/* AngelCode Scripting Library Copyright (c) 2003-2013 Andreas Jonsson This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. The original version of this library can be located at: http://www.angelcode.com/angelscript/ Andreas Jonsson andreas@angelcode.com */ // // as_callfunc_xenon.cpp // // These functions handle the actual calling of system functions // // This version is Xenon specific // Modified from as_callfunc_ppc.cpp by Laszlo Perneky February 2007 // // Modified by Cyril Tissier March 2010: // various fixes in 'float' args passing / function return // properly handling 'double' type // various fixes in asm ppcFunc // fix for variable arguments // // XBox 360 calling convention // =========================== // I've yet to find an official document with the ABI for XBox 360, // but I'll describe what I've gathered from the code and tests // performed by the AngelScript community. // // Arguments are passed in the following registers: // r3 - r10 : integer/pointer arguments (each register is 64bit) // fr1 - fr13 : float/double arguments (each register is 64bit) // // Arguments that don't fit in the registers will be pushed on the stack. // // When a float or double is passed as argument, its value will be placed // in the next available float register, but it will also reserve general // purpose register. // // Example: void foo(float a, int b). a will be passed in fr1 and b in r4. // // For each argument passed to a function an 8byte slot is reserved on the // stack, so that the function can offload the value there if needed. The // first slot is at r1+20, the next at r1+28, etc. // // If the function is a class method, the this pointer is passed as hidden // first argument. If the function returns an object in memory, the address // for that memory is passed as hidden first argument. // // Return value are placed in the following registers: // r3 : integer/pointer values // fr1 : float/double values // // Rules for registers // r1 : stack pointer // r14-r31 : nonvolatile, i.e. their values must be preserved // fr14-fr31 : nonvolatile, i.e. their values must be preserved // r0, r2, r13 : dedicated. I'm not sure what it means, but it is probably best not to use them // // The stack pointer must always be aligned at 8 bytes. // // References: // https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569970071B0D6/$file/eabi_app.pdf // // TODO: The code doesn't handle int64 and uint64 parameters // TODO: The code doesn't handle objects passed by value (unless they are max 4 bytes in size) #include "as_config.h" #ifndef AS_MAX_PORTABILITY #if defined(AS_XENON) #include "as_callfunc.h" #include "as_scriptengine.h" #include "as_texts.h" #include "as_tokendef.h" #include "as_context.h" #include #include #include BEGIN_AS_NAMESPACE #define AS_PPC_MAX_ARGS 32 #define AS_PPC_THISCALL_REG 1 #define AS_PPC_RETURNINMEM_REG 1 #define AS_PPC_ENDOFARGS 1 // The array used to send values to the correct places. // Contains a byte of argTypes to indicate the register type to load, or zero if end of arguments enum argTypes { ppcENDARG = 0, ppcINTARG = 1, ppcFLOATARG = 2, ppcDOUBLEARG = 3 }; // Loads all data into the correct places and calls the function. // pArgs is the array of the argument values // pArgTypes is an array containing a byte indicating the type (enum argTypes) for each argument. // dwFunc is the address of the function that will be called asQWORD __declspec( naked ) ppcFunc(const asDWORD* pArgs, asDWORD dwFunc, const asBYTE* pArgTypes) { __asm { _ppcFunc: // Prologue // Read and stack the link register (return address) mflr r12 stw r12,-8(r1) // Backup all non-volatile