdjustOffset(tmpBC[1], listAdj->patternType); // Inform the adjuster of the type id of the next element listAdj->SetNextType(tmpBC[2]); // Translate the type id tmpBC[2] = FindTypeIdIdx(tmpBC[2]); } // Adjust the variable offsets switch( asBCInfo[c].type ) { case asBCTYPE_wW_ARG: case asBCTYPE_rW_DW_ARG: case asBCTYPE_wW_QW_ARG: case asBCTYPE_rW_ARG: case asBCTYPE_wW_DW_ARG: case asBCTYPE_wW_W_ARG: case asBCTYPE_rW_QW_ARG: case asBCTYPE_rW_W_DW_ARG: case asBCTYPE_rW_DW_DW_ARG: { asBC_SWORDARG0(tmpBC) = (short)AdjustStackPosition(asBC_SWORDARG0(tmpBC)); } break; case asBCTYPE_wW_rW_ARG: case asBCTYPE_wW_rW_DW_ARG: case asBCTYPE_rW_rW_ARG: { asBC_SWORDARG0(tmpBC) = (short)AdjustStackPosition(asBC_SWORDARG0(tmpBC)); asBC_SWORDARG1(tmpBC) = (short)AdjustStackPosition(asBC_SWORDARG1(tmpBC)); } break; case asBCTYPE_wW_rW_rW_ARG: { asBC_SWORDARG0(tmpBC) = (short)AdjustStackPosition(asBC_SWORDARG0(tmpBC)); asBC_SWORDARG1(tmpBC) = (short)AdjustStackPosition(asBC_SWORDARG1(tmpBC)); asBC_SWORDARG2(tmpBC) = (short)AdjustStackPosition(asBC_SWORDARG2(tmpBC)); } break; default: // The other types don't treat variables so won't be modified break; } // TODO: bytecode: Must make sure that floats and doubles are always stored the same way regardless of platform. // Some platforms may not use the IEEE 754 standard, in which case it is necessary to encode the values // Now store the instruction in the smallest possible way switch( asBCInfo[c].type ) { case asBCTYPE_NO_ARG: { // Just write 1 byte asBYTE b = (asBYTE)c; WriteData(&b, 1); } break; case asBCTYPE_W_ARG: case asBCTYPE_wW_ARG: case asBCTYPE_rW_ARG: { // Write the instruction code asBYTE b = (asBYTE)c; WriteData(&b, 1); // Write the argument short w = *(((short*)tmpBC)+1); WriteEncodedInt64(w); } break; case asBCTYPE_rW_DW_ARG: case asBCTYPE_wW_DW_ARG: case asBCTYPE_W_DW_ARG: { // Write the instruction code asBYTE b = (asBYTE)c; WriteData(&b, 1); // Write the word argument short w = *(((short*)tmpBC)+1); WriteEncodedInt64(w); // Write the dword argument WriteEncodedInt64((int)tmpBC[1]); } break; case asBCTYPE_DW_ARG: { // Write the instruction code asBYTE b = (asBYTE)c; WriteData(&b, 1); // Write the argument WriteEncodedInt64((int)tmpBC[1]); } break; case asBCTYPE_DW_DW_ARG: { // Write the instruction code asBYTE b = (asBYTE)c; WriteData(&b, 1); // Write the dword argument WriteEncodedInt64((int)tmpBC[1]); // Write the dword argument WriteEncodedInt64((int)tmpBC[2]); } break; case asBCTYPE_wW_rW_rW_ARG: { // Write the instruction code asBYTE b = (asBYTE)c; WriteData(&b, 1); // Write the first argument short w = *(((short*)tmpBC)+1); WriteEncodedInt64(w); // Write the second argument w = *(((short*)tmpBC)+2); WriteEncodedInt64(w); // Write the third argument w = *(((short*)tmpBC)+3); WriteEncodedInt64(w); } break; case asBCTYPE_wW_rW_ARG: case asBCTYPE_rW_rW_ARG: case asBCTYPE_wW_W_ARG: { // Write the instruction code asBYTE b = (asBYTE)c; WriteData(&b, 1); // Write the first argument short w = *(((short*)tmpBC)+1); WriteEncodedInt64(w); // Write the second argument w = *(((short*)tmpBC)+2); WriteEncodedInt64(w); } break; case asBCTYPE_wW_rW_DW_ARG: case asBCTYPE_rW_W_DW_ARG: { // Write the instruction code asBYTE b = (asBYTE)c; WriteData(&b, 1); // Write the first argument short w = *(((short*)tmpBC)+1); WriteEncodedInt64(w); // Write