/* AngelCode Scripting Library Copyright (c) 2003-2017 Andreas Jonsson This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. The original version of this library can be located at: http://www.angelcode.com/angelscript/ Andreas Jonsson andreas@angelcode.com */ // // as_compiler.cpp // // The class that does the actual compilation of the functions // #include // fmodf() pow() #include "as_config.h" #ifndef AS_NO_COMPILER #include "as_compiler.h" #include "as_tokendef.h" #include "as_tokenizer.h" #include "as_string_util.h" #include "as_texts.h" #include "as_parser.h" #include "as_debug.h" #include "as_context.h" // as_powi() BEGIN_AS_NAMESPACE // // The calling convention rules for script functions: // - If a class method returns a reference, the caller must guarantee the object pointer stays alive until the function returns, and the reference is no longer going to be used // - If a class method doesn't return a reference, it must guarantee by itself that the this pointer stays alive during the function call. If no outside access is made, then the function is guaranteed to stay alive and nothing needs to be done // - The object pointer is always passed as the first argument, position 0 // - If the function returns a value type the caller must reserve the memory for this and pass the pointer as the first argument after the object pointer // // TODO: I must correct the interpretation of a reference to objects in the compiler. // A reference should mean that a pointer to the object is on the stack. // No expression should end up as non-references to objects, as the actual object is // never put on the stack. // Local variables are declared as non-references, but the expression should be a reference to the variable. // Function parameters of called functions can also be non-references, but in that case it means the // object will be passed by value (currently on the heap, which will be moved to the application stack). // // The compiler shouldn't use the asCDataType::IsReference. The datatype should always be stored as non-references. // Instead the compiler should keep track of references in TypeInfo, where it should also state how the reference // is currently stored, i.e. in variable, in register, on stack, etc. asCCompiler::asCCompiler(asCScriptEngine *engine) : byteCode(engine) { builder = 0; script = 0; variables = 0; isProcessingDeferredParams = false; isCompilingDefaultArg = false; noCodeOutput = 0; } asCCompiler::~asCCompiler() { while( variables ) { asCVariableScope *var = variables; variables = variables->parent; asDELETE(var,asCVariableScope); } // Clean up all the string constants that were allocated. By now the script // functions that were compiled successfully already holds their own references for (asUINT n = 0; n < usedStringConstants.GetLength(); n++) engine->stringFactory->ReleaseStringConstant(usedStringConstants[n]); usedStringConstants.SetLength(0); } void asCCompiler::Reset(asCBuilder *in_builder, asCScriptCode *in_script, asCScriptFunction *in_outFunc) { this->builder = in_builder; this->engine = in_builder->engine; this->script = in_script; this->outFunc = in_outFunc; hasCompileErrors = false; m_isConstructor = false; m_isConstructorCalled = false; m_classDecl = 0; m_globalVar = 0; nextLabel = 0; breakLabels.SetLength(0); continueLabels.SetLength(0); numLambdas = 0; byteCode.ClearAll(); } int asCCompiler::CompileDefaultConstructor(asCBuilder *in_builder, asCScriptCode *in_script, asCScriptNode *in_node, asCScriptFunction *in_outFunc, sClassDeclaration *in_classDecl) { Reset(in_builder, in_script, in_outFunc); m_classDecl = in_classDecl; // Insert a JitEntry at the start of the function for JIT compilers byteCode.InstrPTR(asBC_JitEntry, 0); // Add a variable scope that might be needed to declare dummy variables // in case the member initialization refers to undefined symbols. AddVariableScope(); // Initialize the class members that have no explicit expression first. This will allow the // base class' constructor to access these members without worry they will be uninitialized. // This can happen if the base class' constructor calls a method that is overridden by the derived class CompileMemberInitialization(&byteCode, true); // If the class is derived from another, then the base class' default constructor must be called if( outFunc->objectType->derivedFrom ) { // Make sure the base class really has a default constructor if( outFunc->objectType->derivedFrom->beh.construct == 0 ) Error(TEXT_BASE_DOESNT_HAVE_DEF_CONSTR, in_node); // Call the base class' default constructor byteCode.InstrSHORT(asBC_PSF, 0); byteCode.Instr(asBC_RDSPtr); byteCode.Call(asBC_CALL, outFunc->objectType->derivedFrom->beh.construct, AS_PTR_SIZE); } // Initialize the class members that explicit expressions afterwards. This allow the expressions // to access the base class members without worry they will be uninitialized CompileMemberInitialization(&byteCode, false); byteCode.OptimizeLocally(tempVariableOffsets); // If there are compile errors, there is no reason to build the final code if( hasCompileErrors ) return -1; // Pop the object pointer from the stack byteCode.Ret(AS_PTR_SIZE); // Count total variable size int varSize = GetVariableOffset((int)variableAllocations.GetLength()) - 1; outFunc->scriptData->variableSpace = varSize; FinalizeFunction(); #ifdef AS_DEBUG // DEBUG: output byte code byteCode.DebugOutput(("__" + outFunc->objectType->name + "_" + outFunc->name + "__defconstr.txt").AddressOf(), in_outFunc); #endif return 0; } int asCCompiler::CompileFactory(asCBuilder *in_builder, asCScriptCode *in_script, asCScriptFunction *in_outFunc) { Reset(in_builder, in_script, in_outFunc); // Insert a JitEntry at the start of the function for JIT compilers byteCode.InstrPTR(asBC_JitEntry, 0); // Find the corresponding constructor asCDataType dt = asCDataType::CreateType(outFunc->returnType.GetTypeInfo(), false); int constructor = 0; for( unsigned int n = 0; n < dt.GetBehaviour()->factories.GetLength(); n++ ) { if( dt.GetBehaviour()->factories[n] == outFunc->id ) { constructor = dt.GetBehaviour()->constructors[n]; break; } } // Allocate the class and instantiate it with the constructor int varOffset = AllocateVariable(dt, true); outFunc->scriptData->variableSpace = AS_PTR_SIZE; byteCode.InstrSHORT(asBC_PSF, (short)varOffset); // Copy all arguments to the top of the stack // TODO: runtime optimize: Might be interesting to have a specific instruction for copying all arguments int offset = (int)outFunc->GetSpaceNeededForArguments(); for( int a = int(outFunc->parameterTypes.GetLength()) - 1; a >= 0; a-- ) { if( !outFunc->parameterTypes[a].IsPrimitive() || outFunc->parameterTypes[a].IsReference() ) { offset -= AS_PTR_SIZE; byteCode.InstrSHORT(asBC_PshVPtr, short(-offset)); } else { if( outFunc->parameterTypes[a].GetSizeOnStackDWords() == 2 ) { offset -= 2; byteCode.InstrSHORT(asBC_PshV8, short(-offset)); } else { offset -= 1; byteCode.InstrSHORT(asBC_PshV4, short(-offset)); } } } int argDwords = (int)outFunc->GetSpaceNeededForArguments(); byteCode.Alloc(asBC_ALLOC, dt.GetTypeInfo(), constructor, argDwords + AS_PTR_SIZE); // Return a handle to the newly created object byteCode.InstrSHORT(asBC_LOADOBJ, (short)varOffset); byteCode.Ret(argDwords); FinalizeFunction(); // Tell the virtual machine not to clean up parameters on exception outFunc->dontCleanUpOnException = true; /* #ifdef AS_DEBUG // DEBUG: output byte code asCString args; args.Format("%d", outFunc->parameterTypes.GetLength()); byteCode.DebugOutput(("__" + outFunc->name + "__factory" + args + ".txt").AddressOf(), engine); #endif */ return 0; } void asCCompiler::FinalizeFunction() { TimeIt("asCCompiler::FinalizeFunction"); asASSERT( outFunc->scriptData ); asUINT n; // Finalize the bytecode byteCode.Finalize(tempVariableOffsets); byteCode.ExtractObjectVariableInfo(outFunc); // Compile the list of object variables for the exception handler // Start with the variables allocated on the heap, and then the ones allocated on the stack for( n = 0; n < variableAllocations.GetLength(); n++ ) { if( (variableAllocations[n].IsObject() || variableAllocations[n].IsFuncdef()) && !variableAllocations[n].IsReference() ) { if( variableIsOnHeap[n] ) { outFunc->scriptData->objVariableTypes.PushLast(variableAllocations[n].GetTypeInfo()); outFunc->scriptData->objVariablePos.PushLast(GetVariableOffset(n)); } } } outFunc->scriptData->objVariablesOnHeap = asUINT(outFunc->scriptData->objVariablePos.GetLength()); for( n = 0; n < variableAllocations.GetLength(); n++ ) { if( (variableAllocations[n].IsObject() || variableAllocations[n].IsFuncdef()) && !variableAllocations[n].IsReference() ) { if( !variableIsOnHeap[n] ) { outFunc->scriptData->objVariableTypes.PushLast(variableAllocations[n].GetTypeInfo()); outFunc->scriptData->objVariablePos.PushLast(GetVariableOffset(n)); } } } // Copy byte code to the function asASSERT( outFunc->scriptData->byteCode.GetLength() == 0 ); outFunc->scriptData->byteCode.SetLength(byteCode.GetSize()); byteCode.Output(outFunc->scriptData->byteCode.AddressOf()); outFunc->AddReferences(); outFunc->scriptData->stackNeeded = byteCode.largestStackUsed + outFunc->scriptData->variableSpace; outFunc->scriptData->lineNumbers = byteCode.lineNumbers; // Extract the script section indexes too if there are any entries that are different from the function's script section int lastIdx = outFunc->scriptData->scriptSectionIdx; for( n = 0; n < byteCode.sectionIdxs.GetLength(); n++ ) { if( byteCode.sectionIdxs[n] != lastIdx ) { lastIdx = byteCode.sectionIdxs[n]; outFunc->scriptData->sectionIdxs.PushLast(byteCode.lineNumbers[n*2]); outFunc->scriptData->sectionIdxs.PushLast(lastIdx); } } } // internal int asCCompiler::SetupParametersAndReturnVariable(asCArray ¶meterNames, asCScriptNode *func) { int stackPos = 0; if( outFunc->objectType ) stackPos = -AS_PTR_SIZE; // The first parameter is the pointer to the object // Add the first variable scope, which the parameters and // variables declared in the outermost statement block is // part of. AddVariableScope(); bool isDestructor = false; asCDataType returnType; // Examine return type returnType = outFunc->returnType; // Check if this is a constructor or destructor if( returnType.GetTokenType() == ttVoid && outFunc->objectType ) { if( outFunc->name[0] == '~' ) isDestructor = true; else if( outFunc->objectType->name == outFunc->name ) m_isConstructor = true; } // Is the return type allowed? if( returnType != asCDataType::CreatePrimitive(ttVoid, false) && !returnType.CanBeInstantiated() ) { // TODO: Hasn't this been validated by the builder already? asCString str; str.Format(TXT_RETURN_CANT_BE_s, returnType.Format(outFunc->nameSpace).AddressOf()); Error(str, func); } // If the return type is a value type returned by value the address of the // location where the value will be stored is pushed on the stack before // the arguments if( !(isDestructor || m_isConstructor) && outFunc->DoesReturnOnStack() ) stackPos -= AS_PTR_SIZE; asCVariableScope vs(0); // Declare parameters asUINT n; for( n = 0; n < parameterNames.GetLength(); n++ ) { // Get the parameter type asCDataType &type = outFunc->parameterTypes[n]; asETypeModifiers inoutFlag = n < outFunc->inOutFlags.GetLength() ? outFunc->inOutFlags[n] : asTM_NONE; // Is the data type allowed? // TODO: Hasn't this been validated by the builder already? if( (type.IsReference() && inoutFlag != asTM_INOUTREF && !type.CanBeInstantiated()) || (!type.IsReference() && !type.CanBeInstantiated()) ) { asCString parm = type.Format(outFunc->nameSpace); if( inoutFlag == asTM_INREF ) parm += "in"; else if( inoutFlag == asTM_OUTREF ) parm += "out"; asCString str; str.Format(TXT_PARAMETER_CANT_BE_s, parm.AddressOf()); Error(str, func); } // If the parameter has a name then declare it as variable if( parameterNames[n] != "" ) { asCString &name = parameterNames[n]; if( vs.DeclareVariable(name.AddressOf(), type, stackPos, true) < 0 ) { // TODO: It might be an out-of-memory too Error(TXT_PARAMETER_ALREADY_DECLARED, func); } // Add marker for variable declaration byteCode.VarDecl((int)outFunc->scriptData->variables.GetLength()); outFunc->AddVariable(name, type, stackPos); } else vs.DeclareVariable("", type, stackPos, true); // Move to next parameter stackPos -= type.GetSizeOnStackDWords(); } for( n = asUINT(vs.variables.GetLength()); n-- > 0; ) variables->DeclareVariable(vs.variables[n]->name.AddressOf(), vs.variables[n]->type, vs.variables[n]->stackOffset, vs.variables[n]->onHeap); variables->DeclareVariable("return", returnType, stackPos, true); return stackPos; } void asCCompiler::CompileMemberInitialization(asCByteCode *bc, bool onlyDefaults) { asASSERT( m_classDecl ); // Initialize each member in the order they were declared for( asUINT n = 0; n < outFunc->objectType->properties.GetLength(); n++ ) { asCObjectProperty *prop = outFunc->objectType->properties[n]; // Check if the property has an initialization expression asCScriptNode *declNode = 0; asCScriptNode *initNode = 0; asCScriptCode *initScript = 0; for( asUINT m = 0; m < m_classDecl->propInits.GetLength(); m++ ) { if( m_classDecl->propInits[m].name == prop->name ) { declNode = m_classDecl->propInits[m].declNode; initNode = m_classDecl->propInits[m].initNode; initScript = m_classDecl->propInits[m].file; break; } } // If declNode is null, the property was inherited in which case // it was already initialized by the base class' constructor if( declNode ) { if( initNode ) { if( onlyDefaults ) continue; #ifdef AS_NO_MEMBER_INIT // Give an error as the initialization in the declaration has been disabled asCScriptCode *origScript = script; script = initScript; Error("Initialization of members in declaration is not supported", initNode); script = origScript; // Clear the initialization node initNode = 0; initScript = script; #else // Re-parse the initialization expression as the parser now knows the types, which it didn't earlier asCParser parser(builder); int r = parser.ParseVarInit(initScript, initNode); if( r < 0 ) continue; initNode = parser.GetScriptNode(); #endif } else { if( !onlyDefaults ) continue; } #ifdef AS_NO_MEMBER_INIT // The initialization will be done in the asCScriptObject constructor, so // here we should just validate that the member has a default constructor if( prop->type.IsObject() && !prop->type.IsObjectHandle() && (((prop->type.GetTypeInfo()->flags & asOBJ_REF) && prop->type.GetBehaviour()->factory == 0) || ((prop->type.GetTypeInfo()->flags & asOBJ_VALUE) && prop->type.GetBehaviour()->construct == 0 && !