registers we use in this function std r31,-10h(r1) // stack pointer for pushing arguments std r27,-18h(r1) // dwFunc std r26,-20h(r1) // pArgs std r25,-28h(r1) // pArgTypes std r24,-30h(r1) // current arg type std r23,-38h(r1) // counter for used GPRs std r22,-40h(r1) // counter for used float registers // Setup the stack frame to make room for the backup of registers // and the arguments that will be passed to the application function. // 512 bytes is enough for about 50 arguments plus backup of 8 // TODO: Should perhaps make this dynamic based on number of arguments stwu r1,-200h(r1) ////////////////////////////////////////////////////////////////////////// // Initialize local variables ////////////////////////////////////////////////////////////////////////// // r31 is our pointer into the stack where the arguments will be place // The MSVC optimizer seems to rely on nobody copying the r1 register directly // so we can't just do a simple 'addi r31, r1, 14h' as the optimizer may // end up moving this instruction to before the update of r1 above. // Instead we'll read the previous stack pointer from the stack, and then // subtract to get the correct offset. lwz r31, 0(r1) subi r31, r31, 1ECh // prev r1 - 512 + 20 = curr r1 + 20 mr r26, r3 // pArgs mr r27, r4 // dwFunc mr r25, r5 // pArgTypes // Counting of used/assigned GPR's sub r23, r23, r23 // Counting of used/assigned Float Registers sub r22, r22, r22 // Begin loading and stacking registers subi r25, r25, 1 ////////////////////////////////////////////////////////////////////////// // Fetch the next argument ////////////////////////////////////////////////////////////////////////// ppcNextArg: // Increment rArgTypePtr addi r25, r25, 1 // Get data type lbz r24, 0(r25) // r24 holds the data type cmplwi cr6, r24, 0 beq cr6, ppcArgsEnd cmplwi cr6, r24, 1 beq cr6, ppcArgIsInteger cmplwi cr6, r24, 2 beq cr6, ppcArgIsFloat cmplwi cr6, r24, 3 beq cr6, ppcArgIsDouble ////////////////////////////////////////////////////////////////////////// // Load and stack integer arguments ////////////////////////////////////////////////////////////////////////// ppcArgIsInteger: // Get the arg from the stack lwz r12, 0(r26) // r23 holds the integer arg count so far cmplwi cr6, r23, 0 beq cr6, ppcLoadIntReg0 cmplwi cr6, r23, 1 beq cr6, ppcLoadIntReg1 cmplwi cr6, r23, 2 beq cr6, ppcLoadIntReg2 cmplwi cr6, r23, 3 beq cr6, ppcLoadIntReg3 cmplwi cr6, r23, 4 beq cr6, ppcLoadIntReg4 cmplwi cr6, r23, 5 beq cr6, ppcLoadIntReg5 cmplwi cr6, r23, 6 beq cr6, ppcLoadIntReg6 cmplwi cr6, r23, 7 beq cr6, ppcLoadIntReg7 // no more than 8 parameters b ppcLoadIntRegUpd ppcLoadIntReg0: mr r3, r12 b ppcLoadIntRegUpd ppcLoadIntReg1: mr r4, r12 b ppcLoadIntRegUpd ppcLoadIntReg2: mr r5, r12 b ppcLoadIntRegUpd ppcLoadIntReg3: mr r6, r12 b ppcLoadIntRegUpd ppcLoadIntReg4: mr r7, r12 b ppcLoadIntRegUpd ppcLoadIntReg5: mr r8, r12 b ppcLoadIntRegUpd ppcLoadIntReg6: mr r9, r12 b ppcLoadIntRegUpd ppcLoadIntReg7: mr r10, r12 b ppcLoadIntRegUpd ppcLoadIntRegUpd: stw r12, 0(r31) // push on the stack addi r31, r31, 8 // inc stack by 1 reg addi r23, r23, 1 // Increment used int register count addi r26, r26, 4 // Increment pArgs b ppcNextArg // Call next arg ////////////////////////////////////////////////////////////////////////// // Load and stack float arguments ////////////////////////////////////////////////////////////////////////// ppcArgIsFloat: // Get the arg from the stack lfs fr0, 0(r26) // r22 holds the float arg count so far cmplwi cr6, r22, 0 beq cr6, ppcLoadFloatReg0 cmplwi cr6, r22, 1 beq cr6, ppcLoadFloatReg1 cmplwi cr6, r22, 2 beq cr6, ppcLoadFloatReg2 cmplwi