the second argument w = *(((short*)tmpBC)+2); WriteEncodedInt64(w); // Write the third argument int dw = tmpBC[2]; WriteEncodedInt64(dw); } break; case asBCTYPE_QW_ARG: { // Write the instruction code asBYTE b = (asBYTE)c; WriteData(&b, 1); // Write the argument asQWORD qw = *(asQWORD*)&tmpBC[1]; WriteEncodedInt64(qw); } break; case asBCTYPE_QW_DW_ARG: { // Write the instruction code asBYTE b = (asBYTE)c; WriteData(&b, 1); // Write the argument asQWORD qw = *(asQWORD*)&tmpBC[1]; WriteEncodedInt64(qw); // Write the second argument int dw = tmpBC[3]; WriteEncodedInt64(dw); } break; case asBCTYPE_rW_QW_ARG: case asBCTYPE_wW_QW_ARG: { // Write the instruction code asBYTE b = (asBYTE)c; WriteData(&b, 1); // Write the first argument short w = *(((short*)tmpBC)+1); WriteEncodedInt64(w); // Write the argument asQWORD qw = *(asQWORD*)&tmpBC[1]; WriteEncodedInt64(qw); } break; case asBCTYPE_rW_DW_DW_ARG: { // Write the instruction code asBYTE b = (asBYTE)c; WriteData(&b, 1); // Write the short argument short w = *(((short*)tmpBC)+1); WriteEncodedInt64(w); // Write the dword argument WriteEncodedInt64((int)tmpBC[1]); // Write the dword argument WriteEncodedInt64((int)tmpBC[2]); } break; default: { // This should never happen asASSERT(false); // Store the bc as is for( int n = 0; n < asBCTypeSize[asBCInfo[c].type]; n++ ) WriteData(&tmpBC[n], 4); } } // Move to the next instruction bc += asBCTypeSize[asBCInfo[c].type]; length -= asBCTypeSize[asBCInfo[c].type]; } } asCWriter::SListAdjuster::SListAdjuster(asCObjectType *ot) : patternType(ot), repeatCount(0), entries(0), lastOffset(-1), nextOffset(0), nextTypeId(-1) { asASSERT( ot && (ot->flags & asOBJ_LIST_PATTERN) ); // Find the first expected value in the list asSListPatternNode *node = ot->engine->scriptFunctions[patternType->templateSubTypes[0].GetBehaviour()->listFactory]->listPattern; asASSERT( node && node->type == asLPT_START ); patternNode = node->next; } int asCWriter::SListAdjuster::AdjustOffset(int offset, asCObjectType *listPatternType) { // TODO: cleanup: The listPatternType parameter is not needed asASSERT( patternType == listPatternType ); UNUSED_VAR(listPatternType); asASSERT( offset >= lastOffset ); // If it is the same offset being accessed again, just return the same adjusted value if( offset == lastOffset ) return entries-1; asASSERT( offset >= nextOffset ); // Update last offset for next call lastOffset = offset; // What is being expected at this position? if( patternNode->type == asLPT_REPEAT || patternNode->type == asLPT_REPEAT_SAME ) { // Don't move the patternNode yet because the caller must make a call to SetRepeatCount too nextOffset = offset + 4; return entries++; } else if( patternNode->type == asLPT_TYPE ) { const asCDataType &dt = reinterpret_cast(patternNode)->dataType; if( dt.GetTokenType() == ttQuestion ) { // The bytecode need to inform the type that will // come next and then adjust that position too before // we can move to the next node if( nextTypeId != -1 ) { nextOffset = offset + 4; if( repeatCount > 0 ) repeatCount--; // Only move the patternNode if we're not expecting any more repeated entries if( repeatCount == 0 ) patternNode = patternNode->next; nextTypeId = -1; } } else { if( repeatCount > 0 ) { // Was any value skipped? asUINT size; if( dt.IsObjectHandle() || (dt.GetTypeInfo() && (dt.GetTypeInfo()->flags & asOBJ_REF)) ) size = AS_PTR_SIZE*4; else size = dt.GetSizeInMemoryBytes(); int count = 0; while( nextOffset <= offset ) { count++; nextOffset += size; // Align the offset on 4 byte boundaries if( size >= 4 && (nextOffset & 0x3) ) nextOffset += 4 - (nextOffset & 0x3); } if( --count > 0 ) { // Skip these values repeatCount -= count; entries += count; } nextOffset = offset + size; repeatCount--; } // Only move the patternNode if we're not expecting any more repeated entries if( repeatCount == 0 ) patternNode = patternNode->next; } return entries++; } else if( patternNode->type == asLPT_START ) { if( repeatCount > 0 ) repeatCount--; SInfo info = {repeatCount, patternNode}; stack.PushLast(info); repeatCount = 0; patternNode = patternNode->next; lastOffset--; return AdjustOffset(offset, listPatternType); } else if( patternNode->type == asLPT_END ) { SInfo info = stack.PopLast(); repeatCount = info.repeatCount; if( repeatCount ) patternNode = info.startNode; else patternNode = patternNode->next; lastOffset--; return AdjustOffset(offset, listPatternType); } else { // Something is wrong with the pattern list declaration asASSERT( false ); } return 0; } void asCWriter::SListAdjuster::SetRepeatCount(asUINT rc) { // Make sure the list is expecting a repeat at this location asASSERT( patternNode->type == asLPT_REPEAT || patternNode->type == asLPT_REPEAT_SAME ); // Now move to the next patternNode patternNode = patternNode->next; repeatCount = rc; } void asCWriter::SListAdjuster::SetNextType(int typeId) { // Make sure the list is expecting a type at this location asASSERT( patternNode->type == asLPT_TYPE && reinterpret_cast(patternNode)->dataType.GetTokenType() == ttQuestion ); // Inform the type id for the next adjustment nextTypeId = typeId; } void asCWriter::WriteUsedTypeIds() { TimeIt("asCWriter::WriteUsedTypeIds"); asUINT count = (asUINT)usedTypeIds.GetLength(); WriteEncodedInt64(count); for( asUINT n = 0; n < count; n++ ) { asCDataType dt = engine->GetDataTypeFromTypeId(usedTypeIds[n]); WriteDataType(&dt); } } int asCWriter::FindGlobalPropPtrIndex(void *ptr) { int i = usedGlobalProperties.IndexOf(ptr); if( i >= 0 ) return i; usedGlobalProperties.PushLast(ptr); return (int)usedGlobalProperties.GetLength()-1; } void asCWriter::WriteUsedGlobalProps() { TimeIt("asCWriter::WriteUsedGlobalProps"); int c = (int)usedGlobalProperties.GetLength(); WriteEncodedInt64(c); for( int n = 0; n < c; n++ ) { asPWORD *p = (asPWORD*)usedGlobalProperties[n]; // Find the property descriptor from the address asCGlobalProperty *prop = 0; asSMapNode *cursor; if( engine->varAddressMap.MoveTo(&cursor, p) ) { prop = engine->varAddressMap.GetValue(cursor); } asASSERT(prop); // Store the name and type of the property so we can find it again on loading WriteString(&prop->name); WriteString(&prop->nameSpace->name); WriteDataType(&prop->type); // Also store whether the property is a module property or a registered property char moduleProp = 0; if( prop->realAddress == 0 ) moduleProp = 1; WriteData(&moduleProp, 1); } } void asCWriter::WriteUsedObjectProps() { TimeIt("asCWriter::WriteUsedObjectProps"); int c = (int)usedObjectProperties.GetLength(); WriteEncodedInt64(c); for( asUINT n = 0; n < usedObjectProperties.GetLength(); n++ ) { WriteTypeInfo(usedObjectProperties[n].objType); WriteString(&usedObjectProperties[n].prop->name); } } int