(prop->type.GetTypeInfo()->flags & asOBJ_POD))) ) { // Class has no default factory/constructor. asCString str; // TODO: funcdef: asCDataType should have a GetTypeName() if( prop->type.GetFuncDef() ) str.Format(TXT_NO_DEFAULT_CONSTRUCTOR_FOR_s, prop->type.GetFuncDef()->GetName()); else str.Format(TXT_NO_DEFAULT_CONSTRUCTOR_FOR_s, prop->type.GetTypeInfo()->GetName()); Error(str, declNode); } #else // Temporarily set the script that is being compiled to where the member initialization is declared. // The script can be different when including mixin classes from a different script section asCScriptCode *origScript = script; script = initScript; // Add a line instruction with the position of the declaration LineInstr(bc, declNode->tokenPos); // Compile the initialization asQWORD constantValue; asCByteCode bcInit(engine); CompileInitialization(initNode, &bcInit, prop->type, declNode, prop->byteOffset, &constantValue, 2); bcInit.OptimizeLocally(tempVariableOffsets); bc->AddCode(&bcInit); script = origScript; #endif } } } // Entry int asCCompiler::CompileFunction(asCBuilder *in_builder, asCScriptCode *in_script, asCArray &in_parameterNames, asCScriptNode *in_func, asCScriptFunction *in_outFunc, sClassDeclaration *in_classDecl) { TimeIt("asCCompiler::CompileFunction"); Reset(in_builder, in_script, in_outFunc); int buildErrors = builder->numErrors; int stackPos = SetupParametersAndReturnVariable(in_parameterNames, in_func); //-------------------------------------------- // Compile the statement block if( m_isConstructor ) m_classDecl = in_classDecl; // We need to parse the statement block now asCScriptNode *blockBegin; // If the function signature was implicit, e.g. virtual property accessor or // lambda function, then the received node already is the statement block if( in_func->nodeType != snStatementBlock ) blockBegin = in_func->lastChild; else blockBegin = in_func; // TODO: memory: We can parse the statement block one statement at a time, thus save even more memory // TODO: optimize: For large functions, the parsing of the statement block can take a long time. Presumably because a lot of memory needs to be allocated asCParser parser(builder); int r = parser.ParseStatementBlock(script, blockBegin); if( r < 0 ) return -1; asCScriptNode *block = parser.GetScriptNode(); // Reserve a label for the cleanup code nextLabel++; bool hasReturn; asCByteCode bc(engine); LineInstr(&bc, blockBegin->tokenPos); CompileStatementBlock(block, false, &hasReturn, &bc); LineInstr(&bc, blockBegin->tokenPos + blockBegin->tokenLength); // Make sure there is a return in all paths (if not return type is void) // Don't bother with this check if there are compiler errors, e.g. Unreachable code if( !hasCompileErrors && outFunc->returnType != asCDataType::CreatePrimitive(ttVoid, false) ) { if( hasReturn == false ) Error(TXT_NOT_ALL_PATHS_RETURN, blockBegin); } //------------------------------------------------ // Concatenate the bytecode // Insert a JitEntry at the start of the function for JIT compilers byteCode.InstrPTR(asBC_JitEntry, 0); if( outFunc->objectType ) { if( m_isConstructor ) { if( outFunc->objectType->derivedFrom ) { // Call the base class' default constructor unless called manually in the code if( !m_isConstructorCalled ) { if( outFunc->objectType->derivedFrom->beh.construct ) { // Initialize members without explicit expression first CompileMemberInitialization(&byteCode, true); // Call base class' constructor asCByteCode tmpBC(engine); tmpBC.InstrSHORT(asBC_PSF, 0); tmpBC.Instr(asBC_RDSPtr); tmpBC.Call(asBC_CALL, outFunc->objectType->derivedFrom->beh.construct, AS_PTR_SIZE); tmpBC.OptimizeLocally(tempVariableOffsets); byteCode.AddCode(&tmpBC); // Add the initialization of the members with explicit expressions CompileMemberInitialization(&byteCode, false); } else Error(TEXT_BASE_DOESNT_HAVE_DEF_CONSTR, blockBegin); } else { // Only initialize members that don't have an explicit expression // The members that are explicitly initialized will be initialized after the call to base class' constructor CompileMemberInitialization(&byteCode, true); } } else { // Add the initialization of the members CompileMemberInitialization(&byteCode, true); CompileMemberInitialization(&byteCode, false); } } } // Add the code for the statement block byteCode.AddCode(&bc); // Count total variable size int varSize = GetVariableOffset((int)variableAllocations.GetLength()) - 1; outFunc->scriptData->variableSpace = varSize; // Deallocate all local variables int n; for( n = (int)variables->variables.GetLength() - 1; n >= 0; n-- ) { sVariable *v = variables->variables[n]; if( v->stackOffset > 0 ) { // Call variables destructors if( v->name != "return" && v->name != "return address" ) CallDestructor(v->type, v->stackOffset, v->onHeap, &byteCode); DeallocateVariable(v->stackOffset); } } // This is the label that return statements jump to // in order to exit the function byteCode.Label(0); // Call destructors for function parameters for( n = (int)variables->variables.GetLength() - 1; n >= 0; n-- ) { sVariable *v = variables->variables[n]; if( v->stackOffset <= 0 ) { // Call variable destructors here, for variables not yet destroyed if( v->name != "return" && v->name != "return address" ) CallDestructor(v->type, v->stackOffset, v->onHeap, &byteCode); } // Do not deallocate parameters } // Check if the number of labels in the functions isn't too many to be handled if( nextLabel >= (1<<15) ) Error(TXT_TOO_MANY_JUMP_LABELS, in_func); // If there are compile errors, there is no reason to build the final code if( hasCompileErrors || builder->numErrors != buildErrors ) return -1; // At this point there should be no variables allocated asASSERT(variableAllocations.GetLength() == freeVariables.GetLength()); // Remove the variable scope RemoveVariableScope(); byteCode.Ret(-stackPos); FinalizeFunction(); #ifdef AS_DEBUG // DEBUG: output byte code if( outFunc->objectType ) byteCode.DebugOutput(("__" + outFunc->objectType->name + "_" + outFunc->name + ".txt").AddressOf(), in_outFunc); else byteCode.DebugOutput(("__" + outFunc->name + ".txt").AddressOf(), in_outFunc); #endif return 0; } int asCCompiler::CallCopyConstructor(asCDataType &type, int offset, bool isObjectOnHeap, asCByteCode *bc, asCExprContext *arg, asCScriptNode *node, bool isGlobalVar, bool derefDest) { if( !type.IsObject() ) return 0; // CallCopyConstructor should not be called for object handles. asASSERT( !type.IsObjectHandle() ); asCArray args; args.PushLast(arg); // The reference parameter must be pushed on the stack asASSERT( arg->type.dataType.GetTypeInfo() == type.GetTypeInfo() ); // Since we're calling the copy constructor, we have to trust the function to not do // anything stupid otherwise we will just enter a loop, as we try to make temporary // copies of the argument in order to guarantee safety. if( type.GetTypeInfo()->flags & asOBJ_REF ) { asCExprContext ctx(engine); int func = 0; asSTypeBehaviour *beh = type.GetBehaviour(); if( beh ) func = beh->copyfactory; if( func > 0 ) { if( !isGlobalVar ) { // Call factory and store the handle in the given variable PerformFunctionCall(func, &ctx, false, &args, CastToObjectType(type.GetTypeInfo()), true, offset); // Pop the reference left by the function call ctx.bc.Instr(asBC_PopPtr); } else { // Call factory PerformFunctionCall(func, &ctx, false, &args, CastToObjectType(type.GetTypeInfo())); // Store the returned handle in the global variable ctx.bc.Instr(asBC_RDSPtr); ctx.bc.InstrPTR(asBC_PGA, engine->globalProperties[offset]->GetAddressOfValue()); ctx.bc.InstrPTR(asBC_REFCPY, type.GetTypeInfo()); ctx.bc.Instr(asBC_PopPtr); ReleaseTemporaryVariable(ctx.type.stackOffset, &ctx.bc); } bc->AddCode(&ctx.bc); return 0; } } else { asSTypeBehaviour *beh = type.GetBehaviour(); int func = beh ? beh->copyconstruct : 0; if( func > 0 ) { // Push the address where the object will be stored on the stack, before the argument // TODO: When the context is serializable this probably has to be changed, since this // pointer can remain on the stack while the context is suspended. There is no // risk the pointer becomes invalid though, there is just no easy way to serialize it. asCByteCode tmp(engine); if( isGlobalVar ) tmp.InstrPTR(asBC_PGA, engine->globalProperties[offset]->GetAddressOfValue()); else if( isObjectOnHeap ) tmp.InstrSHORT(asBC_PSF, (short)offset); tmp.AddCode(bc); bc->AddCode(&tmp); // When the object is allocated on the stack the object pointer // must be pushed on the stack after the arguments if( !isObjectOnHeap ) { asASSERT( !isGlobalVar ); bc->InstrSHORT(asBC_PSF, (short)offset); if( derefDest ) { // The variable is a reference to the real location, so we need to dereference it bc->Instr(asBC_RDSPtr); } } asCExprContext ctx(engine); PerformFunctionCall(func, &ctx, isObjectOnHeap, &args, CastToObjectType(type.GetTypeInfo())); bc->AddCode(&ctx.bc); // TODO: value on stack: This probably needs to be done in PerformFunctionCall // Mark the object as initialized if( !isObjectOnHeap ) bc->ObjInfo(offset, asOBJ_INIT); return 0; } } // Class has no copy constructor/factory. asCString str; str.Format(TXT_NO_COPY_CONSTRUCTOR_FOR_s, type.GetTypeInfo()->GetName()); Error(str, node); return -1; } int asCCompiler::CallDefaultConstructor(const asCDataType &type, int offset, bool isObjectOnHeap, asCByteCode *bc, asCScriptNode *node, int isVarGlobOrMem, bool derefDest) { if( !type.IsObject() || type.IsObjectHandle() ) return 0; if( type.GetTypeInfo()->flags & asOBJ_REF ) { asCExprContext ctx(engine); ctx.exprNode = node; int func = 0; asSTypeBehaviour *beh = type.GetBehaviour(); if( beh ) { func = beh->factory; // If no trivial default factory is found, look for a factory where all params have default args if( func == 0 ) { for( asUINT n = 0; n < beh->factories.GetLength(); n++ ) { asCScriptFunction *f = engine->scriptFunctions[beh->factories[n]]; if( f->defaultArgs.GetLength() == f->parameterTypes.GetLength() && f->defaultArgs[0] != 0 ) { func = beh->factories[n]; break; } } } } if( func > 0 ) { asCArray args; asCScriptFunction *f = engine->scriptFunctions[func]; if( f->parameterTypes.GetLength() ) { // Add the default values for arguments not explicitly supplied CompileDefaultAndNamedArgs(node, args, func, CastToObjectType(type.GetTypeInfo())); PrepareFunctionCall(func, &ctx.bc, args); MoveArgsToStack(func, &ctx.bc, args, false); } if( isVarGlobOrMem == 0 ) { // Call factory and store the handle in the given variable PerformFunctionCall(func, &ctx, false, &args, CastToObjectType(type.GetTypeInfo()), true, offset); // Pop the reference left by the function call ctx.bc.Instr(asBC_PopPtr); } else { // Call factory PerformFunctionCall(func, &ctx, false, &args, CastToObjectType(type.GetTypeInfo())); // TODO: runtime optimize: Should have a way of storing the object pointer directly to the destination // instead of first storing it in a local variable and then copying it to the // destination. if( !