/* AngelCode Scripting Library Copyright (c) 2003-2012 Andreas Jonsson This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. The original version of this library can be located at: http://www.angelcode.com/angelscript/ Andreas Jonsson andreas@angelcode.com */ #ifndef AS_ARRAY_H #define AS_ARRAY_H #if !defined(AS_NO_MEMORY_H) #include #endif #include // some compilers declare memcpy() here #ifdef _MSC_VER #pragma warning(disable:4345) // warning about a change in how the code is handled in this version #endif BEGIN_AS_NAMESPACE template class asCArray { public: asCArray(); asCArray(const asCArray &); asCArray(size_t reserve); ~asCArray(); void Allocate(size_t numElements, bool keepData); void AllocateNoConstruct(size_t numElements, bool keepData); size_t GetCapacity() const; void PushLast(const T &element); T PopLast(); bool SetLength(size_t numElements); bool SetLengthNoConstruct(size_t numElements); size_t GetLength() const; void Copy(const T*, size_t count); asCArray &operator =(const asCArray &); void SwapWith(asCArray &other); const T &operator [](size_t index) const; T &operator [](size_t index); T *AddressOf(); const T *AddressOf() const; void Concatenate(const asCArray &); void Concatenate(T*, unsigned int count); bool Exists(const T &element) const; int IndexOf(const T &element) const; void RemoveIndex(size_t index); // Removes the entry without reordering the array void RemoveValue(const T &element); // Removes the value without reordering the array void RemoveIndexUnordered(size_t index); // Removes the entry without keeping the order bool operator==(const asCArray &) const; bool operator!=(const asCArray &) const; protected: T *array; size_t length; size_t maxLength; char buf[8]; }; // Implementation template T *asCArray::AddressOf() { return array; } template const T *asCArray::AddressOf() const { return array; } template asCArray::asCArray(void) { array = 0; length = 0; maxLength = 0; } template asCArray::asCArray(const asCArray ©) { array = 0; length = 0; maxLength = 0; *this = copy; } template asCArray::asCArray(size_t reserve) { array = 0; length = 0; maxLength = 0; Allocate(reserve, false); } template asCArray::~asCArray(void) { // Allocating a zero length array will free all memory Allocate(0,0); } template size_t asCArray::GetLength() const { return length; } template const T &asCArray::operator [](size_t index) const { asASSERT(index < length); return array[index]; } template T &asCArray::operator [](size_t index) { asASSERT(index < length); return array[index]; } template void asCArray::PushLast(const T &element) { if( length == maxLength ) { if( maxLength == 0 ) Allocate(1, false); else Allocate(2*maxLength, true); if( length == maxLength ) { // Out of memory. Return without doing anything return; } } array[length++] = element; } template T asCArray::PopLast() { asASSERT(length > 0); return array[--length]; } template void asCArray::Allocate(size_t numElements, bool keepData) { // We have 4 situations // 1. The previous array is 8 bytes or smaller and the new array is also 8 bytes or smaller // 2. The previous array is 8 bytes or smaller and the new array is larger than 8 bytes // 3. The previous array is larger than 8 bytes and the new array is 8 bytes or smaller // 4. The previous array is larger than 8 bytes and the new array is also larger than 8 bytes T *tmp = 0; if( numElements ) { if( sizeof(T)*numElements <= 8 ) // Use the internal buffer tmp = reinterpret_cast(buf); else { // Allocate the array and construct each of the elements tmp = asNEWARRAY(T,numElements); if( tmp == 0 ) { // Out of memory. Return without doing anything return; } } if( array == tmp ) { // Construct only the newly allocated elements for( size_t n = length; n < numElements; n++ ) new (&tmp[n]) T(); } else { // Construct all elements for( size_t n = 0; n < numElements; n++ ) new (&tmp[n]) T(); } } if( array ) { size_t oldLength = length; if( array == tmp ) { if( keepData ) { if( length > numElements ) length = numElements; } else length = 0; // Call the destructor for elements that are no longer used for( size_t n = length; n < oldLength; n++ ) array[n].~T(); } else { if( keepData ) { if( length > numElements ) length = numElements; for( size_t n = 0; n < length; n++ ) tmp[n] = array[n]; } else length = 0; // Call the destructor for all elements for( size_t n = 0; n < oldLength; n++ ) array[n].