uniform sampler2D ntex; uniform sampler2D dtex; uniform sampler2D albedo; #ifdef GL_ES layout (location = 0) out vec4 Diff; layout (location = 1) out vec4 Spec; #else out vec4 Diff; out vec4 Spec; #endif #stk_include "utils/decodeNormal.frag" #stk_include "utils/getPosFromUVDepth.frag" #stk_include "utils/DiffuseIBL.frag" #stk_include "utils/SpecularIBL.frag" vec3 CalcViewPositionFromDepth(in vec2 uv) { // Combine UV & depth into XY & Z (NDC) float z = texture(dtex, uv).x; return getPosFromUVDepth(vec3(uv, z), u_inverse_projection_matrix).xyz; } vec2 CalcCoordFromPosition(in vec3 pos) { vec4 projectedCoord = u_projection_matrix * vec4(pos, 1.0); projectedCoord.xy /= projectedCoord.w; projectedCoord.xy = projectedCoord.xy * 0.5 + 0.5; return projectedCoord.xy; } // Fade out edges of screen buffer tex // 1 means full render tex, 0 means full IBL tex float GetEdgeFade(vec2 coords) { float gradL = smoothstep(0.0, 0.4, coords.x); float gradR = 1.0 - smoothstep(0.6, 1.0, coords.x); float gradT = smoothstep(0.0, 0.4, coords.y); float gradB = 1.0 - smoothstep(0.6, 1.0, coords.y); return min(min(gradL, gradR), min(gradT, gradB)); } vec2 RayCast(vec3 dir, vec3 hitCoord) { vec2 projectedCoord; vec3 dirstep = dir * 0.5f; float depth; hitCoord += dirstep; for (int i = 1; i <= 32; i++) { projectedCoord = CalcCoordFromPosition(hitCoord); float depth = CalcViewPositionFromDepth(projectedCoord).z; float directionSign = sign(abs(hitCoord.z) - depth); dirstep = dirstep * (1.0 - 0.5 * max(directionSign, 0.0)); hitCoord += dirstep * (-directionSign); } if (projectedCoord.x > 0.0 && projectedCoord.x < 1.0 && projectedCoord.y > 0.0 && projectedCoord.y < 1.0) { return projectedCoord.xy; } else { return vec2(0.f); } } // Main =================================================================== void main(void) { vec2 uv = gl_FragCoord.xy / u_screen; vec3 normal = DecodeNormal(texture(ntex, uv).xy); Diff = vec4(0.25 * DiffuseIBL(normal), 1.); float z = texture(dtex, uv).x; vec4 xpos = getPosFromUVDepth(vec3(uv, z), u_inverse_projection_matrix); vec3 eyedir = -normalize(xpos.xyz); // Extract roughness float specval = texture(ntex, uv).z; #ifdef GL_ES Spec = vec4(.25 * SpecularIBL(normal, eyedir, specval), 1.); #else // :::::::: Compute Space Screen Reflection :::::::::::::::::::::::::::::::::::: // Output color vec3 outColor; // Fallback (if the ray can't find an intersection we display the sky) vec3 fallback = .25 * SpecularIBL(normal, eyedir, specval); // Only calculate reflections if the reflectivity value is high enough, // otherwise just use specular IBL if (specval > 0.5) { // Reflection vector vec3 reflected = reflect(-eyedir, normal); vec2 coords = RayCast(reflected, xpos.xyz); if (coords.x == 0.0 && coords.y == 0.0) { outColor = fallback; } else { // FIXME We need to generate mipmap to take into account the gloss map outColor = textureLod(albedo, coords, 0.f).rgb; outColor = mix(fallback, outColor, GetEdgeFade(coords)); // TODO temporary measure the lack of mipmapping for RTT albedo // Implement it in proper way // Use (specval - 0.5) * 2.0 to bring specval from 0.5-1.0 range to 0.0-1.0 range outColor = mix(fallback, outColor, (specval - 0.5) * 2.0); } } else { outColor = fallback; } Spec = vec4(outColor.rgb, 1.0); #endif }