(type.GetTypeInfo()->flags & asOBJ_SCOPED) ) { // Only dereference the variable if not a scoped type ctx.bc.Instr(asBC_RDSPtr); } if( isVarGlobOrMem == 1 ) { // Store the returned handle in the global variable ctx.bc.InstrPTR(asBC_PGA, engine->globalProperties[offset]->GetAddressOfValue()); } else { // Store the returned handle in the class member ctx.bc.InstrSHORT(asBC_PSF, 0); ctx.bc.Instr(asBC_RDSPtr); ctx.bc.InstrSHORT_DW(asBC_ADDSi, (short)offset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); } if( type.GetTypeInfo()->flags & asOBJ_SCOPED ) { // For scoped typed we must move the reference from the local // variable rather than copy it as there is no AddRef behaviour ctx.bc.InstrSHORT_DW(asBC_COPY, AS_PTR_SIZE, asTYPEID_OBJHANDLE | engine->GetTypeIdFromDataType(type)); // Clear the local variable so the reference isn't released ctx.bc.InstrSHORT(asBC_ClrVPtr, ctx.type.stackOffset); } else { if( type.IsFuncdef() ) ctx.bc.InstrPTR(asBC_REFCPY, &engine->functionBehaviours); else ctx.bc.InstrPTR(asBC_REFCPY, type.GetTypeInfo()); } ctx.bc.Instr(asBC_PopPtr); ReleaseTemporaryVariable(ctx.type.stackOffset, &ctx.bc); } bc->AddCode(&ctx.bc); // Cleanup for( asUINT n = 0; n < args.GetLength(); n++ ) if( args[n] ) { asDELETE(args[n], asCExprContext); } return 0; } } else { asCExprContext ctx(engine); ctx.exprNode = node; asSTypeBehaviour *beh = type.GetBehaviour(); int func = 0; if( beh ) { func = beh->construct; // If no trivial default constructor is found, look for a constructor where all params have default args if( func == 0 ) { for( asUINT n = 0; n < beh->constructors.GetLength(); n++ ) { asCScriptFunction *f = engine->scriptFunctions[beh->constructors[n]]; if( f->defaultArgs.GetLength() == f->parameterTypes.GetLength() && f->defaultArgs[0] != 0 ) { func = beh->constructors[n]; break; } } } } // Allocate and initialize with the default constructor if( func != 0 || (type.GetTypeInfo()->flags & asOBJ_POD) ) { asCArray args; asCScriptFunction *f = engine->scriptFunctions[func]; if( f && f->parameterTypes.GetLength() ) { // Add the default values for arguments not explicitly supplied CompileDefaultAndNamedArgs(node, args, func, CastToObjectType(type.GetTypeInfo())); PrepareFunctionCall(func, &ctx.bc, args); MoveArgsToStack(func, &ctx.bc, args, false); } if( !isObjectOnHeap ) { if( isVarGlobOrMem == 0 ) { // There is nothing to do if there is no function, // as the memory is already allocated on the stack if( func ) { // Call the constructor as a normal function bc->InstrSHORT(asBC_PSF, (short)offset); if( derefDest ) bc->Instr(asBC_RDSPtr); asCExprContext ctxCall(engine); PerformFunctionCall(func, &ctxCall, false, 0, CastToObjectType(type.GetTypeInfo())); bc->AddCode(&ctxCall.bc); // TODO: value on stack: This probably needs to be done in PerformFunctionCall // Mark the object as initialized bc->ObjInfo(offset, asOBJ_INIT); } } else if( isVarGlobOrMem == 2 ) { // Only POD types can be allocated inline in script classes asASSERT( type.GetTypeInfo()->flags & asOBJ_POD ); if( func ) { // Call the constructor as a normal function bc->InstrSHORT(asBC_PSF, 0); bc->Instr(asBC_RDSPtr); bc->InstrSHORT_DW(asBC_ADDSi, (short)offset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); asCExprContext ctxCall(engine); PerformFunctionCall(func, &ctxCall, false, 0, CastToObjectType(type.GetTypeInfo())); bc->AddCode(&ctxCall.bc); } } else { asASSERT( false ); } } else { if( isVarGlobOrMem == 0 ) bc->InstrSHORT(asBC_PSF, (short)offset); else if( isVarGlobOrMem == 1 ) bc->InstrPTR(asBC_PGA, engine->globalProperties[offset]->GetAddressOfValue()); else { bc->InstrSHORT(asBC_PSF, 0); bc->Instr(asBC_RDSPtr); bc->InstrSHORT_DW(asBC_ADDSi, (short)offset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); } if( (type.GetTypeInfo()->flags & asOBJ_TEMPLATE) ) { asCScriptFunction *descr = engine->scriptFunctions[func]; asASSERT( descr->funcType == asFUNC_SCRIPT ); // Find the id of the real constructor and not the generated stub asUINT id = 0; asDWORD *funcBc = descr->scriptData->byteCode.AddressOf(); while( funcBc ) { if( (*(asBYTE*)funcBc) == asBC_CALLSYS ) { id = asBC_INTARG(funcBc); break; } funcBc += asBCTypeSize[asBCInfo[*(asBYTE*)funcBc].type]; } asASSERT( id ); bc->InstrPTR(asBC_OBJTYPE, type.GetTypeInfo()); bc->Alloc(asBC_ALLOC, type.GetTypeInfo(), id, AS_PTR_SIZE + AS_PTR_SIZE); } else bc->Alloc(asBC_ALLOC, type.GetTypeInfo(), func, AS_PTR_SIZE); } // Cleanup for( asUINT n = 0; n < args.GetLength(); n++ ) if( args[n] ) { asDELETE(args[n], asCExprContext); } return 0; } } // Class has no default factory/constructor. asCString str; str.Format(TXT_NO_DEFAULT_CONSTRUCTOR_FOR_s, type.GetTypeInfo()->GetName()); Error(str, node); return -1; } void asCCompiler::CallDestructor(asCDataType &type, int offset, bool isObjectOnHeap, asCByteCode *bc) { if( !type.IsReference() ) { // Call destructor for the data type if( type.IsObject() || type.IsFuncdef() ) { // The null pointer doesn't need to be destroyed if( type.IsNullHandle() ) return; // Nothing is done for list pattern types, as this is taken care of by the CompileInitList method if( type.GetTypeInfo()->flags & asOBJ_LIST_PATTERN ) return; if( isObjectOnHeap || type.IsObjectHandle() ) { // Free the memory if (type.IsFuncdef()) bc->InstrW_PTR(asBC_FREE, (short)offset, &engine->functionBehaviours); else bc->InstrW_PTR(asBC_FREE, (short)offset, type.GetTypeInfo()); } else { asASSERT( type.GetTypeInfo()->GetFlags() & asOBJ_VALUE ); if( type.GetBehaviour()->destruct ) { // Call the destructor as a regular function asCExprContext ctx(engine); ctx.bc.InstrSHORT(asBC_PSF, (short)offset); PerformFunctionCall(type.GetBehaviour()->destruct, &ctx); ctx.bc.OptimizeLocally(tempVariableOffsets); bc->AddCode(&ctx.bc); } // TODO: Value on stack: This probably needs to be done in PerformFunctionCall // Mark the object as destroyed bc->ObjInfo(offset, asOBJ_UNINIT); } } } } void asCCompiler::LineInstr(asCByteCode *bc, size_t pos) { int r, c; script->ConvertPosToRowCol(pos, &r, &c); bc->Line(r, c, script->idx); } void asCCompiler::CompileStatementBlock(asCScriptNode *block, bool ownVariableScope, bool *hasReturn, asCByteCode *bc) { *hasReturn = false; bool isFinished = false; bool hasUnreachableCode = false; bool hasReturnBefore = false; if( ownVariableScope ) { bc->Block(true); AddVariableScope(); } asCScriptNode *node = block->firstChild; while( node ) { #ifdef AS_DEBUG // Keep the current line in a variable so it will be easier // to determine where in a script an assert is occurring. int currentLine = 0; script->ConvertPosToRowCol(node->tokenPos, ¤tLine, 0); #endif if( !hasUnreachableCode && (*hasReturn || isFinished) ) { // Empty statements don't count if( node->nodeType != snExpressionStatement || node->firstChild ) { hasUnreachableCode = true; Warning(TXT_UNREACHABLE_CODE, node); } if( *hasReturn ) hasReturnBefore = true; } if( node->nodeType == snBreak || node->nodeType == snContinue ) isFinished = true; asCByteCode statement(engine); if( node->nodeType == snDeclaration ) CompileDeclaration(node, &statement); else CompileStatement(node, hasReturn, &statement); // Ignore missing returns in unreachable code paths if( !(*hasReturn) && hasReturnBefore ) *hasReturn = true; LineInstr(bc, node->tokenPos); bc->AddCode(&statement); if( !hasCompileErrors ) { asASSERT( tempVariables.GetLength() == 0 ); asASSERT( reservedVariables.GetLength() == 0 ); } node = node->next; } if( ownVariableScope ) { // Deallocate variables in this block, in reverse order for( int n = (int)variables->variables.GetLength() - 1; n >= 0; n-- ) { sVariable *v = variables->variables[n]; // Call variable destructors here, for variables not yet destroyed // If the block is terminated with a break, continue, or // return the variables are already destroyed if( !isFinished && !*hasReturn ) CallDestructor(v->type, v->stackOffset, v->onHeap, bc); // Don't deallocate function parameters if( v->stackOffset > 0 ) DeallocateVariable(v->stackOffset); } RemoveVariableScope(); bc->Block(false); } } // Entry int asCCompiler::CompileGlobalVariable(asCBuilder *in_builder, asCScriptCode *in_script, asCScriptNode *in_node, sGlobalVariableDescription *in_gvar, asCScriptFunction *in_outFunc) { Reset(in_builder, in_script, in_outFunc); m_globalVar = in_gvar; // Add a variable scope (even though variables can't be declared) AddVariableScope(); in_gvar->isPureConstant = false; // Parse the initialization nodes asCParser parser(builder); if (in_node) { int r = parser.ParseVarInit(in_script, in_node); if (r < 0) return r; in_node = parser.GetScriptNode(); } asCExprContext compiledCtx(engine); bool preCompiled = false; if (in_gvar->datatype.IsAuto()) { preCompiled = CompileAutoType(in_gvar->datatype, compiledCtx, in_node, in_gvar->declaredAtNode); if (!preCompiled) { // If it wasn't possible to determine the type from the expression then there // is no need to continue with the initialization. The error was already reported // in CompileAutoType. return -1; } } if( in_gvar->property == 0 ) { in_gvar->property = builder->module->AllocateGlobalProperty(in_gvar->name.AddressOf(), in_gvar->datatype, in_gvar->ns); in_gvar->index = in_gvar->property->id; } // Compile the expression asCExprContext ctx(engine); asQWORD constantValue = 0; if( CompileInitialization(in_node, &ctx.bc, in_gvar->datatype, in_gvar->declaredAtNode, in_gvar->index, &constantValue, 1, preCompiled ? &compiledCtx : 0) ) { // Should the variable be marked as pure constant? if( in_gvar->datatype.IsPrimitive() && in_gvar->datatype.IsReadOnly() ) { in_gvar->isPureConstant = true; in_gvar->constantValue = constantValue; } } // Concatenate the bytecode int varSize = GetVariableOffset((int)variableAllocations.GetLength()) - 1; // Add information on the line number for the global variable size_t pos = 0; if( in_gvar->declaredAtNode ) pos = in_gvar->declaredAtNode->tokenPos; else if( in_gvar->initializationNode ) pos = in_gvar->initializationNode->tokenPos; LineInstr(&byteCode, pos); // Reserve space for all local variables outFunc->scriptData->variableSpace = varSize; ctx.bc.OptimizeLocally(tempVariableOffsets); byteCode.AddCode(&ctx.bc); // Deallocate variables in this block, in reverse order for( int n = (int)variables->variables.GetLength() - 1; n >= 0; --n ) { sVariable *v = variables->variables[n]; // Call variable destructors here, for variables not yet destroyed CallDestructor(v->type, v->stackOffset, v->onHeap, &byteCode); DeallocateVariable(v->stackOffset); } if( hasCompileErrors ) return -1; // At this point there should be no variables allocated asASSERT(variableAllocations.GetLength() == freeVariables.GetLength()); // Remove the variable scope again RemoveVariableScope(); byteCode.Ret(0); FinalizeFunction(); #ifdef AS_DEBUG // DEBUG: output byte code byteCode.DebugOutput(("___init_" + in_gvar->name + ".txt").AddressOf(), outFunc); #endif return 0; } void asCCompiler::DetermineSingleFunc(asCExprContext *ctx, asCScriptNode *node) { // Don't do anything if this is not a deferred global function if( !ctx->IsGlobalFunc() ) return; // Determine the namespace asSNameSpace *ns = 0; asCString name = ""; int pos = ctx->methodName.FindLast("::"); if( pos >= 0 ) { asCString nsName = ctx->methodName.SubString(0, pos+2); // Cut off the :: if( nsName.GetLength() > 2 ) nsName.SetLength(nsName.GetLength()-2); ns = DetermineNameSpace(nsName); name = ctx->methodName.SubString(pos+2); } else { DetermineNameSpace(""); name = ctx->methodName; } asCArray funcs; if( ns ) builder->GetFunctionDescriptions(name.AddressOf(), funcs, ns); // CompileVariableAccess should guarantee that at least one function is exists asASSERT( funcs.GetLength() > 0 ); if( funcs.GetLength() > 1 ) { asCString str; str.Format(TXT_MULTIPLE_MATCHING_SIGNATURES_TO_s, ctx->methodName.AddressOf()); Error(str, node); // Fall through so the compiler can continue as if only one function was matching } // A shared object may not access global functions unless they too are shared (e.g. registered functions) if( !builder->GetFunctionDescription(funcs[0])->IsShared() && outFunc->IsShared() ) { asCString msg; msg.Format(TXT_SHARED_CANNOT_CALL_NON_SHARED_FUNC_s, builder->GetFunctionDescription(funcs[0])->GetDeclaration()); Error(msg, node); // Fall through so the compiler can continue anyway } // Push the function pointer on the stack ctx->bc.InstrPTR(asBC_FuncPtr, builder->GetFunctionDescription(funcs[0])); ctx->type.Set(asCDataType::CreateType(engine->FindMatchingFuncdef(builder->GetFunctionDescription(funcs[0]), builder->module), false)); ctx->type.dataType.MakeHandle(true); ctx->type.isExplicitHandle = true; ctx->methodName = ""; } void asCCompiler::CompileInitAsCopy(asCDataType &dt, int offset, asCByteCode *bc, asCExprContext *arg, asCScriptNode *node, bool derefDestination) { bool isObjectOnHeap = derefDestination ? false : IsVariableOnHeap(offset); // Use copy constructor if available. if(CastToObjectType(dt.GetTypeInfo()) && CastToObjectType(dt.GetTypeInfo())->beh.copyconstruct ) { PrepareForAssignment(&dt, arg, node, true); int r = CallCopyConstructor(dt, offset, isObjectOnHeap, bc, arg, node, 0, derefDestination); if( r < 0 && tempVariables.Exists(offset) ) Error(TXT_FAILED_TO_CREATE_TEMP_OBJ, node); } else { // TODO: Need to reserve variables, as the default constructor may need // to allocate temporary variables to compute default args // Allocate and construct the temporary object before whatever is already in the bytecode asCByteCode tmpBC(engine); int r = CallDefaultConstructor(dt, offset, isObjectOnHeap, &tmpBC, node, 0, derefDestination); if( r < 0 ) { if( tempVariables.Exists(offset) ) Error(TXT_FAILED_TO_CREATE_TEMP_OBJ, node); return; } tmpBC.AddCode(bc); bc->AddCode(&tmpBC); // Assign the evaluated expression to the temporary variable PrepareForAssignment(&dt, arg, node, true); bc->AddCode(&arg->bc); // Call the opAssign method to assign the value to the temporary object dt.MakeReference(isObjectOnHeap); asCExprValue type; type.Set(dt); type.isTemporary = true; type.stackOffset = (short)offset; if( dt.IsObjectHandle() ) type.isExplicitHandle = true; bc->InstrSHORT(asBC_PSF, (short)offset); if( derefDestination ) bc->Instr(asBC_RDSPtr); r = PerformAssignment(&type, &arg->type, bc, node); if( r < 0 ) { if( tempVariables.Exists(offset) ) Error(TXT_FAILED_TO_CREATE_TEMP_OBJ, node); return; } // Pop the reference that was pushed on the stack if the result is an object if( type.dataType.IsObject() || type.dataType.IsFuncdef() ) bc->Instr(asBC_PopPtr); // If the assignment operator returned an object by value it will // be in a temporary variable which we need to destroy now if( type.isTemporary && type.stackOffset != (short)offset ) ReleaseTemporaryVariable(type.stackOffset, bc); // Release the original value too in case it is a temporary ReleaseTemporaryVariable(arg->type, bc); } } int asCCompiler::PrepareArgument(asCDataType *paramType, asCExprContext *ctx, asCScriptNode *node, bool isFunction, int refType, bool isMakingCopy) { asCDataType param = *paramType; if( paramType->GetTokenType() == ttQuestion ) { // The function is expecting a var type. If the argument is a function name, we must now decide which function it is DetermineSingleFunc(ctx, node); // Since the function is expecting a var type ?, then we don't want to convert the argument to anything else param = ctx->type.dataType; param.MakeHandle(ctx->type.isExplicitHandle || ctx->type.IsNullConstant()); // Treat the void expression like a null handle when working with var types if( ctx->IsVoidExpression() ) param = asCDataType::CreateNullHandle(); // If value assign is disabled for reference types, then make // sure to always pass the handle to ? parameters if( builder->engine->ep.disallowValueAssignForRefType && ctx->type.dataType.GetTypeInfo() && (ctx->type.dataType.GetTypeInfo()->flags & asOBJ_REF) && !