// From paper http://graphics.cs.williams.edu/papers/AlchemyHPG11/ // and improvements here http://graphics.cs.williams.edu/papers/SAOHPG12/ uniform sampler2D dtex; uniform vec4 samplePoints[16]; #ifdef UBO_DISABLED uniform mat4 ViewMatrix; uniform mat4 ProjectionMatrix; uniform mat4 InverseViewMatrix; uniform mat4 InverseProjectionMatrix; uniform vec2 screen; #else layout (std140) uniform MatrixesData { mat4 ViewMatrix; mat4 ProjectionMatrix; mat4 InverseViewMatrix; mat4 InverseProjectionMatrix; mat4 ShadowViewProjMatrixes[4]; vec2 screen; }; #endif in vec2 uv; out float AO; const float sigma = 1.; const float tau = 7.; const float beta = 0.001; const float epsilon = .00001; const float radius = 1.; const float k = 1.5; #define SAMPLES 16 const float invSamples = 1. / SAMPLES; vec3 getXcYcZc(int x, int y, float zC) { // We use perspective symetric projection matrix hence P(0,2) = P(1, 2) = 0 float xC= (1. - 2 * (float(x) + 0.5) / screen.x) * zC / ProjectionMatrix[0][0]; float yC= (1. + 2 * (float(y) + 0.5) / screen.y) * zC / ProjectionMatrix[1][1]; return vec3(xC, yC, zC); } void main(void) { float lineardepth = textureLod(dtex, uv, 0.).x; int x = int(gl_FragCoord.x), y = int(gl_FragCoord.y); vec3 FragPos = getXcYcZc(x, y, lineardepth); // get the normal of current fragment vec3 ddx = dFdx(FragPos); vec3 ddy = dFdy(FragPos); vec3 norm = -normalize(cross(ddy, ddx)); float r = radius / FragPos.z; float phi = 30. * (x ^ y) + 10. * x * y; float bl = 0.0; for(int i = 0; i < SAMPLES; ++i) { float alpha = (i + .5) * invSamples; float theta = 2. * 3.14 * tau * alpha + phi; float h = r * alpha; vec2 offset = h * vec2(cos(theta), sin(theta)) * screen; float m = round(log2(h) + 6); ivec2 ioccluder_uv = ivec2(x, y) + ivec2(offset); if (ioccluder_uv.x < 0 || ioccluder_uv.x > screen.x || ioccluder_uv.y < 0 || ioccluder_uv.y > screen.y) continue; float LinearoccluderFragmentDepth = textureLod(dtex, vec2(ioccluder_uv) / screen, m).x; vec3 OccluderPos = getXcYcZc(ioccluder_uv.x, ioccluder_uv.y, LinearoccluderFragmentDepth); vec3 vi = OccluderPos - FragPos; bl += max(0, dot(vi, norm) - FragPos.z * beta) / (dot(vi, vi) + epsilon); } AO = max(pow(1.0 - 2. * sigma * bl * invSamples, k), 0.); }