cr6, r22, 3 beq cr6, ppcLoadFloatReg3 cmplwi cr6, r22, 4 beq cr6, ppcLoadFloatReg4 cmplwi cr6, r22, 5 beq cr6, ppcLoadFloatReg5 cmplwi cr6, r22, 6 beq cr6, ppcLoadFloatReg6 cmplwi cr6, r22, 7 beq cr6, ppcLoadFloatReg7 cmplwi cr6, r22, 8 beq cr6, ppcLoadFloatReg8 cmplwi cr6, r22, 9 beq cr6, ppcLoadFloatReg9 cmplwi cr6, r22, 10 beq cr6, ppcLoadFloatReg10 cmplwi cr6, r22, 11 beq cr6, ppcLoadFloatReg11 cmplwi cr6, r22, 12 beq cr6, ppcLoadFloatReg12 // no more than 12 parameters b ppcLoadFloatRegUpd ppcLoadFloatReg0: fmr fr1, fr0 b ppcLoadFloatRegUpd ppcLoadFloatReg1: fmr fr2, fr0 b ppcLoadFloatRegUpd ppcLoadFloatReg2: fmr fr3, fr0 b ppcLoadFloatRegUpd ppcLoadFloatReg3: fmr fr4, fr0 b ppcLoadFloatRegUpd ppcLoadFloatReg4: fmr fr5, fr0 b ppcLoadFloatRegUpd ppcLoadFloatReg5: fmr fr6, fr0 b ppcLoadFloatRegUpd ppcLoadFloatReg6: fmr fr7, fr0 b ppcLoadFloatRegUpd ppcLoadFloatReg7: fmr fr8, fr0 b ppcLoadFloatRegUpd ppcLoadFloatReg8: fmr fr9, fr0 b ppcLoadFloatRegUpd ppcLoadFloatReg9: fmr fr10, fr0 b ppcLoadFloatRegUpd ppcLoadFloatReg10: fmr fr11, fr0 b ppcLoadFloatRegUpd ppcLoadFloatReg11: fmr fr12, fr0 b ppcLoadFloatRegUpd ppcLoadFloatReg12: fmr fr13, fr0 b ppcLoadFloatRegUpd ppcLoadFloatRegUpd: stfs fr0, 0(r31) // push on the stack addi r31, r31, 8 // inc stack by 1 reg addi r22, r22, 1 // Increment used float register count addi r23, r23, 1 // Increment used int register count - a float reg eats up a GPR addi r26, r26, 4 // Increment pArgs b ppcNextArg // Call next arg ////////////////////////////////////////////////////////////////////////// // Load and stack double float arguments ////////////////////////////////////////////////////////////////////////// ppcArgIsDouble: // Get the arg from the stack lfd fr0, 0(r26) // r22 holds the float arg count so far cmplwi cr6, r22, 0 beq cr6, ppcLoadDoubleReg0 cmplwi cr6, r22, 1 beq cr6, ppcLoadDoubleReg1 cmplwi cr6, r22, 2 beq cr6, ppcLoadDoubleReg2 cmplwi cr6, r22, 3 beq cr6, ppcLoadDoubleReg3 cmplwi cr6, r22, 4 beq cr6, ppcLoadDoubleReg4 cmplwi cr6, r22, 5 beq cr6, ppcLoadDoubleReg5 cmplwi cr6, r22, 6 beq cr6, ppcLoadDoubleReg6 cmplwi cr6, r22, 7 beq cr6, ppcLoadDoubleReg7 cmplwi cr6, r22, 8 beq cr6, ppcLoadDoubleReg8 cmplwi cr6, r22, 9 beq cr6, ppcLoadDoubleReg9 cmplwi cr6, r22, 10 beq cr6, ppcLoadDoubleReg10 cmplwi cr6, r22, 11 beq cr6, ppcLoadDoubleReg11 cmplwi cr6, r22, 12 beq cr6, ppcLoadDoubleReg12 // no more than 12 parameters b ppcLoadDoubleRegUpd ppcLoadDoubleReg0: fmr fr1, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleReg1: fmr fr2, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleReg2: fmr fr3, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleReg3: fmr fr4, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleReg4: fmr fr5, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleReg5: fmr fr6, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleReg6: fmr fr7, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleReg7: fmr fr8, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleReg8: fmr fr9, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleReg9: fmr fr10, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleReg10: fmr fr11, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleReg11: fmr fr12, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleReg12: fmr fr13, fr0 b ppcLoadDoubleRegUpd ppcLoadDoubleRegUpd: stfd fr0, 0(r31) // push on the stack addi r31, r31, 8 // inc stack by 1 reg addi r22, r22, 1 // Increment used float register count addi r23, r23, 1 // Increment used int register count addi r26, r26, 8 // Increment pArgs b ppcNextArg ////////////////////////////////////////////////////////////////////////// // Finished ////////////////////////////////////////////////////////////////////////// ppcArgsEnd: // Call the function mtctr r27 bctrl // Epilogue // Restore callers stack addi r1, r1, 200h // restore all registers we used in this fct ld r22,-40h(r1) ld r23,-38h(r1) ld r24,-30h(r1) ld r25,-28h(r1) ld r26,-20h(r1) ld r27,-18h(r1) ld r31,-10h(r1) // Fetch return link to caller lwz r12,-8(r1) mtlr r12 blr } } asDWORD GetReturnedFloat() { // This variable must be declared volatile so that the // compiler optimizations do not remove its initialization // with the fr1 register due to believing the fr1 register // isn't initialized. volatile asDWORD f; __asm { stfs fr1, f } return f; } asQWORD GetReturnedDouble() { // This variable must be declared volatile so that the // compiler optimizations do not remove its initialization // with the fr1 register due to believing the fr1 register // isn't initialized. volatile asQWORD f; __asm { stfd fr1, f } return f; } // returns true if the given parameter is a 'variable argument' inline bool IsVariableArgument( asCDataType type ) { return (type.GetTokenType() == ttQuestion) ? true : false; } asQWORD CallSystemFunctionNative(asCContext *context, asCScriptFunction *descr, void *obj, asDWORD *args, void *retPointer, asQWORD &/*retQW2*/) { asCScriptEngine *engine = context->m_engine; asSSystemFunctionInterface *sysFunc = descr->sysFuncIntf; int callConv = sysFunc->callConv; asQWORD retQW = 0; void *func = (void*)sysFunc->func; asDWORD *vftable; // Pack the arguments into an array that ppcFunc() can use to load each CPU register properly asBYTE ppcArgsType[AS_PPC_MAX_ARGS + AS_PPC_RETURNINMEM_REG + AS_PPC_THISCALL_REG + AS_PPC_ENDOFARGS]; asDWORD ppcArgs[AS_PPC_MAX_ARGS + AS_PPC_RETURNINMEM_REG + AS_PPC_THISCALL_REG]; int argsCnt = 0; // If the function returns an object in memory, we allocate the memory and put the ptr to the front (will go to r3) if( sysFunc->hostReturnInMemory ) { ppcArgs[argsCnt] = (asDWORD)retPointer; ppcArgsType[argsCnt] = ppcINTARG; argsCnt++; } // If we have an object and it's not objectlast, then we put it as the first arg if ( obj && callConv != ICC_CDECL_OBJLAST && callConv != ICC_CDECL_OBJLAST_RETURNINMEM ) { ppcArgs[argsCnt] = (asDWORD)obj; ppcArgsType[argsCnt] = ppcINTARG; argsCnt++; } // If the function takes any objects by value, they must be copied // to the stack, shifting the other arguments as necessary. paramBuffer // will then replace the args pointer that was received from the VM. // TODO: Is this really how XBox 360 passes objects by value? asDWORD paramBuffer[AS_PPC_MAX_ARGS]; if( sysFunc->takesObjByVal ) { int paramSize = 0; int spos = 0; int dpos = 1; for( asUINT n = 0; n < descr->parameterTypes.GetLength(); n++ ) { // Parameter object by value if( descr->parameterTypes[n].IsObject() && !descr->parameterTypes[n].IsObjectHandle() && !descr->parameterTypes[n].IsReference() ) { #ifdef COMPLEX_OBJS_PASSED_BY_REF if( descr->parameterTypes[n].GetObjectType()->flags & COMPLEX_MASK ) { paramBuffer[dpos++] = args[spos++]; paramSize++; } else #endif { // Copy the object's memory to the buffer memcpy( ¶mBuffer[dpos], *(void**)(args + spos), descr->parameterTypes[n].GetSizeInMemoryBytes() ); // Delete the original memory engine->CallFree(*(char**)(args + spos)); spos++; dpos += descr->parameterTypes[n].GetSizeInMemoryDWords(); paramSize += descr->parameterTypes[n].GetSizeInMemoryDWords(); } } else { // Copy the value directly paramBuffer[dpos++] = args[spos++]; if( descr->parameterTypes[n].GetSizeOnStackDWords() > 1 ) paramBuffer[dpos++] = args[spos++]; paramSize += descr->parameterTypes[n].GetSizeOnStackDWords(); } // If