(ctx->type.dataType.GetTypeInfo()->flags & asOBJ_SCOPED) ) { param.MakeHandle(true); } param.MakeReference(paramType->IsReference()); param.MakeReadOnly(paramType->IsReadOnly()); } else param = *paramType; asCDataType dt = param; // Need to protect arguments by reference if( isFunction && dt.IsReference() ) { // Allocate a temporary variable of the same type as the argument dt.MakeReference(false); dt.MakeReadOnly(false); int offset; if( refType == asTM_INREF ) { ProcessPropertyGetAccessor(ctx, node); // Add the type id as hidden arg if the parameter is a ? type if( paramType->GetTokenType() == ttQuestion ) { asCByteCode tmpBC(engine); // Place the type id on the stack as a hidden parameter tmpBC.InstrDWORD(asBC_TYPEID, engine->GetTypeIdFromDataType(param)); // Insert the code before the expression code tmpBC.AddCode(&ctx->bc); ctx->bc.AddCode(&tmpBC); } if( dt.IsPrimitive() ) { // If the reference is const, then it is not necessary to make a copy if the value already is a variable // Even if the same variable is passed in another argument as non-const then there is no problem IsVariableInitialized(&ctx->type, node); if( ctx->type.dataType.IsReference() ) ConvertToVariable(ctx); ImplicitConversion(ctx, dt, node, asIC_IMPLICIT_CONV, true); if( !(param.IsReadOnly() && ctx->type.isVariable) ) ConvertToTempVariable(ctx); PushVariableOnStack(ctx, true); ctx->type.dataType.MakeReadOnly(param.IsReadOnly()); } else if( ctx->type.dataType.IsNullHandle() ) { // Make sure the argument type can support handles (or is itself a handle) if( !dt.SupportHandles() && !dt.IsObjectHandle() ) { asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, ctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), param.Format(outFunc->nameSpace).AddressOf()); Error(str, node); ctx->type.Set(param); return -1; } // Need to initialize a local temporary variable to // represent the null handle when passed as reference asASSERT( ctx->bc.GetLastInstr() == asBC_PshNull ); ctx->bc.Instr(asBC_PopPtr); dt.MakeHandle(true); offset = AllocateVariableNotIn(dt, true, false, ctx); // Push the reference to the variable on the stack ctx->bc.InstrWORD(asBC_PSF, (short)offset); ctx->type.SetVariable(dt, offset, true); ctx->type.isExplicitHandle = true; } else { IsVariableInitialized(&ctx->type, node); if( !isMakingCopy ) { // Even though the parameter expects a reference, it is only meant to be // used as input value and doesn't have to refer to the actual object, so it // is OK to do an implicit conversion. ImplicitConversion(ctx, dt, node, asIC_IMPLICIT_CONV, true); if( !ctx->type.dataType.IsEqualExceptRefAndConst(param) ) { asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, ctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), param.Format(outFunc->nameSpace).AddressOf()); Error(str, node); ctx->type.Set(param); return -1; } // The compiler must guarantee that the object stays alive during the execution // of the function, and it must also guarantee that the value isn't modified by // the function. // If the argument is a temporary local variable then it is safe to be passed to // the function as it is, since the local variable will stay alive, and since it // is temporary there is no side effect if the function modifies it. // If the parameter is read-only and therefore guaranteed not to be modified by the // function, then it is enough that the variable is local to guarantee the lifetime. if( !ctx->type.isTemporary && !(param.IsReadOnly() && ctx->type.isVariable) ) { if( ctx->type.dataType.IsFuncdef() || ((ctx->type.dataType.GetTypeInfo()->flags & asOBJ_REF) && param.IsReadOnly() && !(ctx->type.dataType.GetTypeInfo()->flags & asOBJ_SCOPED)) ) { // Funcdefs only need an extra handle to guarantee the lifetime. // If the object is a reference type (except scoped reference types), and the // parameter is a const reference, then it is not necessary to make a copy of the // object. The compiler just needs to hold a handle to guarantee the lifetime. // Allocate a handle variable dt.MakeHandle(true); offset = AllocateVariableNotIn(dt, true, false, ctx); // Copy the handle Dereference(ctx, true); ctx->bc.InstrWORD(asBC_PSF, (asWORD)offset); if (ctx->type.dataType.IsFuncdef()) ctx->bc.InstrPTR(asBC_REFCPY, &engine->functionBehaviours); else ctx->bc.InstrPTR(asBC_REFCPY, ctx->type.dataType.GetTypeInfo()); ctx->bc.Instr(asBC_PopPtr); ctx->bc.InstrWORD(asBC_PSF, (asWORD)offset); // The type should be set to the param type instead of dt to guarantee // that the expression keeps the correct type for variable ? args. Otherwise // MoveArgsToStack will use the wrong bytecode to move the arg to the stack bool isExplicitHandle = ctx->type.isExplicitHandle; ctx->type.SetVariable(param, offset, true); ctx->type.dataType.MakeHandle(true); ctx->type.isExplicitHandle = isExplicitHandle; } else { // Make a copy of the object to guarantee that the original isn't modified asASSERT(!dt.IsFuncdef()); // Allocate and initialize a temporary local object offset = AllocateVariableNotIn(dt, true, false, ctx); CompileInitAsCopy(dt, offset, &ctx->bc, ctx, node, false); // Push the object pointer on the stack ctx->bc.InstrSHORT(asBC_PSF, (short)offset); if( dt.IsObject() && !dt.IsObjectHandle() ) ctx->bc.Instr(asBC_RDSPtr); // Set the resulting type ctx->type.Set(dt); ctx->type.isTemporary = true; ctx->type.stackOffset = short(offset); if( dt.IsObjectHandle() ) ctx->type.isExplicitHandle = true; ctx->type.dataType.MakeReference(false); if( paramType->IsReadOnly() ) ctx->type.dataType.MakeReadOnly(true); } } // When calling a function expecting a var arg with a parameter received as reference to handle // then it is necessary to copy the handle to a local variable, otherwise MoveArgsToStack will // not be able to do the correct double dereference to put the reference to the object on the stack. if (paramType->GetTokenType() == ttQuestion && !param.IsObjectHandle() && ctx->type.isVariable) { sVariable *var = variables->GetVariableByOffset(ctx->type.stackOffset); if (var && var->type.IsReference() && var->type.IsObjectHandle()) { // Copy the handle to local variable // Allocate a handle variable dt.MakeHandle(true); offset = AllocateVariableNotIn(dt, true, false, ctx); // Copy the handle Dereference(ctx, true); ctx->bc.InstrWORD(asBC_PSF, (asWORD)offset); if (ctx->type.dataType.IsFuncdef()) ctx->bc.InstrPTR(asBC_REFCPY, &engine->functionBehaviours); else ctx->bc.InstrPTR(asBC_REFCPY, ctx->type.dataType.GetTypeInfo()); ctx->bc.Instr(asBC_PopPtr); ctx->bc.InstrWORD(asBC_PSF, (asWORD)offset); // The type should be set to the param type instead of dt to guarantee // that the expression keeps the correct type for variable ? args. Otherwise // MoveArgsToStack will use the wrong bytecode to move the arg to the stack ctx->type.SetVariable(param, offset, true); } } } else { // We must guarantee that the address to the value is on the stack if( (ctx->type.dataType.IsObject() || ctx->type.dataType.IsFuncdef()) && !ctx->type.dataType.IsObjectHandle() && ctx->type.dataType.IsReference() ) Dereference(ctx, true); } } } else if( refType == asTM_OUTREF ) { // Add the type id as hidden arg if the parameter is a ? type if( paramType->GetTokenType() == ttQuestion ) { asCByteCode tmpBC(engine); // Place the type id on the stack as a hidden parameter tmpBC.InstrDWORD(asBC_TYPEID, engine->GetTypeIdFromDataType(param)); // Insert the code before the expression code tmpBC.AddCode(&ctx->bc); ctx->bc.AddCode(&tmpBC); } // If the expression is marked as clean, then it can be used directly // without the need to allocate another temporary value as it is known // that the argument has no other value than the default if( ctx->isCleanArg ) { // Must be a local variable asASSERT( ctx->type.isVariable ); } else { // Null handles and void expressions must be marked as explicit // handles for correct treatement in MoveArgsToStack if (dt.IsNullHandle()) ctx->type.isExplicitHandle = true; // Make sure the variable is not used in the expression offset = AllocateVariableNotIn(dt, true, false, ctx); if( dt.IsPrimitive() ) { ctx->type.SetVariable(dt, offset, true); PushVariableOnStack(ctx, true); } else { // Allocate and construct the temporary object asCByteCode tmpBC(engine); CallDefaultConstructor(dt, offset, IsVariableOnHeap(offset), &tmpBC, node); // Insert the code before the expression code tmpBC.AddCode(&ctx->bc); ctx->bc.AddCode(&tmpBC); dt.MakeReference(!(dt.IsObject() || dt.IsFuncdef()) || dt.IsObjectHandle()); asCExprValue type; type.Set(dt); type.isTemporary = true; type.stackOffset = (short)offset; type.isExplicitHandle = ctx->type.isExplicitHandle; ctx->type = type; ctx->bc.InstrSHORT(asBC_PSF, (short)offset); if( (dt.IsObject() || dt.IsFuncdef()) && !dt.IsObjectHandle() ) ctx->bc.Instr(asBC_RDSPtr); } // After the function returns the temporary variable will // be assigned to the expression, if it is a valid lvalue } } else if( refType == asTM_INOUTREF ) { ProcessPropertyGetAccessor(ctx, node); // Add the type id as hidden arg if the parameter is a ? type if( paramType->GetTokenType() == ttQuestion ) { asCByteCode tmpBC(engine); // Place the type id on the stack as a hidden parameter tmpBC.InstrDWORD(asBC_TYPEID, engine->GetTypeIdFromDataType(param)); // Insert the code before the expression code tmpBC.AddCode(&ctx->bc); ctx->bc.AddCode(&tmpBC); } // Literal constants cannot be passed to inout ref arguments if( !ctx->type.isVariable && ctx->type.isConstant && !ctx->type.dataType.IsEqualExceptRefAndConst(engine->stringType) ) { // Unless unsafe references are turned on and the reference is const if( param.IsReadOnly() && engine->ep.allowUnsafeReferences ) { // Since the parameter is a const & make a copy. ConvertToTempVariable(ctx); ctx->type.dataType.MakeReadOnly(true); } else { Error(TXT_NOT_VALID_REFERENCE, node); return -1; } } // Perform implicit ref cast if necessary, but don't allow the implicit conversion to create new objects if( (ctx->type.dataType.IsObject() || ctx->type.dataType.IsFuncdef()) && ctx->type.dataType.GetTypeInfo() != dt.GetTypeInfo() ) ImplicitConversion(ctx, dt, node, asIC_IMPLICIT_CONV, true, false); // Only objects that support object handles // can be guaranteed to be safe. Local variables are // already safe, so there is no need to add an extra // references if( !engine->ep.allowUnsafeReferences && !ctx->type.isVariable && (ctx->type.dataType.IsObject() || ctx->type.dataType.IsFuncdef()) && !ctx->type.dataType.IsObjectHandle() && ((ctx->type.dataType.GetBehaviour()->addref && ctx->type.dataType.GetBehaviour()->release) || (ctx->type.dataType.GetTypeInfo()->flags & asOBJ_NOCOUNT) || ctx->type.dataType.IsFuncdef()) ) { // Store a handle to the object as local variable asCExprContext tmp(engine); dt = ctx->type.dataType; dt.MakeHandle(true); dt.MakeReference(false); offset = AllocateVariableNotIn(dt, true, false, ctx); // Copy the handle if( !ctx->type.dataType.IsObjectHandle() && ctx->type.dataType.IsReference() ) ctx->bc.Instr(asBC_RDSPtr); ctx->bc.InstrWORD(asBC_PSF, (asWORD)offset); if( ctx->type.dataType.IsFuncdef() ) ctx->bc.InstrPTR(asBC_REFCPY, &engine->functionBehaviours); else ctx->bc.InstrPTR(asBC_REFCPY, ctx->type.dataType.GetTypeInfo()); ctx->bc.Instr(asBC_PopPtr); ctx->bc.InstrWORD(asBC_PSF, (asWORD)offset); dt.MakeHandle(false); dt.MakeReference(true); // Release previous temporary variable stored in the context (if any) if( ctx->type.isTemporary ) ReleaseTemporaryVariable(ctx->type.stackOffset, &ctx->bc); ctx->type.SetVariable(dt, offset, true); } // Make sure the reference to the value is on the stack // For objects, the reference needs to be dereferenced so the pointer on the stack is to the actual object // For handles, the reference shouldn't be changed because the pointer on the stack should be to the handle if( (ctx->type.dataType.IsObject() || ctx->type.dataType.IsFuncdef()) && ctx->type.dataType.IsReference() && !param.IsObjectHandle() ) Dereference(ctx, true); else if( ctx->type.isVariable && !