asCWriter::FindObjectPropIndex(short offset, int typeId, asDWORD *bc) { // If the last property was a composite property, then just return 0, because it won't be translated static bool lastWasComposite = false; if (lastWasComposite) { lastWasComposite = false; return 0; } asCObjectType *objType = engine->GetObjectTypeFromTypeId(typeId); asCObjectProperty *objProp = 0; // Look for composite properties first for (asUINT n = 0; objProp == 0 && n < objType->properties.GetLength(); n++) { // TODO: Composite: Perhaps it would be better to add metadata to the bytecode instruction to give the exact property. // That would also allow me to remove the typeId from the bytecode instruction itself // Or perhaps a new bytecode instruction all together for accessing composite properties // One that would do both offsets and indirection in a single go. // TODO: Composite: Need to be able to handle instructions replaced in bytecode optimizations too if (objType->properties[n]->compositeOffset == offset) { // This is a potential composite property. Need to check the following instructions to be sure objProp = objType->properties[n]; asDWORD *bcTemp = bc; bcTemp += asBCTypeSize[asBCInfo[*(asBYTE*)bcTemp].type]; if (objProp->isCompositeIndirect) { // The next instruction would be a asBC_RDSPtr if ((*(asBYTE*)bcTemp) != asBC_RDSPtr) { objProp = 0; continue; } bcTemp += asBCTypeSize[asBCInfo[*(asBYTE*)bcTemp].type]; } // The next instruction would be asBC_ADDSi if ((*(asBYTE*)bcTemp) != asBC_ADDSi) { objProp = 0; continue; } // Make sure the offset is the expected one if (*(((short*)bcTemp) + 1) != objProp->byteOffset) { objProp = 0; continue; } } } // If none of the composite properties matched, then look for ordinary property for (asUINT n = 0; objProp == 0 && n < objType->properties.GetLength(); n++) { if (objType->properties[n]->byteOffset == offset && !(objType->properties[n]->compositeOffset || objType->properties[n]->isCompositeIndirect)) objProp = objType->properties[n]; } asASSERT(objProp); // Remember if this is a composite property as the next call will then be for the same property if (objProp->compositeOffset || objProp->isCompositeIndirect) lastWasComposite = true; // Now check if the same property has already been accessed for( asUINT n = 0; n < usedObjectProperties.GetLength(); n++ ) { if( usedObjectProperties[n].objType == objType && usedObjectProperties[n].prop == objProp ) return n; } // Insert the new property SObjProp prop = {objType, objProp}; usedObjectProperties.PushLast(prop); return (int)usedObjectProperties.GetLength() - 1; } int asCWriter::FindFunctionIndex(asCScriptFunction *func) { for( asUINT n = 0; n < usedFunctions.GetLength(); n++ ) { if( usedFunctions[n] == func ) return n; } usedFunctions.PushLast(func); return (int)usedFunctions.GetLength() - 1; } int asCWriter::FindTypeIdIdx(int typeId) { asUINT n; for( n = 0; n < usedTypeIds.GetLength(); n++ ) { if( usedTypeIds[n] == typeId ) return n; } usedTypeIds.PushLast(typeId); return (int)usedTypeIds.GetLength() - 1; } int asCWriter::FindTypeInfoIdx(asCTypeInfo *obj) { asUINT n; for( n = 0; n < usedTypes.GetLength(); n++ ) { if( usedTypes[n] == obj ) return n; } usedTypes.PushLast(obj); return (int)usedTypes.GetLength() - 1; } #endif // AS_NO_COMPILER END_AS_NAMESPACE