uniform sampler2D ntex; uniform sampler2D dtex; uniform sampler2D albedo; #ifdef GL_ES layout (location = 0) out vec4 Diff; layout (location = 1) out vec4 Spec; #else out vec4 Diff; out vec4 Spec; #endif #stk_include "utils/decodeNormal.frag" #stk_include "utils/getPosFromUVDepth.frag" #stk_include "utils/DiffuseIBL.frag" #stk_include "utils/SpecularIBL.frag" float makeLinear(float f, float n, float z) { return (2.0f * n) / (f + n - z * (f - n)); } vec3 CalcViewPositionFromDepth(in vec2 TexCoord) { // Combine UV & depth into XY & Z (NDC) float z = makeLinear(1000.0, 1.0, textureLod(dtex, TexCoord, 0.).x); vec3 rawPosition = vec3(TexCoord, z); // Convert from (0, 1) range to (-1, 1) vec4 ScreenSpacePosition = vec4( rawPosition * 2.0 - 1.0, 1.0); // Undo Perspective transformation to bring into view space vec4 ViewPosition = u_inverse_projection_matrix * ScreenSpacePosition; // Perform perspective divide and return return ViewPosition.xyz / ViewPosition.w; } // Fade out edges of screen buffer tex // 1 means full render tex, 0 means full IBL tex float GetEdgeFade(vec2 coords) { float gradL = smoothstep(0.0, 0.4, coords.x); float gradR = 1.0 - smoothstep(0.6, 1.0, coords.x); float gradT = smoothstep(0.0, 0.4, coords.y); float gradB = 1.0 - smoothstep(0.6, 1.0, coords.y); return min(min(gradL, gradR), min(gradT, gradB)); } vec2 RayCast(vec3 dir, inout vec3 hitCoord, out float dDepth) { dir *= 0.25f; for(int i = 0; i < 8; ++i) { hitCoord += dir; vec4 projectedCoord = u_projection_matrix * vec4(hitCoord, 1.0); projectedCoord.xy /= projectedCoord.w; projectedCoord.xy = projectedCoord.xy * 0.5 + 0.5; float depth = CalcViewPositionFromDepth(projectedCoord.xy).z; dDepth = hitCoord.z - depth; if (dDepth < 0.0) { if (projectedCoord.x > 0.0 && projectedCoord.x < 1.0 && projectedCoord.y > 0.0 && projectedCoord.y < 1.0) { return projectedCoord.xy; } else { return vec2(0.f); } } } return vec2(0.f); } // Main =================================================================== void main(void) { vec2 uv = gl_FragCoord.xy / u_screen; vec3 normal = normalize(DecodeNormal(2. * texture(ntex, uv).xy - 1.)); Diff = vec4(0.25 * DiffuseIBL(normal), 1.); float z = texture(dtex, uv).x; vec4 xpos = getPosFromUVDepth(vec3(uv, z), u_inverse_projection_matrix); vec3 eyedir = -normalize(xpos.xyz); // Extract roughness float specval = texture(ntex, uv).z; #ifdef GL_ES Spec = vec4(.25 * SpecularIBL(normal, eyedir, specval), 1.); #else // :::::::: Compute Space Screen Reflection :::::::::::::::::::::::::::::::::::: // Output color vec3 outColor; // Fallback (if the ray can't find an intersection we display the sky) vec3 fallback = .25 * SpecularIBL(normal, eyedir, specval); // Only calculate reflections if the reflectivity value is high enough, // otherwise just use specular IBL if (specval > 0.5) { vec3 View_Pos = CalcViewPositionFromDepth(uv); // Reflection vector vec3 reflected = normalize(reflect(eyedir, normal)); // Ray cast vec3 hitPos = View_Pos.xyz; float dDepth; float minRayStep = 50.0f; vec2 coords = RayCast(reflected * max(minRayStep, -View_Pos.z), hitPos, dDepth); if (coords.x == 0.0 && coords.y == 0.0) { outColor = fallback; } else { // FIXME We need to generate mipmap to take into account the gloss map outColor = textureLod(albedo, coords, 0.f).rgb; outColor = mix(fallback, outColor, GetEdgeFade(coords)); // TODO temporary measure the lack of mipmapping for RTT albedo // Implement it in proper way // Use (specval - 0.5) * 2.0 to bring specval from 0.5-1.0 range to 0.0-1.0 range outColor = mix(fallback, outColor, (specval - 0.5) * 2.0); } } else { outColor = fallback; } Spec = vec4(outColor.rgb, 1.0); #endif }