(ctx->type.dataType.IsObject() || ctx->type.dataType.IsFuncdef()) ) ctx->bc.InstrSHORT(asBC_PSF, ctx->type.stackOffset); else if( ctx->type.dataType.IsPrimitive() ) ctx->bc.Instr(asBC_PshRPtr); else if( ctx->type.dataType.IsObjectHandle() && !ctx->type.dataType.IsReference() ) ImplicitConversion(ctx, param, node, asIC_IMPLICIT_CONV, true, false); } } else { ProcessPropertyGetAccessor(ctx, node); if( dt.IsPrimitive() ) { IsVariableInitialized(&ctx->type, node); if( ctx->type.dataType.IsReference() ) ConvertToVariable(ctx); // Implicitly convert primitives to the parameter type ImplicitConversion(ctx, dt, node, asIC_IMPLICIT_CONV); if( ctx->type.isVariable ) { PushVariableOnStack(ctx, dt.IsReference()); } else if( ctx->type.isConstant ) { ConvertToVariable(ctx); PushVariableOnStack(ctx, dt.IsReference()); } } else { IsVariableInitialized(&ctx->type, node); // Implicitly convert primitives to the parameter type ImplicitConversion(ctx, dt, node, asIC_IMPLICIT_CONV); // Was the conversion successful? if( !ctx->type.dataType.IsEqualExceptRef(dt) ) { asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, ctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), dt.Format(outFunc->nameSpace).AddressOf()); Error(str, node); ctx->type.Set(dt); return -1; } if( dt.IsObjectHandle() ) ctx->type.isExplicitHandle = true; if( (dt.IsObject() || dt.IsFuncdef()) && !dt.IsNullHandle() && !dt.IsReference() ) { // Objects passed by value must be placed in temporary variables // so that they are guaranteed to not be referenced anywhere else. // The object must also be allocated on the heap, as the memory will // be deleted by the called function. // Handles passed by value must also be placed in a temporary variable // to guarantee that the object referred to isn't freed too early. // TODO: value on stack: How can we avoid this unnecessary allocation? // Don't make temporary copies of handles if it is going to be used // for handle assignment anyway, i.e. REFCPY. if( !(!isFunction && isMakingCopy && ctx->type.dataType.IsObjectHandle() && ctx->type.isVariable) ) PrepareTemporaryVariable(node, ctx, true); } } } // Don't put any pointer on the stack yet if( param.IsReference() || ((param.IsObject() || param.IsFuncdef()) && !param.IsNullHandle()) ) { // &inout parameter may leave the reference on the stack already if( refType != asTM_INOUTREF ) { asASSERT( ctx->type.isVariable || ctx->type.isTemporary || isMakingCopy ); if( ctx->type.isVariable || ctx->type.isTemporary ) { ctx->bc.Instr(asBC_PopPtr); ctx->bc.InstrSHORT(asBC_VAR, ctx->type.stackOffset); ProcessDeferredParams(ctx); } } } return 0; } void asCCompiler::PrepareFunctionCall(int funcId, asCByteCode *bc, asCArray &args) { // When a match has been found, compile the final byte code using correct parameter types asCScriptFunction *descr = builder->GetFunctionDescription(funcId); asASSERT( descr->parameterTypes.GetLength() == args.GetLength() ); // If the function being called is the opAssign or copy constructor for the same type // as the argument, then we should avoid making temporary copy of the argument bool makingCopy = false; if( descr->parameterTypes.GetLength() == 1 && descr->parameterTypes[0].IsEqualExceptRefAndConst(args[0]->type.dataType) && (((descr->name == "opAssign" || descr->name == "$beh0") && descr->objectType && descr->objectType == args[0]->type.dataType.GetTypeInfo()) || (descr->objectType == 0 && args[0]->type.dataType.GetTypeInfo() && descr->name == args[0]->type.dataType.GetTypeInfo()->name)) ) makingCopy = true; // Add code for arguments asCExprContext e(engine); for( int n = (int)args.GetLength()-1; n >= 0; n-- ) { // Make sure PrepareArgument doesn't use any variable that is already // being used by the argument or any of the following argument expressions int l = int(reservedVariables.GetLength()); for( int m = n; m >= 0; m-- ) args[m]->bc.GetVarsUsed(reservedVariables); PrepareArgument2(&e, args[n], &descr->parameterTypes[n], true, descr->inOutFlags[n], makingCopy); reservedVariables.SetLength(l); } bc->AddCode(&e.bc); } void asCCompiler::MoveArgsToStack(int funcId, asCByteCode *bc, asCArray &args, bool addOneToOffset) { asCScriptFunction *descr = builder->GetFunctionDescription(funcId); int offset = 0; if( addOneToOffset ) offset += AS_PTR_SIZE; // The address of where the return value should be stored is push on top of the arguments if( descr->DoesReturnOnStack() ) offset += AS_PTR_SIZE; #ifdef AS_DEBUG // If the function being called is the opAssign or copy constructor for the same type // as the argument, then we should avoid making temporary copy of the argument bool makingCopy = false; if( descr->parameterTypes.GetLength() == 1 && descr->parameterTypes[0].IsEqualExceptRefAndConst(args[0]->type.dataType) && (((descr->name == "opAssign" || descr->name == "$beh0") && descr->objectType && descr->objectType == args[0]->type.dataType.GetTypeInfo()) || (descr->objectType == 0 && args[0]->type.dataType.GetTypeInfo() && descr->name == args[0]->type.dataType.GetTypeInfo()->name)) ) makingCopy = true; #endif // Move the objects that are sent by value to the stack just before the call for( asUINT n = 0; n < descr->parameterTypes.GetLength(); n++ ) { if( descr->parameterTypes[n].IsReference() ) { if( (descr->parameterTypes[n].IsObject() || descr->parameterTypes[n].IsFuncdef()) && !descr->parameterTypes[n].IsObjectHandle() ) { if( descr->inOutFlags[n] != asTM_INOUTREF ) { #ifdef AS_DEBUG // This assert is inside AS_DEBUG because of the variable makingCopy which is only defined in debug mode asASSERT( args[n]->type.isVariable || args[n]->type.isTemporary || makingCopy ); #endif if( (args[n]->type.isVariable || args[n]->type.isTemporary) ) { if( !IsVariableOnHeap(args[n]->type.stackOffset) ) // TODO: runtime optimize: Actually the reference can be pushed on the stack directly // as the value allocated on the stack is guaranteed to be safe bc->InstrWORD(asBC_GETREF, (asWORD)offset); else bc->InstrWORD(asBC_GETOBJREF, (asWORD)offset); } } if( args[n]->type.dataType.IsObjectHandle() ) bc->InstrWORD(asBC_ChkNullS, (asWORD)offset); } else if( descr->inOutFlags[n] != asTM_INOUTREF ) { if( descr->parameterTypes[n].GetTokenType() == ttQuestion && (args[n]->type.dataType.IsObject() || args[n]->type.dataType.IsFuncdef()) && !args[n]->type.dataType.IsObjectHandle() ) { // Send the object as a reference to the object, // and not to the variable holding the object if( !IsVariableOnHeap(args[n]->type.stackOffset) ) // TODO: runtime optimize: Actually the reference can be pushed on the stack directly // as the value allocated on the stack is guaranteed to be safe bc->InstrWORD(asBC_GETREF, (asWORD)offset); else bc->InstrWORD(asBC_GETOBJREF, (asWORD)offset); } else if (descr->parameterTypes[n].GetTokenType() == ttQuestion && args[n]->type.dataType.IsObjectHandle() && !args[n]->type.isExplicitHandle) { // The object handle is being passed as an object, so dereference it before // the call so the reference will be to the object rather than to the handle if (engine->ep.disallowValueAssignForRefType ) { // With disallow value assign all ref type objects are always passed by handle bc->InstrWORD(asBC_GETREF, (asWORD)offset); } else bc->InstrWORD(asBC_GETOBJREF, (asWORD)offset); } else { // If the variable is really an argument of @& type, then it is necessary // to use asBC_GETOBJREF so the pointer is correctly dereferenced. sVariable *var = variables->GetVariableByOffset(args[n]->type.stackOffset); if (var == 0 || !var->type.IsReference() || !var->type.IsObjectHandle()) bc->InstrWORD(asBC_GETREF, (asWORD)offset); else bc->InstrWORD(asBC_GETOBJREF, (asWORD)offset); } } } else if( descr->parameterTypes[n].IsObject() || descr->parameterTypes[n].IsFuncdef() ) { // TODO: value on stack: What can we do to avoid this unnecessary allocation? // The object must be allocated on the heap, because this memory will be deleted in as_callfunc_xxx asASSERT(IsVariableOnHeap(args[n]->type.stackOffset)); // The pointer in the variable will be moved to the stack bc->InstrWORD(asBC_GETOBJ, (asWORD)offset); // Deallocate the variable slot so it can be reused, but do not attempt to // free the content of the variable since it was moved to the stack for the call DeallocateVariable(args[n]->type.stackOffset); args[n]->type.isTemporary = false; } offset += descr->parameterTypes[n].GetSizeOnStackDWords(); } } int asCCompiler::CompileArgumentList(asCScriptNode *node, asCArray &args, asCArray &namedArgs) { asASSERT(node->nodeType == snArgList); // Count arguments asCScriptNode *arg = node->firstChild; int argCount = 0; while( arg ) { if( arg->nodeType != snNamedArgument ) argCount++; arg = arg->next; } // Prepare the arrays args.SetLength(argCount); int n; for( n = 0; n < argCount; n++ ) args[n] = 0; n = argCount-1; // Compile the arguments in reverse order (as they will be pushed on the stack) bool anyErrors = false, inPositionalArguments = false; arg = node->lastChild; while( arg ) { asCScriptNode *asgNode = arg, *namedNode = 0; if( asgNode->nodeType == snNamedArgument ) { if( inPositionalArguments ) { Error(TXT_POS_ARG_AFTER_NAMED_ARG, node); return -1; } asgNode = arg->firstChild->next; namedNode = arg->firstChild; asASSERT( namedNode->nodeType == snIdentifier ); } else inPositionalArguments = true; asCExprContext expr(engine); int r = CompileAssignment(asgNode, &expr); if( r < 0 ) anyErrors = true; asCExprContext *ctx = asNEW(asCExprContext)(engine); if( ctx == 0 ) { // Out of memory return -1; } MergeExprBytecodeAndType(ctx, &expr); if( inPositionalArguments ) { args[n] = ctx; n--; } else { asSNamedArgument namedArg; namedArg.name = asCString(&script->code[namedNode->tokenPos], namedNode->tokenLength); namedArg.ctx = ctx; // Error out when multiple arguments with the same name are passed for( asUINT a = 0; a < namedArgs.GetLength(); ++a ) { if( namedArgs[a].name == namedArg.name ) { Error(TXT_DUPLICATE_NAMED_ARG, asgNode); anyErrors = true; break; } } namedArgs.PushLast(namedArg); } arg = arg->prev; } return anyErrors ? -1 : 0; } int asCCompiler::CompileDefaultAndNamedArgs(asCScriptNode *node, asCArray &args, int funcId, asCObjectType *objectType, asCArray *namedArgs) { asCScriptFunction *func = builder->GetFunctionDescription(funcId); if( func == 0 || args.GetLength() >= (asUINT)func->GetParamCount() ) return 0; // Make sure to use the real function for virtual functions if( func->funcType == asFUNC_VIRTUAL ) { asASSERT( objectType ); func = objectType->virtualFunctionTable[func->vfTableIdx]; } // Make sure none of the variables used in the previous arguments are reused in the default arguments bool anyErrors = false; int prevReservedVars = reservedVariables.GetLength(); int explicitArgs = (int)args.GetLength(); for( int p = 0; p < explicitArgs; p++ ) args[p]->bc.GetVarsUsed(reservedVariables); // Make space for all the new arguments args.SetLength(func->parameterTypes.GetLength()); for( asUINT c = explicitArgs; c < args.GetLength(); c++ ) args[c] = 0; // Add the named arguments to the argument list in the right position if( namedArgs ) { for( asUINT n = 0; n < namedArgs->GetLength(); ++n ) { asSNamedArgument &named = (*namedArgs)[n]; named.ctx->bc.GetVarsUsed(reservedVariables); // Find the right spot to put it in asUINT index = asUINT(-1); for( asUINT j = 0; j < func->parameterTypes.GetLength(); ++j ) { if( func->parameterNames[j] == (*namedArgs)[n].name ) { index = j; break; } } asASSERT( index < args.GetLength() ); args[index] = named.ctx; named.ctx = 0; } } // Compile the arguments in reverse order (as they will be pushed on the stack) for( int n = (int)func->parameterTypes.GetLength() - 1; n >= explicitArgs; n-- ) { if( args[n] != 0 ) continue; if( func->defaultArgs[n] == 0 ) { anyErrors = true; continue; } // Parse the default arg string asCParser parser(builder); asCScriptCode code; code.SetCode("default arg", func->defaultArgs[n]->AddressOf(), false); int r = parser.ParseExpression(&code); if( r < 0 ) { asCString msg; msg.Format(TXT_FAILED_TO_COMPILE_DEF_ARG_d_IN_FUNC_s, n, func->GetDeclaration()); Error(msg, node); anyErrors = true; continue; } asCScriptNode *arg = parser.GetScriptNode(); // Temporarily set the script code to the default arg expression asCScriptCode *origScript = script; script = &code; // Don't allow the expression to access local variables isCompilingDefaultArg = true; // Temporarily set the namespace in the output function to the namespace of the called // function so that the default arguments are evaluated in the correct namespace asSNameSpace *origNameSpace = outFunc->nameSpace; outFunc->nameSpace = func->nameSpace; asCExprContext expr(engine); r = CompileExpression(arg, &expr); // Restore the namespace outFunc->nameSpace = origNameSpace; // Don't allow address of class method if( expr.IsClassMethod() ) { // TODO: Improve error message Error(TXT_DEF_ARG_TYPE_DOESNT_MATCH, arg); r = -1; } // Make sure the expression can be implicitly converted to the parameter type if( r >= 0 ) { asCArray funcs; funcs.PushLast(func->id); asCArray matches; if( MatchArgument(funcs, matches, &expr, n) == 0 ) { Error(TXT_DEF_ARG_TYPE_DOESNT_MATCH, arg); r = -1; } } isCompilingDefaultArg = false; script = origScript; if( r < 0 ) { asCString msg; msg.Format(TXT_FAILED_TO_COMPILE_DEF_ARG_d_IN_FUNC_s, n, func->GetDeclaration()); Error(msg, node); anyErrors = true; continue; } args[n] = asNEW(asCExprContext)(engine); if( args[n] == 0 ) { // Out of memory reservedVariables.SetLength(prevReservedVars); return -1; } MergeExprBytecodeAndType(args[n], &expr); } reservedVariables.SetLength(prevReservedVars); return