this was a variable argument parameter, then account for the implicit typeId if( IsVariableArgument( descr->parameterTypes[n] ) ) { // the TypeId is just a DWORD paramBuffer[dpos++] = args[spos++]; ++paramSize; } } // Keep a free location at the beginning args = ¶mBuffer[1]; asASSERT( paramSize <= AS_PPC_MAX_ARGS ); } const asUINT paramCount = (asUINT)descr->parameterTypes.GetLength(); asBYTE * pCurArgType = (asBYTE*)&ppcArgsType[argsCnt]; asBYTE * pCurFixedArgValue = (asBYTE*)&ppcArgs[argsCnt]; asBYTE * pCurStackArgValue = (asBYTE*)args; for( asUINT n = 0; n < paramCount; n++ ) { argsCnt++; if (descr->parameterTypes[n].IsFloatType() && !descr->parameterTypes[n].IsReference()) { *pCurArgType++ = ppcFLOATARG; *((float*) pCurFixedArgValue) = *((float*) pCurStackArgValue); pCurFixedArgValue += 4; pCurStackArgValue += 4; } else if (descr->parameterTypes[n].IsDoubleType() && !descr->parameterTypes[n].IsReference()) { *pCurArgType++ = ppcDOUBLEARG; *((double*) pCurFixedArgValue) = *((double*) pCurStackArgValue); pCurFixedArgValue += 8; pCurStackArgValue += 8; } else { // TODO: How should int64 and uint64 be passed natively? // Currently the code doesn't handle these types // TODO: The code also ignore the fact that large objects // passed by value has been copied to the stack // in the above loop. *pCurArgType++ = ppcINTARG; *((int*) pCurFixedArgValue) = *((int*) pCurStackArgValue); if( !descr->parameterTypes[n].IsReference() ) { // If the arg is less that 4 bytes, then move the // bytes to the higher bytes within the dword asUINT numBytes = descr->parameterTypes[n].GetSizeInMemoryBytes(); if( numBytes == 1 ) { pCurFixedArgValue[3] = pCurFixedArgValue[0]; pCurFixedArgValue[0] = 0; } else if( numBytes == 2 ) { *(asWORD*)&pCurFixedArgValue[2] = *(asWORD*)&pCurFixedArgValue[0]; *(asWORD*)&pCurFixedArgValue[0] = 0; } } pCurFixedArgValue += 4; pCurStackArgValue += 4; // if it is a variable argument, account for the typeId // implicitly add another parameter (AFTER the parameter above) for the typeId if( IsVariableArgument(descr->parameterTypes[n]) ) { argsCnt++; *pCurArgType++ = ppcINTARG; *((int*) pCurFixedArgValue) = *((int*) pCurStackArgValue); pCurFixedArgValue += 4; pCurStackArgValue += 4; } } } // Add the arg list end indicator ppcArgsType[argsCnt] = ppcENDARG; switch( callConv ) { case ICC_CDECL: case ICC_CDECL_RETURNINMEM: case ICC_STDCALL: case ICC_STDCALL_RETURNINMEM: case ICC_THISCALL: case ICC_THISCALL_RETURNINMEM: case ICC_CDECL_OBJFIRST: case ICC_CDECL_OBJFIRST_RETURNINMEM: { retQW = ppcFunc( ppcArgs, (asDWORD)func, ppcArgsType ); break; } case ICC_VIRTUAL_THISCALL: case ICC_VIRTUAL_THISCALL_RETURNINMEM: { // Get virtual function table from the object pointer vftable = *(asDWORD**)obj; retQW = ppcFunc( ppcArgs, vftable[asDWORD(func)>>2], ppcArgsType ); break; } case ICC_CDECL_OBJLAST: case ICC_CDECL_OBJLAST_RETURNINMEM: { // Add the object pointer as the last argument ppcArgsType[argsCnt++] = ppcINTARG; ppcArgsType[argsCnt] = ppcENDARG; *((asPWORD*)pCurFixedArgValue) = (asPWORD)obj; retQW = ppcFunc( ppcArgs, (asDWORD)func, ppcArgsType ); break; } default: context->SetInternalException( TXT_INVALID_CALLING_CONVENTION ); } // If the return is a float value we need to get the value from the FP register if( sysFunc->hostReturnFloat ) { if( sysFunc->hostReturnSize == 1 ) *(asDWORD*)&retQW = GetReturnedFloat(); else retQW = GetReturnedDouble(); } else if( sysFunc->hostReturnSize == 1 ) { // Move the bits to the higher value to compensate for the adjustment that the caller does retQW <<= 32; } return retQW; } END_AS_NAMESPACE #endif // AS_XENON #endif // AS_MAX_PORTABILITY