~T(); if( array != reinterpret_cast(buf) ) asDELETEARRAY(array); } } array = tmp; maxLength = numElements; } template void asCArray::AllocateNoConstruct(size_t numElements, bool keepData) { // We have 4 situations // 1. The previous array is 8 bytes or smaller and the new array is also 8 bytes or smaller // 2. The previous array is 8 bytes or smaller and the new array is larger than 8 bytes // 3. The previous array is larger than 8 bytes and the new array is 8 bytes or smaller // 4. The previous array is larger than 8 bytes and the new array is also larger than 8 bytes T *tmp = 0; if( numElements ) { if( sizeof(T)*numElements <= 8 ) // Use the internal buffer tmp = reinterpret_cast(buf); else { // Allocate the array and construct each of the elements tmp = asNEWARRAY(T,numElements); if( tmp == 0 ) { // Out of memory. Return without doing anything return; } } } if( array ) { if( array == tmp ) { if( keepData ) { if( length > numElements ) length = numElements; } else length = 0; } else { if( keepData ) { if( length > numElements ) length = numElements; memcpy(tmp, array, sizeof(T)*length); } else length = 0; if( array != reinterpret_cast(buf) ) asDELETEARRAY(array); } } array = tmp; maxLength = numElements; } template size_t asCArray::GetCapacity() const { return maxLength; } template bool asCArray::SetLength(size_t numElements) { if( numElements > maxLength ) { Allocate(numElements, true); if( numElements > maxLength ) { // Out of memory. Return without doing anything return false; } } length = numElements; return true; } template bool asCArray::SetLengthNoConstruct(size_t numElements) { if( numElements > maxLength ) { AllocateNoConstruct(numElements, true); if( numElements > maxLength ) { // Out of memory. Return without doing anything return false; } } length = numElements; return true; } template void asCArray::Copy(const T *data, size_t count) { if( maxLength < count ) { Allocate(count, false); if( maxLength < count ) { // Out of memory. Return without doing anything return; } } for( size_t n = 0; n < count; n++ ) array[n] = data[n]; length = count; } template asCArray &asCArray::operator =(const asCArray ©) { Copy(copy.array, copy.length); return *this; } template void asCArray::SwapWith(asCArray &other) { T *tmpArray = array; size_t tmpLength = length; size_t tmpMaxLength = maxLength; char tmpBuf[sizeof(buf)]; memcpy(tmpBuf, buf, sizeof(buf)); array = other.array; length = other.length; maxLength = other.maxLength; memcpy(buf, other.buf, sizeof(buf)); other.array = tmpArray; other.length = tmpLength; other.maxLength = tmpMaxLength; memcpy(other.buf, tmpBuf, sizeof(buf)); // If the data is in the internal buffer, then the array pointer must refer to it if( array == reinterpret_cast(other.buf) ) array = reinterpret_cast(buf); if( other.array == reinterpret_cast(buf) ) other.array = reinterpret_cast(other.buf); } template bool asCArray::operator ==(const asCArray &other) const { if( length != other.length ) return false; for( size_t n = 0; n < length; n++ ) if( array[n] != other.array[n] ) return false; return true; } template bool asCArray::operator !=(const asCArray &other) const { return !(*this == other); } template void asCArray::Concatenate(const asCArray &other) { if( maxLength < length + other.length ) Allocate(length + other.length, true); for( size_t n = 0; n < other.length; n++ ) array[length+n] = other.array[n]; length += other.length; } template void asCArray::Concatenate(T* array, unsigned int count) { for( unsigned int c = 0; c < count; c++ ) PushLast(array[c]); } template bool asCArray::Exists(const T &e) const { return IndexOf(e) == -1 ? false : true; } template int asCArray::IndexOf(const T &e) const { for( size_t n = 0; n < length; n++ ) if( array[n] == e ) return static_cast(n); return -1; } template void asCArray::RemoveIndex(size_t index) { if( index < length ) { for( size_t n = index; n < length-1; n++ ) array[n] = array[n+1]; PopLast(); } } template void asCArray::RemoveValue(const T &e) { for( size_t n = 0; n < length; n++ ) { if( array[n] == e ) { RemoveIndex(n); break; } } } template void asCArray::RemoveIndexUnordered(size_t index) { if( index == length - 1 ) PopLast(); else if( index < length ) array[index] = PopLast(); } END_AS_NAMESPACE #endif