anyErrors ? -1 : 0; } asUINT asCCompiler::MatchFunctions(asCArray &funcs, asCArray &args, asCScriptNode *node, const char *name, asCArray *namedArgs, asCObjectType *objectType, bool isConstMethod, bool silent, bool allowObjectConstruct, const asCString &scope) { asCArray origFuncs = funcs; // Keep the original list for error message asUINT cost = 0; asUINT n; if( funcs.GetLength() > 0 ) { // Check the number of parameters in the found functions asUINT totalArgs = (asUINT)args.GetLength(); if( namedArgs != 0 ) totalArgs += (asUINT)namedArgs->GetLength(); for( n = 0; n < funcs.GetLength(); ++n ) { asCScriptFunction *desc = builder->GetFunctionDescription(funcs[n]); if( desc->parameterTypes.GetLength() != totalArgs ) { bool noMatch = true; if( totalArgs < desc->parameterTypes.GetLength() ) { // For virtual functions, the default args are defined in the real function of the object if( desc->funcType == asFUNC_VIRTUAL ) desc = objectType->virtualFunctionTable[desc->vfTableIdx]; // Count the number of default args asUINT defaultArgs = 0; for( asUINT d = 0; d < desc->defaultArgs.GetLength(); d++ ) if( desc->defaultArgs[d] ) defaultArgs++; if( totalArgs >= desc->parameterTypes.GetLength() - defaultArgs ) noMatch = false; } if( noMatch ) { // remove it from the list if( n == funcs.GetLength()-1 ) funcs.PopLast(); else funcs[n] = funcs.PopLast(); n--; } } } // Match functions with the parameters, and discard those that do not match asCArray matchingFuncs; matchingFuncs.SetLengthNoConstruct( funcs.GetLength() ); for ( n = 0; n < funcs.GetLength(); ++n ) { matchingFuncs[n].funcId = funcs[n]; matchingFuncs[n].cost = 0; } // Match positionally passed arguments for( n = 0; n < args.GetLength(); ++n ) { asCArray tempFuncs; MatchArgument(funcs, tempFuncs, args[n], n, allowObjectConstruct); // Intersect the found functions with the list of matching functions for( asUINT f = 0; f < matchingFuncs.GetLength(); f++ ) { asUINT c; for( c = 0; c < tempFuncs.GetLength(); c++ ) { if( matchingFuncs[f].funcId == tempFuncs[c].funcId ) { // Sum argument cost matchingFuncs[f].cost += tempFuncs[c].cost; break; } // End if match } // Was the function a match? if( c == tempFuncs.GetLength() ) { // No, remove it from the list if( f == matchingFuncs.GetLength()-1 ) matchingFuncs.PopLast(); else matchingFuncs[f] = matchingFuncs.PopLast(); f--; } } } // Match named arguments if( namedArgs != 0 ) { for( asUINT i = 0; i < matchingFuncs.GetLength(); ++i ) { asCScriptFunction *desc = builder->GetFunctionDescription(matchingFuncs[i].funcId); if( desc->funcType == asFUNC_VIRTUAL ) desc = objectType->virtualFunctionTable[desc->vfTableIdx]; // Match every named argument to an argument in the function for( n = 0; n < namedArgs->GetLength(); ++n ) (*namedArgs)[n].match = asUINT(-1); bool matchedAll = true; for( asUINT j = 0; j < desc->parameterTypes.GetLength(); ++j ) { asUINT match = asUINT(-1); for( n = 0; n < namedArgs->GetLength(); ++n ) { asSNamedArgument &namedArg = (*namedArgs)[n]; if( desc->parameterNames[j] == namedArg.name ) { namedArg.match = j; match = n; break; } } // Check that every position is filled somehow if( j >= args.GetLength() ) { if( match == asUINT(-1) && !desc->defaultArgs[j] ) { // No argument was found for this, and there is no // default, so it doesn't work. matchedAll = false; break; } } else { if( match != asUINT(-1) ) { // Can't name an argument that was already passed matchedAll = false; break; } } } // Check that every named argument was matched if( matchedAll ) { for( n = 0; n < namedArgs->GetLength(); ++n ) { asSNamedArgument &named = (*namedArgs)[n]; if( named.match == asUINT(-1) ) { matchedAll = false; break; } // Add to the cost cost = MatchArgument(desc, named.ctx, named.match, allowObjectConstruct); if( cost == asUINT(-1) ) { matchedAll = false; break; } matchingFuncs[i].cost += cost; } } if( !matchedAll ) { // Remove the function, we didn't match all the arguments. if( i == matchingFuncs.GetLength()-1 ) matchingFuncs.PopLast(); else matchingFuncs[i] = matchingFuncs.PopLast(); i--; } } } // Select the overload(s) with the lowest overall cost funcs.SetLength(0); asUINT bestCost = asUINT(-1); for( n = 0; n < matchingFuncs.GetLength(); ++n ) { cost = matchingFuncs[n].cost; if( cost < bestCost ) { funcs.SetLength(0); bestCost = cost; } if( cost == bestCost ) funcs.PushLast( matchingFuncs[n].funcId ); } // Cost returned is equivalent to the best cost discovered cost = bestCost; } if( !isConstMethod ) FilterConst(funcs); if( funcs.GetLength() != 1 && !silent ) { // Build a readable string of the function with parameter types bool attemptsPassingClassMethod = false; asCString str; if( scope != "" && scope != "::" ) str = scope + "::"; str += name; str += "("; for( n = 0; n < args.GetLength(); n++ ) { if( n > 0 ) str += ", "; if( args[n]->methodName != "" ) { if( args[n]->IsClassMethod() ) { attemptsPassingClassMethod = true; str += args[n]->type.dataType.GetTypeInfo()->GetName(); str += "::"; } str += args[n]->methodName; } else if (args[n]->IsAnonymousInitList()) { str += "{...}"; } else str += args[n]->type.dataType.Format(outFunc->nameSpace); } if( namedArgs != 0 ) { for( n = 0; n < namedArgs->GetLength(); n++ ) { if( n > 0 || args.GetLength() ) str += ", "; asSNamedArgument &named = (*namedArgs)[n]; str += named.name; str += ": "; if( named.ctx->methodName != "" ) str += named.ctx->methodName; else str += named.ctx->type.dataType.Format(outFunc->nameSpace); } } str += ")"; if( isConstMethod ) str += " const"; if( objectType && scope == "" ) str = objectType->name + "::" + str; if( funcs.GetLength() == 0 ) { str.Format(TXT_NO_MATCHING_SIGNATURES_TO_s, str.AddressOf()); Error(str, node); if( attemptsPassingClassMethod ) { // Class methods must use delegate objects Error(TXT_CANNOT_PASS_CLASS_METHOD_AS_ARG, node); } else { // Print the list of candidates if( origFuncs.GetLength() > 0 ) { int r = 0, c = 0; asASSERT( node ); if( node ) script->ConvertPosToRowCol(node->tokenPos, &r, &c); builder->WriteInfo(script->name.AddressOf(), TXT_CANDIDATES_ARE, r, c, false); PrintMatchingFuncs(origFuncs, node, objectType); } } } else { asASSERT( attemptsPassingClassMethod == false ); str.Format(TXT_MULTIPLE_MATCHING_SIGNATURES_TO_s, str.AddressOf()); Error(str, node); PrintMatchingFuncs(funcs, node, objectType); } } return cost; } bool asCCompiler::CompileAutoType(asCDataType &type, asCExprContext &compiledCtx, asCScriptNode *node, asCScriptNode *errNode) { if( node && node->nodeType == snAssignment ) { int r = CompileAssignment(node, &compiledCtx); if( r >= 0 ) { // Must not have unused ambiguous names if (compiledCtx.IsClassMethod() || compiledCtx.IsGlobalFunc()) { // TODO: Should mention that the problem is the ambiguous name Error(TXT_CANNOT_RESOLVE_AUTO, errNode); return false; } // Must not have unused anonymous functions if (compiledCtx.IsLambda()) { // TODO: Should mention that the problem is the anonymous function Error(TXT_CANNOT_RESOLVE_AUTO, errNode); return false; } // Must not be a null handle if (compiledCtx.type.dataType.IsNullHandle()) { // TODO: Should mention that the problem is the null pointer Error(TXT_CANNOT_RESOLVE_AUTO, errNode); return false; } asCDataType newType = compiledCtx.type.dataType; // Handle const qualifier on auto if (type.IsReadOnly()) newType.MakeReadOnly(true); else if (newType.IsPrimitive()) newType.MakeReadOnly(false); // Handle reference/value stuff newType.MakeReference(false); if (!newType.IsObjectHandle()) { // We got a value object or an object reference. // Turn the variable into a handle if specified // as auto@, otherwise make it a 'value'. if (type.IsHandleToAuto()) { if (newType.MakeHandle(true) < 0) { Error(TXT_OBJECT_HANDLE_NOT_SUPPORTED, errNode); return false; } } } type = newType; return true; } return false; } else { Error(TXT_CANNOT_RESOLVE_AUTO, errNode); type = asCDataType::CreatePrimitive(ttInt, false); return false; } } void asCCompiler::CompileDeclaration(asCScriptNode *decl, asCByteCode *bc) { // Get the data type asCDataType type = builder->CreateDataTypeFromNode(decl->firstChild, script, outFunc->nameSpace, false, outFunc->objectType); // Declare all variables in this declaration asCScriptNode *node = decl->firstChild->next; while( node ) { // If this is an auto type, we have to compile the assignment now to figure out the type asCExprContext compiledCtx(engine); bool preCompiled = false; if (type.IsAuto()) { preCompiled = CompileAutoType(type, compiledCtx, node->next, node); if (!preCompiled) { // If it wasn't possible to determine the type from the expression then there // is no need to continue with the initialization. The error was already reported // in CompileAutoType. return; } } // Is the type allowed? if( !type.CanBeInstantiated() ) { asCString str; if( type.IsAbstractClass() ) str.Format(TXT_ABSTRACT_CLASS_s_CANNOT_BE_INSTANTIATED, type.Format(outFunc->nameSpace).AddressOf()); else if( type.IsInterface() ) str.Format(TXT_INTERFACE_s_CANNOT_BE_INSTANTIATED, type.Format(outFunc->nameSpace).AddressOf()); else // TODO: Improve error message to explain why str.Format(TXT_DATA_TYPE_CANT_BE_s, type.Format(outFunc->nameSpace).AddressOf()); Error(str, node); // Don't continue, as it will most likely lead to further // errors that may just mislead the script writer return; } // A shared object may not declare variables of non-shared types if( outFunc->IsShared() ) { asCTypeInfo *ot = type.GetTypeInfo(); if( ot && !ot->IsShared() ) { asCString msg; msg.Format(TXT_SHARED_CANNOT_USE_NON_SHARED_TYPE_s, ot->name.AddressOf()); Error(msg, decl); } } // Get the name of the identifier asCString name(&script->code[node->tokenPos], node->tokenLength); // Verify that the name isn't used by a dynamic data type // TODO: Must check against registered funcdefs too if( engine->GetRegisteredType(name.AddressOf(), outFunc->nameSpace) != 0 ) { asCString str; str.Format(TXT_ILLEGAL_VARIABLE_NAME_s, name.AddressOf()); Error(str, node); } int offset = AllocateVariable(type, false); if( variables->DeclareVariable(name.AddressOf(), type, offset, IsVariableOnHeap(offset)) < 0 ) { // TODO: It might be an out-of-memory too asCString str; str.Format(TXT_s_ALREADY_DECLARED, name.AddressOf()); Error(str, node); // Don't continue after this error, as it will just // lead to more errors that are likely false return; } else { // Warn if this variable hides another variable in a higher scope if( variables->parent && variables->parent->GetVariable(name.AddressOf()) ) { asCString str; str.Format(TXT_s_HIDES_VAR_IN_OUTER_SCOPE, name.AddressOf()); Warning(str, node); } } // Add marker that the variable has been declared bc->VarDecl((int)outFunc->scriptData->variables.GetLength()); outFunc->AddVariable(name, type, offset); // Keep the node for the variable decl asCScriptNode *varNode = node; node = node->next; if( node == 0 || node->nodeType == snIdentifier ) { // Initialize with default constructor CompileInitialization(0, bc, type, varNode, offset, 0, 0); } else { // Compile the initialization expression asQWORD constantValue = 0; if( CompileInitialization(node, bc, type, varNode, offset, &constantValue, 0, preCompiled ? &compiledCtx : 0) ) { // Check if the variable should be marked as pure constant if( type.IsPrimitive() && type.IsReadOnly() ) { sVariable *v = variables->GetVariable(name.AddressOf()); v->isPureConstant = true; v->constantValue = constantValue; } } node = node->next; } } bc->OptimizeLocally(tempVariableOffsets); } // Returns true if the initialization expression is a constant expression bool asCCompiler::CompileInitialization(asCScriptNode *node, asCByteCode *bc, const asCDataType &type, asCScriptNode *errNode, int offset, asQWORD *constantValue, int isVarGlobOrMem, asCExprContext *preCompiled) { bool isConstantExpression = false; if( node && node->nodeType == snArgList ) { // Make sure it is an object and not a handle if( type.GetTypeInfo() == 0 || type.IsObjectHandle() ) { Error(TXT_MUST_BE_OBJECT, node); } else { // Compile the arguments asCArray args; asCArray namedArgs; if( CompileArgumentList(node, args, namedArgs) >= 0 ) { // Find all constructors asCArray funcs; asSTypeBehaviour *beh = type.GetBehaviour(); if( beh ) { if( type.GetTypeInfo()->flags & asOBJ_REF ) funcs = beh->factories; else funcs = beh->constructors; } asCString str = type.Format(outFunc->nameSpace); MatchFunctions(funcs, args, node, str.AddressOf(), &namedArgs); if( funcs.GetLength() == 1 ) { // Add the default values for arguments not explicitly supplied int r = CompileDefaultAndNamedArgs(node, args, funcs[0], CastToObjectType(type.GetTypeInfo()), &namedArgs); if( r == asSUCCESS ) { asCExprContext ctx(engine); if( type.GetTypeInfo() && (type.GetTypeInfo()->flags & asOBJ_REF) ) { if( isVarGlobOrMem == 0 ) MakeFunctionCall(&ctx, funcs[0], 0, args, node, true, offset); else { MakeFunctionCall(&ctx, funcs[0], 0, args, node); ctx.bc.Instr(asBC_RDSPtr); if( isVarGlobOrMem == 1 ) { // Store the returned handle in the global variable ctx.bc.InstrPTR(asBC_PGA, engine->globalProperties[offset]->GetAddressOfValue()); } else { // Store the returned handle in the member ctx.bc.InstrSHORT(asBC_PSF, 0); ctx.bc.Instr(asBC_RDSPtr); ctx.bc.InstrSHORT_DW(asBC_ADDSi, (short)offset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); } if( type.IsFuncdef()) ctx.bc.InstrPTR(asBC_REFCPY, &engine->functionBehaviours); else ctx.bc.InstrPTR(asBC_REFCPY, type.GetTypeInfo()); ReleaseTemporaryVariable(ctx.type.stackOffset, &ctx.bc); } // Pop the reference left by the function call ctx.bc.Instr(asBC_PopPtr); } else { bool onHeap = false; if( isVarGlobOrMem == 0 ) { // When the object is allocated on the heap, the address where the // reference will be stored must be pushed on the stack before the // arguments. This reference on the stack is safe, even if the script // is suspended during the evaluation of the arguments. onHeap = IsVariableOnHeap(offset); if( onHeap ) ctx.bc.InstrSHORT(asBC_PSF, (short)offset); } else if( isVarGlobOrMem == 1 ) { // Push the address of the location where the variable will be stored on the stack. // This reference is safe, because the addresses of the global variables cannot change. onHeap = true; ctx.bc.InstrPTR(asBC_PGA, engine->globalProperties[offset]->GetAddressOfValue()); } else { // Value types may be allocated inline if they are POD types onHeap = !