uniform sampler2D ntex; uniform sampler2D dtex; uniform sampler2D albedo; #ifdef GL_ES layout (location = 0) out vec4 Diff; layout (location = 1) out vec4 Spec; #else out vec4 Diff; out vec4 Spec; #endif #stk_include "utils/decodeNormal.frag" #stk_include "utils/getPosFromUVDepth.frag" #stk_include "utils/DiffuseIBL.frag" #stk_include "utils/SpecularIBL.frag" vec3 getXcYcZc(int x, int y, float zC) { // We use perspective symetric projection matrix hence P(0,2) = P(1, 2) = 0 float xC= (2. * (float(x)) / u_screen.x - 1.) * zC / u_projection_matrix[0][0]; float yC= (2. * (float(y)) / u_screen.y - 1.) * zC / u_projection_matrix[1][1]; return vec3(xC, yC, zC); } float makeLinear(float f, float n, float z) { return (2 * n) / (f + n - z * (f - n)); } vec3 CalcViewPositionFromDepth(in vec2 TexCoord, in sampler2D DepthMap) { // Combine UV & depth into XY & Z (NDC) float z = makeLinear(1000.0, 0.01, textureLod(DepthMap, TexCoord, 0.).x); vec3 rawPosition = vec3(TexCoord, z); // Convert from (0, 1) range to (-1, 1) vec4 ScreenSpacePosition = vec4( rawPosition * 2 - 1, 1); // Undo Perspective transformation to bring into view space vec4 ViewPosition = u_inverse_projection_matrix * ScreenSpacePosition; // Perform perspective divide and return return ViewPosition.xyz / ViewPosition.w; } vec3 RayCast(vec3 dir, inout vec3 hitCoord, out float dDepth, in sampler2D DepthMap, in vec3 fallback, float spread) { dir *= 0.25f; for(int i = 0; i < 8; ++i) { hitCoord += dir; vec4 projectedCoord = u_projection_matrix * vec4(hitCoord, 1.0); projectedCoord.xy /= projectedCoord.w; projectedCoord.xy = projectedCoord.xy * 0.5 + 0.5; float depth = CalcViewPositionFromDepth(projectedCoord.xy, DepthMap).z; dDepth = hitCoord.z - depth; if(dDepth < 0.0) { if ((projectedCoord.x > 0.0 && projectedCoord.x < 1.0) && (projectedCoord.y > 0.0 && projectedCoord.y < 1.0)) { // FIXME We need to generate mipmap to take into account the gloss map vec3 finalColor = textureLod(albedo, projectedCoord.xy, spread).rgb; if ((finalColor.r + finalColor.g + finalColor.b) > 0.) { vec2 inside = (gl_FragCoord.xy / u_screen) - 0.5; float vignette = 1. - dot(inside, inside) * 5; vignette = clamp(pow(vignette, 10.0), 0., 1.0); return mix(fallback, finalColor, vignette); } else { return fallback; } } else { return fallback; } } } return fallback; } // Main =================================================================== void main(void) { vec2 uv = gl_FragCoord.xy / u_screen; vec3 normal = normalize(DecodeNormal(2. * texture(ntex, uv).xy - 1.)); Diff = vec4(0.25 * DiffuseIBL(normal), 1.); float z = texture(dtex, uv).x; vec4 xpos = getPosFromUVDepth(vec3(uv, z), u_inverse_projection_matrix); vec3 eyedir = -normalize(xpos.xyz); // Extract roughness float specval = texture(ntex, uv).z; #ifdef GL_ES Spec = vec4(.25 * SpecularIBL(normal, eyedir, specval), 1.); #else // Compute Space Screen Reflection ========================================================= float lineardepth = textureLod(dtex, uv, 0.).x; int x = int(gl_FragCoord.x), y = int(gl_FragCoord.y); vec3 FragPos = getXcYcZc(x, y, lineardepth); // Fallback vec3 fallback = .25 * SpecularIBL(normal, eyedir, specval); // Better implementation: ::::::::::::::::::::::::::::::::::: float View_Depth = makeLinear(1000.0, 0.001, lineardepth); vec3 ScreenPos = xpos.xyz; vec4 View_Pos = u_inverse_projection_matrix * vec4(ScreenPos, 1.0f); View_Pos /= View_Pos.w; // Reflection vector vec3 reflected = normalize(reflect(eyedir, normal)); // Ray cast vec3 hitPos = View_Pos.xyz; float dDepth; float minRayStep = 100.0f; vec3 outColor = RayCast(reflected * max(minRayStep, -View_Pos.z), hitPos, dDepth, dtex, fallback, 0.0); // TODO temporary measure the lack of mipmaping for RTT albedo // Implement it in proper way outColor = mix(fallback, outColor, specval); Spec = vec4(outColor.rgb, 1.0); #endif }