// Copyright (C) 2002-2012 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine" and the "irrXML" project. // For conditions of distribution and use, see copyright notice in irrlicht.h and irrXML.h #ifndef __IRR_ARRAY_H_INCLUDED__ #define __IRR_ARRAY_H_INCLUDED__ #include "irrTypes.h" #include "heapsort.h" #include "irrAllocator.h" #include "irrMath.h" namespace irr { namespace core { //! Self reallocating template array (like stl vector) with additional features. /** Some features are: Heap sorting, binary search methods, easier debugging. */ template > class array { public: //! Default constructor for empty array. array() : data(0), allocated(0), used(0), strategy(ALLOC_STRATEGY_DOUBLE), free_when_destroyed(true), is_sorted(true) { } //! Constructs an array and allocates an initial chunk of memory. /** \param start_count Amount of elements to pre-allocate. */ array(u32 start_count) : data(0), allocated(0), used(0), strategy(ALLOC_STRATEGY_DOUBLE), free_when_destroyed(true), is_sorted(true) { reallocate(start_count); } //! Copy constructor array(const array& other) : data(0) { *this = other; } //! Destructor. /** Frees allocated memory, if set_free_when_destroyed was not set to false by the user before. */ ~array() { clear(); } //! Reallocates the array, make it bigger or smaller. /** \param new_size New size of array. \param canShrink Specifies whether the array is reallocated even if enough space is available. Setting this flag to false can speed up array usage, but may use more memory than required by the data. */ void reallocate(u32 new_size, bool canShrink=true) { if (allocated==new_size) return; if (!canShrink && (new_size < allocated)) return; T* old_data = data; data = allocator.allocate(new_size); //new T[new_size]; allocated = new_size; // copy old data s32 end = used < new_size ? used : new_size; for (s32 i=0; iused) // access violation if (used + 1 > allocated) { // this doesn't work if the element is in the same // array. So we'll copy the element first to be sure // we'll get no data corruption const T e(element); // increase data block u32 newAlloc; switch ( strategy ) { case ALLOC_STRATEGY_DOUBLE: newAlloc = used + 1 + (allocated < 500 ? (allocated < 5 ? 5 : used) : used >> 2); break; default: case ALLOC_STRATEGY_SAFE: newAlloc = used + 1; break; } reallocate( newAlloc); // move array content and construct new element // first move end one up for (u32 i=used; i>index; --i) { if (i index) allocator.destruct(&data[index]); allocator.construct(&data[index], e); // data[index] = e; } else { // element inserted not at end if ( used > index ) { // create one new element at the end allocator.construct(&data[used], data[used-1]); // move the rest of the array content for (u32 i=used-1; i>index; --i) { data[i] = data[i-1]; } // insert the new element data[index] = element; } else { // insert the new element to the end allocator.construct(&data[index], element); } } // set to false as we don't know if we have the comparison operators is_sorted = false; ++used; } //! Clears the array and deletes all allocated memory. void clear() { if (free_when_destroyed) { for (u32 i=0; i& operator=(const array& other) { if (this == &other) return *this; strategy = other.strategy; if (data) clear(); //if (allocated < other.allocated) if (other.allocated == 0) data = 0; else data = allocator.allocate(other.allocated); // new T[other.allocated]; used = other.used; free_when_destroyed = true; is_sorted = other.is_sorted; allocated = other.allocated; for (u32 i=0; i& other) const { if (used != other.used) return false; for (u32 i=0; i& other) const { return !(*this==other); } //! Direct access operator T& operator [](u32 index) { _IRR_DEBUG_BREAK_IF(index>=used) // access violation return data[index]; } //! Direct const access operator const T& operator [](u32 index) const { _IRR_DEBUG_BREAK_IF(index>=used) // access violation return data[index]; } //! Gets last element. T& getLast() { _IRR_DEBUG_BREAK_IF(!used) // access violation return data[used-1]; } //! Gets last element const T& getLast() const { _IRR_DEBUG_BREAK_IF(!used) // access violation return data[used-1]; } //! Gets a pointer to the array. /** \return Pointer to the array. */ T* pointer() { return data; } //! Gets a const pointer to the array. /** \return Pointer to the array. */ const T* const_pointer() const { return data; } //! Get number of occupied elements of the array. /** \return Size of elements in the array which are actually occupied. */ u32 size() const { return used; } //! Get amount of memory allocated. /** \return Amount of memory allocated. The amount of bytes allocated would be allocated_size() * sizeof(ElementTypeUsed); */ u32 allocated_size() const { return allocated; } //! Check if array is empty. /** \return True if the array is empty false if not. */ bool empty() const { return used == 0; } //! Sorts the array using heapsort. /** There is no additional memory waste and the algorithm performs O(n*log n) in worst case. */ void sort() { if (!is_sorted && used>1) heapsort(data, used, sortless); is_sorted = true; } template void sort(Compare cmp) { if (!is_sorted && used>1) heapsort(data, used, cmp); is_sorted = true; } //! Performs a binary search for an element, returns -1 if not found. /** The array will be sorted before the binary search if it is not already sorted. Caution is advised! Be careful not to call this on unsorted const arrays, or the slower method will be used. \param element Element to search for. \return Position of the searched element if it was found, otherwise -1 is returned. */ s32 binary_search(const T& element) { sort(); return binary_search(element, 0, used-1); } //! Performs a binary search for an element if possible, returns -1 if not found. /** This method is for const arrays and so cannot call sort(), if the array is not sorted then linear_search will be used instead. Potentially very slow! \param element Element to search for. \return Position of the searched element if it was found, otherwise -1 is returned. */ s32 binary_search(const T& element) const { if (is_sorted) return binary_search(element, 0, used-1); else return linear_search(element); } //! Performs a binary search for an element, returns -1 if not found. /** \param element: Element to search for. \param left First left index \param right Last right index. \return Position of the searched element if it was found, otherwise -1 is returned. */ s32 binary_search(const T& element, s32 left, s32 right) const { if (!used) return -1; s32 m; do { m = (left+right)>>1; if (element < data[m]) right = m - 1; else left = m + 1; } while((element < data[m] || data[m] < element) && left<=right); // this last line equals to: // " while((element != array[m]) && left<=right);" // but we only want to use the '<' operator. // the same in next line, it is "(element == array[m])" if (!(element < data[m]) && !(data[m] < element)) return m; return -1; } //! Performs a binary search for an element, returns -1 if not found. //! it is used for searching a multiset /** The array will be sorted before the binary search if it is not already sorted. \param element Element to search for. \param &last return lastIndex of equal elements \return Position of the first searched element if it was found, otherwise -1 is returned. */ s32 binary_search_multi(const T& element, s32 &last) { sort(); s32 index = binary_search(element, 0, used-1); if ( index < 0 ) return index; // The search can be somewhere in the middle of the set // look linear previous and past the index last = index; while ( index > 0 && !(element < data[index - 1]) && !(data[index - 1] < element) ) { index -= 1; } // look linear up while ( last < (s32) used - 1 && !(element < data[last + 1]) && !(data[last + 1] < element) ) { last += 1; } return index; } //! Finds an element in linear time, which is very slow. /** Use binary_search for faster finding. Only works if ==operator is implemented. \param element Element to search for. \return Position of the searched element if it was found, otherwise -1 is returned. */ s32 linear_search(const T& element) const { for (u32 i=0; i=0; --i) if (data[i] == element) return i; return -1; } //! Erases an element from the array. /** May be slow, because all elements following after the erased element have to be copied. \param index: Index of element to be erased. */ void erase(u32 index) { _IRR_DEBUG_BREAK_IF(index>=used) // access violation for (u32 i=index+1; i=used || count<1) return; if (index+count>used) count = used-index; u32 i; for (i=index; i= index+count) // not already destructed before loop allocator.destruct(&data[i-count]); allocator.construct(&data[i-count], data[i]); // data[i-count] = data[i]; if (i >= used-count) // those which are not overwritten allocator.destruct(&data[i]); } used-= count; } //! Sets if the array is sorted void set_sorted(bool _is_sorted) { is_sorted = _is_sorted; } //! Swap the content of this array container with the content of another array /** Afterwards this object will contain the content of the other object and the other object will contain the content of this object. \param other Swap content with this object */ void swap(array& other) { core::swap(data, other.data); core::swap(allocated, other.allocated); core::swap(used, other.used); core::swap(allocator, other.allocator); // memory is still released by the same allocator used for allocation eAllocStrategy helper_strategy(strategy); // can't use core::swap with bitfields strategy = other.strategy; other.strategy = helper_strategy; bool helper_free_when_destroyed(free_when_destroyed); free_when_destroyed = other.free_when_destroyed; other.free_when_destroyed = helper_free_when_destroyed; bool helper_is_sorted(is_sorted); is_sorted = other.is_sorted; other.is_sorted = helper_is_sorted; } private: T* data; u32 allocated; u32 used; TAlloc allocator; eAllocStrategy strategy:4; bool free_when_destroyed:1; bool is_sorted:1; }; } // end namespace core } // end namespace irr #endif