(type.IsObject() || type.IsFuncdef()) || type.IsReference() || (type.GetTypeInfo()->flags & asOBJ_REF); if( onHeap ) { ctx.bc.InstrSHORT(asBC_PSF, 0); ctx.bc.Instr(asBC_RDSPtr); ctx.bc.InstrSHORT_DW(asBC_ADDSi, (short)offset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); } } PrepareFunctionCall(funcs[0], &ctx.bc, args); MoveArgsToStack(funcs[0], &ctx.bc, args, false); // When the object is allocated on the stack, the address to the // object is pushed on the stack after the arguments as the object pointer if( !onHeap ) { if( isVarGlobOrMem == 2 ) { ctx.bc.InstrSHORT(asBC_PSF, 0); ctx.bc.Instr(asBC_RDSPtr); ctx.bc.InstrSHORT_DW(asBC_ADDSi, (short)offset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); } else { ctx.bc.InstrSHORT(asBC_PSF, (short)offset); } } PerformFunctionCall(funcs[0], &ctx, onHeap, &args, CastToObjectType(type.GetTypeInfo())); if( isVarGlobOrMem == 0 ) { // Mark the object in the local variable as initialized ctx.bc.ObjInfo(offset, asOBJ_INIT); } } bc->AddCode(&ctx.bc); } } } // Cleanup for( asUINT n = 0; n < args.GetLength(); n++ ) if( args[n] ) { asDELETE(args[n], asCExprContext); } for( asUINT n = 0; n < namedArgs.GetLength(); n++ ) if( namedArgs[n].ctx ) { asDELETE(namedArgs[n].ctx, asCExprContext); } } } else if( node && node->nodeType == snInitList ) { asCExprValue ti; ti.Set(type); ti.isVariable = (isVarGlobOrMem == 0); ti.isTemporary = false; ti.stackOffset = (short)offset; ti.isLValue = true; CompileInitList(&ti, node, bc, isVarGlobOrMem); } else if( node && node->nodeType == snAssignment ) { // Compile the expression asCExprContext newExpr(engine); asCExprContext* expr; int r = 0; if( preCompiled ) { expr = preCompiled; } else { expr = &newExpr; r = CompileAssignment(node, expr); } // handles initialized with null doesn't need any bytecode // since handles will be initialized to null by default anyway if (type.IsObjectHandle() && expr->type.IsNullConstant() && expr->bc.IsSimpleExpression() ) return false; // Look for appropriate constructor asCArray funcs; asCArray args; // Handles must use the handle assignment operation. // Types that are ASHANDLE must not allow the use of the constructor in this case, // because it is ambiguous whether a value assignment or handle assignment will be done. // Only do this if the expression is of the same type, as the expression is an assignment // and an initialization constructor may not have the same meaning. // TODO: Should allow initialization constructor if it is declared as allowed for implicit conversions. if( !type.IsObjectHandle() && !expr->type.isExplicitHandle && !(type.GetTypeInfo() && (type.GetTypeInfo()->GetFlags() & asOBJ_ASHANDLE)) && type.IsEqualExceptRefAndConst(expr->type.dataType) ) { asSTypeBehaviour *beh = type.GetBehaviour(); if( beh ) { if( type.GetTypeInfo()->flags & asOBJ_REF ) funcs = beh->factories; else funcs = beh->constructors; } asCString str = type.Format(outFunc->nameSpace); args.PushLast(expr); MatchFunctions(funcs, args, node, str.AddressOf(), 0, 0, 0, true); // Make sure the argument is of the right type (and not just compatible with the expression) if (funcs.GetLength() == 1) { asCScriptFunction *f = engine->scriptFunctions[funcs[0]]; if (!f->parameterTypes[0].IsEqualExceptRefAndConst(expr->type.dataType)) funcs.PopLast(); } } if( funcs.GetLength() == 1 ) { // Use the constructor // TODO: clean-up: A large part of this is identical to the initalization with argList above // Add the default values for arguments not explicitly supplied r = CompileDefaultAndNamedArgs(node, args, funcs[0], CastToObjectType(type.GetTypeInfo())); if( r == asSUCCESS ) { asCExprContext ctx(engine); if( type.GetTypeInfo() && (type.GetTypeInfo()->flags & asOBJ_REF) ) { if( isVarGlobOrMem == 0 ) MakeFunctionCall(&ctx, funcs[0], 0, args, node, true, offset); else { MakeFunctionCall(&ctx, funcs[0], 0, args, node); ctx.bc.Instr(asBC_RDSPtr); if( isVarGlobOrMem == 1 ) { // Store the returned handle in the global variable ctx.bc.InstrPTR(asBC_PGA, engine->globalProperties[offset]->GetAddressOfValue()); } else { // Store the returned handle in the member ctx.bc.InstrSHORT(asBC_PSF, 0); ctx.bc.Instr(asBC_RDSPtr); ctx.bc.InstrSHORT_DW(asBC_ADDSi, (short)offset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); } if( type.IsFuncdef() ) ctx.bc.InstrPTR(asBC_REFCPY, &engine->functionBehaviours); else ctx.bc.InstrPTR(asBC_REFCPY, type.GetTypeInfo()); ReleaseTemporaryVariable(ctx.type.stackOffset, &ctx.bc); } // Pop the reference left by the function call ctx.bc.Instr(asBC_PopPtr); } else { bool onHeap = false; if( isVarGlobOrMem == 0 ) { // When the object is allocated on the heap, the address where the // reference will be stored must be pushed on the stack before the // arguments. This reference on the stack is safe, even if the script // is suspended during the evaluation of the arguments. onHeap = IsVariableOnHeap(offset); if( onHeap ) ctx.bc.InstrSHORT(asBC_PSF, (short)offset); } else if( isVarGlobOrMem == 1 ) { // Push the address of the location where the variable will be stored on the stack. // This reference is safe, because the addresses of the global variables cannot change. onHeap = true; ctx.bc.InstrPTR(asBC_PGA, engine->globalProperties[offset]->GetAddressOfValue()); } else { // Value types may be allocated inline if they are POD types onHeap = !(type.IsObject() || type.IsFuncdef()) || type.IsReference() || (type.GetTypeInfo()->flags & asOBJ_REF); if( onHeap ) { ctx.bc.InstrSHORT(asBC_PSF, 0); ctx.bc.Instr(asBC_RDSPtr); ctx.bc.InstrSHORT_DW(asBC_ADDSi, (short)offset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); } } PrepareFunctionCall(funcs[0], &ctx.bc, args); MoveArgsToStack(funcs[0], &ctx.bc, args, false); // When the object is allocated on the stack, the address to the // object is pushed on the stack after the arguments as the object pointer if( !onHeap ) { if( isVarGlobOrMem == 2 ) { ctx.bc.InstrSHORT(asBC_PSF, 0); ctx.bc.Instr(asBC_RDSPtr); ctx.bc.InstrSHORT_DW(asBC_ADDSi, (short)offset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); } else { ctx.bc.InstrSHORT(asBC_PSF, (short)offset); } } PerformFunctionCall(funcs[0], &ctx, onHeap, &args, CastToObjectType(type.GetTypeInfo())); if( isVarGlobOrMem == 0 ) { // Mark the object in the local variable as initialized ctx.bc.ObjInfo(offset, asOBJ_INIT); } } bc->AddCode(&ctx.bc); } } else { // Call the default constructur, then call the assignment operator asCExprContext ctx(engine); // Call the default constructor here if( isVarGlobOrMem == 0 ) CallDefaultConstructor(type, offset, IsVariableOnHeap(offset), &ctx.bc, errNode); else if( isVarGlobOrMem == 1 ) CallDefaultConstructor(type, offset, true, &ctx.bc, errNode, isVarGlobOrMem); else if( isVarGlobOrMem == 2 ) CallDefaultConstructor(type, offset, type.IsReference(), &ctx.bc, errNode, isVarGlobOrMem); if( r >= 0 ) { if( type.IsPrimitive() ) { if( type.IsReadOnly() && expr->type.isConstant ) { ImplicitConversion(expr, type, node, asIC_IMPLICIT_CONV); // Tell caller that the expression is a constant so it can mark the variable as pure constant isConstantExpression = true; *constantValue = expr->type.GetConstantData(); } asCExprContext lctx(engine); if( isVarGlobOrMem == 0 ) lctx.type.SetVariable(type, offset, false); else if( isVarGlobOrMem == 1 ) { lctx.type.Set(type); lctx.type.dataType.MakeReference(true); // If it is an enum value, i.e. offset is negative, that is being compiled then // we skip this as the bytecode won't be used anyway, only the constant value if( offset >= 0 ) lctx.bc.InstrPTR(asBC_LDG, engine->globalProperties[offset]->GetAddressOfValue()); } else { asASSERT( isVarGlobOrMem == 2 ); lctx.type.Set(type); lctx.type.dataType.MakeReference(true); // Load the reference of the primitive member into the register lctx.bc.InstrSHORT(asBC_PSF, 0); lctx.bc.Instr(asBC_RDSPtr); lctx.bc.InstrSHORT_DW(asBC_ADDSi, (short)offset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); lctx.bc.Instr(asBC_PopRPtr); } lctx.type.dataType.MakeReadOnly(false); lctx.type.isLValue = true; DoAssignment(&ctx, &lctx, expr, node, node, ttAssignment, node); ProcessDeferredParams(&ctx); } else { // TODO: runtime optimize: Here we should look for the best matching constructor, instead of // just the copy constructor. Only if no appropriate constructor is // available should the assignment operator be used. asCExprContext lexpr(engine); lexpr.type.Set(type); if( isVarGlobOrMem == 0 ) lexpr.type.dataType.MakeReference(IsVariableOnHeap(offset)); else if( isVarGlobOrMem == 1 ) lexpr.type.dataType.MakeReference(true); else if( isVarGlobOrMem == 2 ) { if( !lexpr.type.dataType.IsObject() || lexpr.type.dataType.IsFuncdef() || (lexpr.type.dataType.GetTypeInfo()->flags & asOBJ_REF) ) lexpr.type.dataType.MakeReference(true); } // Allow initialization of constant variables lexpr.type.dataType.MakeReadOnly(false); if( type.IsObjectHandle() ) lexpr.type.isExplicitHandle = true; if( isVarGlobOrMem == 0 ) { lexpr.bc.InstrSHORT(asBC_PSF, (short)offset); lexpr.type.stackOffset = (short)offset; lexpr.type.isVariable = true; } else if( isVarGlobOrMem == 1 ) { lexpr.bc.InstrPTR(asBC_PGA, engine->globalProperties[offset]->GetAddressOfValue()); } else { lexpr.bc.InstrSHORT(asBC_PSF, 0); lexpr.bc.Instr(asBC_RDSPtr); lexpr.bc.InstrSHORT_DW(asBC_ADDSi, (short)offset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); lexpr.type.stackOffset = -1; } lexpr.type.isLValue = true; // If left expression resolves into a registered type // check if the assignment operator is overloaded, and check // the type of the right hand expression. If none is found // the default action is a direct copy if it is the same type // and a simple assignment. bool assigned = false; // Even though an ASHANDLE can be an explicit handle the overloaded operator needs to be called if( (lexpr.type.dataType.IsObject() || lexpr.type.dataType.IsFuncdef()) && (!lexpr.type.isExplicitHandle || (lexpr.type.dataType.GetTypeInfo() && (lexpr.type.dataType.GetTypeInfo()->flags & asOBJ_ASHANDLE))) ) { bool useHndlAssign = lexpr.type.dataType.IsHandleToAsHandleType(); assigned = CompileOverloadedDualOperator(node, &lexpr, expr, false, &ctx, useHndlAssign); if( assigned ) { // Pop the resulting value if( !ctx.type.dataType.IsPrimitive() ) ctx.bc.Instr(asBC_PopPtr); // Release the argument ProcessDeferredParams(&ctx); // Release temporary variable that may be allocated by the overloaded operator ReleaseTemporaryVariable(ctx.type, &ctx.bc); } } if( !assigned ) { PrepareForAssignment(&lexpr.type.dataType, expr, node, false); // If the expression is constant and the variable also is constant // then mark the variable as pure constant. This will allow the compiler // to optimize expressions with this variable. if( type.IsReadOnly() && expr->type.isConstant ) { isConstantExpression = true; *constantValue = expr->type.GetConstantQW(); } // Add expression code to bytecode MergeExprBytecode(&ctx, expr); // Add byte code for storing value of expression in variable ctx.bc.AddCode(&lexpr.bc); PerformAssignment(&lexpr.type, &expr->type, &ctx.bc, errNode); // Release temporary variables used by expression ReleaseTemporaryVariable(expr->type, &ctx.bc); ctx.bc.Instr(asBC_PopPtr); ProcessDeferredParams(&ctx); } } } bc->AddCode(&ctx.bc); } } else { asASSERT( node == 0 ); // Call the default constructor here, as no explicit initialization is done if( isVarGlobOrMem == 0 ) CallDefaultConstructor(type, offset, IsVariableOnHeap(offset), bc, errNode); else if( isVarGlobOrMem == 1 ) CallDefaultConstructor(type, offset, true, bc, errNode, isVarGlobOrMem); else if( isVarGlobOrMem == 2 ) { if( !