uniform sampler2D ntex; uniform sampler2D dtex; //uniform sampler2D cloudtex; uniform vec3 direction; uniform vec3 col; uniform float sunangle = .54; //uniform int hasclouds; //uniform vec2 wind; out vec4 Diff; out vec4 Spec; vec3 DecodeNormal(vec2 n); vec3 getSpecular(vec3 normal, vec3 eyedir, vec3 lightdir, vec3 color, float roughness); vec4 getPosFromUVDepth(vec3 uvDepth, mat4 InverseProjectionMatrix); vec3 getMostRepresentativePoint(vec3 direction, vec3 R, float angularRadius) { vec3 D = direction; float d = cos(angularRadius); float r = sin(angularRadius); float DdotR = dot(D, R); vec3 S = R - DdotR * D; return (DdotR < d) ? normalize(d * D + normalize (S) * r) : R; } void main() { vec2 uv = gl_FragCoord.xy / screen; float z = texture(dtex, uv).x; vec4 xpos = getPosFromUVDepth(vec3(uv, z), InverseProjectionMatrix); if (z < 0.03) { // Skyboxes are fully lit Diff = vec4(1.0); Spec = vec4(1.0); return; } vec3 norm = normalize(DecodeNormal(2. * texture(ntex, uv).xy - 1.)); float roughness = texture(ntex, uv).z; vec3 eyedir = -normalize(xpos.xyz); // Normalized on the cpu vec3 L = direction; float NdotL = max(0., dot(norm, L)); float angle = 3.14 * sunangle / 180.; vec3 R = reflect(-eyedir, norm); vec3 Lightdir = getMostRepresentativePoint(direction, R, angle); vec3 Specular = getSpecular(norm, eyedir, Lightdir, col, roughness) * NdotL; vec3 outcol = NdotL * col; /* if (hasclouds == 1) { vec2 cloudcoord = (xpos.xz * 0.00833333) + wind; float cloud = texture(cloudtex, cloudcoord).x; //float cloud = step(0.5, cloudcoord.x) * step(0.5, cloudcoord.y); outcol *= cloud; }*/ Diff = vec4(NdotL * col, 1.); Spec = vec4(Specular, 1.); }