(type.IsObject() || type.IsFuncdef()) || type.IsReference() || (type.GetTypeInfo()->flags & asOBJ_REF) ) CallDefaultConstructor(type, offset, true, bc, errNode, isVarGlobOrMem); else CallDefaultConstructor(type, offset, false, bc, errNode, isVarGlobOrMem); } } return isConstantExpression; } void asCCompiler::CompileInitList(asCExprValue *var, asCScriptNode *node, asCByteCode *bc, int isVarGlobOrMem) { // Check if the type supports initialization lists if( var->dataType.GetTypeInfo() == 0 || var->dataType.GetBehaviour()->listFactory == 0 ) { asCString str; str.Format(TXT_INIT_LIST_CANNOT_BE_USED_WITH_s, var->dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, node); return; } // Construct the buffer with the elements // Find the list factory int funcId = var->dataType.GetBehaviour()->listFactory; asASSERT( engine->scriptFunctions[funcId]->listPattern ); // TODO: runtime optimize: A future optimization should be to use the stack space directly // for small buffers so that the dynamic allocation is skipped // Create a new special object type for the lists. Both asCRestore and the // context exception handler will need this to know how to parse the buffer. asCObjectType *listPatternType = engine->GetListPatternType(funcId); // Allocate a temporary variable to hold the pointer to the buffer int bufferVar = AllocateVariable(asCDataType::CreateType(listPatternType, false), true); asUINT bufferSize = 0; // Evaluate all elements of the list asCExprContext valueExpr(engine); asCScriptNode *el = node; asSListPatternNode *patternNode = engine->scriptFunctions[listPatternType->templateSubTypes[0].GetBehaviour()->listFactory]->listPattern; int elementsInSubList = -1; int r = CompileInitListElement(patternNode, el, engine->GetTypeIdFromDataType(asCDataType::CreateType(listPatternType, false)), short(bufferVar), bufferSize, valueExpr.bc, elementsInSubList); asASSERT( r || patternNode == 0 ); if (r < 0) { asCString msg; msg.Format(TXT_PREV_ERROR_WHILE_COMP_LIST_FOR_TYPE_s, var->dataType.Format(outFunc->nameSpace).AddressOf()); Error(msg, node); } // After all values have been evaluated we know the final size of the buffer asCExprContext allocExpr(engine); allocExpr.bc.InstrSHORT_DW(asBC_AllocMem, short(bufferVar), bufferSize); // Merge the bytecode into the final sequence bc->AddCode(&allocExpr.bc); bc->AddCode(&valueExpr.bc); // The object itself is the last to be created and will receive the pointer to the buffer asCArray args; asCExprContext arg1(engine); arg1.type.Set(asCDataType::CreatePrimitive(ttUInt, false)); arg1.type.dataType.MakeReference(true); arg1.bc.InstrSHORT(asBC_PshVPtr, short(bufferVar)); args.PushLast(&arg1); asCExprContext ctx(engine); if( var->isVariable ) { asASSERT( isVarGlobOrMem == 0 ); if( var->dataType.GetTypeInfo()->GetFlags() & asOBJ_REF ) { ctx.bc.AddCode(&arg1.bc); // Call factory and store the handle in the given variable PerformFunctionCall(funcId, &ctx, false, &args, 0, true, var->stackOffset); ctx.bc.Instr(asBC_PopPtr); } else { // Call the constructor // When the object is allocated on the heap, the address where the // reference will be stored must be pushed on the stack before the // arguments. This reference on the stack is safe, even if the script // is suspended during the evaluation of the arguments. bool onHeap = IsVariableOnHeap(var->stackOffset); if( onHeap ) ctx.bc.InstrSHORT(asBC_PSF, var->stackOffset); ctx.bc.AddCode(&arg1.bc); // When the object is allocated on the stack, the address to the // object is pushed on the stack after the arguments as the object pointer if( !onHeap ) ctx.bc.InstrSHORT(asBC_PSF, var->stackOffset); PerformFunctionCall(funcId, &ctx, onHeap, &args, CastToObjectType(var->dataType.GetTypeInfo())); // Mark the object in the local variable as initialized ctx.bc.ObjInfo(var->stackOffset, asOBJ_INIT); } } else { if( var->dataType.GetTypeInfo()->GetFlags() & asOBJ_REF ) { ctx.bc.AddCode(&arg1.bc); PerformFunctionCall(funcId, &ctx, false, &args); ctx.bc.Instr(asBC_RDSPtr); if( isVarGlobOrMem == 1 ) { // Store the returned handle in the global variable ctx.bc.InstrPTR(asBC_PGA, engine->globalProperties[var->stackOffset]->GetAddressOfValue()); } else { // Store the returned handle in the member ctx.bc.InstrSHORT(asBC_PSF, 0); ctx.bc.Instr(asBC_RDSPtr); ctx.bc.InstrSHORT_DW(asBC_ADDSi, (short)var->stackOffset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); } if (var->dataType.IsFuncdef()) ctx.bc.InstrPTR(asBC_REFCPY, &engine->functionBehaviours); else ctx.bc.InstrPTR(asBC_REFCPY, var->dataType.GetTypeInfo()); ctx.bc.Instr(asBC_PopPtr); ReleaseTemporaryVariable(ctx.type.stackOffset, &ctx.bc); } else { bool onHeap = true; // Put the address where the object pointer will be placed on the stack if( isVarGlobOrMem == 1 ) ctx.bc.InstrPTR(asBC_PGA, engine->globalProperties[var->stackOffset]->GetAddressOfValue()); else { onHeap = !(var->dataType.IsObject() || var->dataType.IsFuncdef()) || var->dataType.IsReference() || (var->dataType.GetTypeInfo()->flags & asOBJ_REF); if( onHeap ) { ctx.bc.InstrSHORT(asBC_PSF, 0); ctx.bc.Instr(asBC_RDSPtr); ctx.bc.InstrSHORT_DW(asBC_ADDSi, (short)var->stackOffset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); } } // Add the address of the list buffer as the argument ctx.bc.AddCode(&arg1.bc); if( !onHeap ) { ctx.bc.InstrSHORT(asBC_PSF, 0); ctx.bc.Instr(asBC_RDSPtr); ctx.bc.InstrSHORT_DW(asBC_ADDSi, (short)var->stackOffset, engine->GetTypeIdFromDataType(asCDataType::CreateType(outFunc->objectType, false))); } // Call the ALLOC instruction to allocate memory and invoke constructor PerformFunctionCall(funcId, &ctx, onHeap, &args, CastToObjectType(var->dataType.GetTypeInfo())); } } bc->AddCode(&ctx.bc); // Free the temporary buffer. The FREE instruction will make sure to destroy // each element in the buffer so there is no need to do this manually bc->InstrW_PTR(asBC_FREE, short(bufferVar), listPatternType); ReleaseTemporaryVariable(bufferVar, bc); } int asCCompiler::CompileInitListElement(asSListPatternNode *&patternNode, asCScriptNode *&valueNode, int bufferTypeId, short bufferVar, asUINT &bufferSize, asCByteCode &bcInit, int &elementsInSubList) { if( patternNode->type == asLPT_START ) { if( valueNode == 0 || valueNode->nodeType != snInitList ) { Error(TXT_EXPECTED_LIST, valueNode); return -1; } // Compile all values until asLPT_END patternNode = patternNode->next; asCScriptNode *node = valueNode->firstChild; while( patternNode->type != asLPT_END ) { // Check for missing value here, else the error reporting will not have a source position to report the error for if( node == 0 && patternNode->type == asLPT_TYPE ) { Error(TXT_NOT_ENOUGH_VALUES_FOR_LIST, valueNode); return -1; } asCScriptNode *errNode = node; int r = CompileInitListElement(patternNode, node, bufferTypeId, bufferVar, bufferSize, bcInit, elementsInSubList); if( r < 0 ) return r; if( r == 1 ) { asASSERT( engine->ep.disallowEmptyListElements ); // Empty elements in the middle are not allowed Error(TXT_EMPTY_LIST_ELEMENT_IS_NOT_ALLOWED, errNode); } asASSERT( patternNode ); } if( node ) { Error(TXT_TOO_MANY_VALUES_FOR_LIST, valueNode); return -1; } // Move to the next node valueNode = valueNode->next; patternNode = patternNode->next; } else if( patternNode->type == asLPT_REPEAT || patternNode->type == asLPT_REPEAT_SAME ) { // TODO: list: repeat_inner should make sure the list has the same size as the inner list, i.e. square area // TODO: list: repeat_prev should make sure the list is the same size as the previous asEListPatternNodeType repeatType = patternNode->type; asCScriptNode *firstValue = valueNode; // The following values will be repeated N times patternNode = patternNode->next; // Keep track of the patternNode so it can be reset asSListPatternNode *nextNode = patternNode; // Align the buffer size to 4 bytes in case previous value was smaller than 4 bytes if( bufferSize & 0x3 ) bufferSize += 4 - (bufferSize & 0x3); // The first dword will hold the number of elements in the list asDWORD currSize = bufferSize; bufferSize += 4; asUINT countElements = 0; int elementsInSubSubList = -1; asCExprContext ctx(engine); while( valueNode ) { patternNode = nextNode; asCScriptNode *errNode = valueNode; int r = CompileInitListElement(patternNode, valueNode, bufferTypeId, bufferVar, bufferSize, ctx.bc, elementsInSubSubList); if( r < 0 ) return r; if( r == 0 ) countElements++; else { asASSERT( r == 1 && engine->ep.disallowEmptyListElements ); if( valueNode ) { // Empty elements in the middle are not allowed Error(TXT_EMPTY_LIST_ELEMENT_IS_NOT_ALLOWED, errNode); } } } if( countElements == 0 ) { // Skip the sub pattern that was expected to be repeated, otherwise the caller will try to match these when we return patternNode = nextNode; if( patternNode->type == asLPT_TYPE ) patternNode = patternNode->next; else if( patternNode->type == asLPT_START ) { int subCount = 1; do { patternNode = patternNode->next; if( patternNode->type == asLPT_START ) subCount++; else if( patternNode->type == asLPT_END ) subCount--; } while( subCount > 0 ); patternNode = patternNode->next; } } // For repeat_same each repeated sublist must have the same size to form a rectangular array if( repeatType == asLPT_REPEAT_SAME && elementsInSubList != -1 && asUINT(elementsInSubList) != countElements ) { if( countElements < asUINT(elementsInSubList) ) Error(TXT_NOT_ENOUGH_VALUES_FOR_LIST, firstValue); else Error(TXT_TOO_MANY_VALUES_FOR_LIST, firstValue); return -1; } else { // Return to caller the amount of elments in this sublist elementsInSubList = countElements; } // The first dword in the buffer will hold the number of elements bcInit.InstrSHORT_DW_DW(asBC_SetListSize, bufferVar, currSize, countElements); // Add the values bcInit.AddCode(&ctx.bc); } else if( patternNode->type == asLPT_TYPE ) { bool isEmpty = false; // Determine the size of the element asUINT size = 0; asCDataType dt = reinterpret_cast(patternNode)->dataType; if( valueNode->nodeType == snAssignment || valueNode->nodeType == snInitList ) { asCExprContext lctx(engine); asCExprContext rctx(engine); if( valueNode->nodeType == snAssignment ) { // Compile the assignment expression CompileAssignment(valueNode, &rctx); if( dt.GetTokenType() == ttQuestion ) { // Make sure the type is not ambiguous DetermineSingleFunc(&rctx, valueNode); // We now know the type dt = rctx.type.dataType; dt.MakeReadOnly(false); dt.MakeReference(false); // Values on the list must be aligned to 32bit boundaries, except if the type is smaller than 32bit. if( bufferSize & 0x3 ) bufferSize += 4 - (bufferSize & 0x3); // Place the type id in the buffer bcInit.InstrSHORT_DW_DW(asBC_SetListType, bufferVar, bufferSize, engine->GetTypeIdFromDataType(dt)); bufferSize += 4; } } else if( valueNode->nodeType == snInitList ) { if( dt.GetTokenType() == ttQuestion ) { // Can't use init lists with var type as it is not possible to determine what type should be allocated asCString str; str.Format(TXT_INIT_LIST_CANNOT_BE_USED_WITH_s, "?"); Error(str.AddressOf(), valueNode); rctx.type.SetDummy(); dt = rctx.type.dataType; } else { // Allocate a temporary variable that will be initialized with the list int offset = AllocateVariable(dt, true); rctx.type.Set(dt); rctx.type.isVariable = true; rctx.type.isTemporary = true; rctx.type.stackOffset = (short)offset; CompileInitList(&rctx.type, valueNode, &rctx.bc, 0); // Put the object on the stack rctx.bc.InstrSHORT(asBC_PSF, rctx.type.stackOffset); // It is a reference that we place on the stack rctx.type.dataType.MakeReference(true); } } // Determine size of the element if( dt.IsPrimitive() || (!dt.IsNullHandle() && (dt.GetTypeInfo()->flags & asOBJ_VALUE)) ) size = dt.GetSizeInMemoryBytes(); else size = AS_PTR_SIZE*4; // Values on the list must be aligned to 32bit boundaries, except if the type is smaller than 32bit. if( size >= 4 && (bufferSize & 0x3) ) bufferSize += 4 - (bufferSize & 0x3); // Compile the lvalue lctx.bc.InstrSHORT_DW(asBC_PshListElmnt, bufferVar, bufferSize); lctx.type.Set(dt); lctx.type.isLValue = true; if( dt.IsPrimitive() ) { lctx.bc.Instr(asBC_PopRPtr); lctx.type.dataType.MakeReference(true); } else if( dt.IsObjectHandle() || dt.GetTypeInfo()->flags & asOBJ_REF ) { lctx.type.isExplicitHandle = true; lctx.type.dataType.MakeReference(true); } else { asASSERT( dt.GetTypeInfo()->flags & asOBJ_VALUE ); // Make sure the object has been constructed before the assignment // TODO: runtime optimize: Use copy constructor instead of assignment to initialize the objects asSTypeBehaviour *beh = dt.GetBehaviour(); int func = 0; if( beh ) func = beh->construct; if( func == 0 && (dt.GetTypeInfo()->flags & asOBJ_POD) == 0 ) { asCString str; str.Format(TXT_NO_DEFAULT_CONSTRUCTOR_FOR_s, dt.GetTypeInfo()->GetName()); Error(str, valueNode); } else if( func ) { // Call the constructor as a normal function bcInit.InstrSHORT_DW(asBC_PshListElmnt, bufferVar, bufferSize); asCExprContext ctx(engine); PerformFunctionCall(func, &ctx, false, 0, CastToObjectType(dt.GetTypeInfo())); bcInit.AddCode(&ctx.bc); } } if( lctx.type.dataType.IsNullHandle() ) { // Don't add any code to assign a null handle. RefCpy doesn't work without a known type. // The buffer is already initialized to zero in asBC_AllocMem anyway. asASSERT( rctx.bc.GetLastInstr() == asBC_PshNull ); asASSERT( reinterpret_cast(patternNode)->dataType.GetTokenType() == ttQuestion ); } else { asCExprContext ctx(engine); DoAssignment(&ctx, &lctx, &rctx, valueNode, valueNode, ttAssignment, valueNode); if( !lctx.type.dataType.IsPrimitive() ) ctx.bc.Instr(asBC_PopPtr); // Release temporary variables used by expression ReleaseTemporaryVariable(ctx.type, &ctx.bc); ProcessDeferredParams(&ctx); bcInit.AddCode(&ctx.bc); } } else { if( builder->engine->ep.disallowEmptyListElements ) { // Empty elements are not allowed, except if it is the last in the list isEmpty = true; } else { // There is no specific value so we need to fill it with a default value if( dt.GetTokenType() == ttQuestion ) { // Values on the list must be aligned to 32bit boundaries, except if the type is smaller than 32bit. if( bufferSize & 0x3 ) bufferSize += 4 - (bufferSize & 0x3); // Place the type id for a null handle in the buffer bcInit.InstrSHORT_DW_DW(asBC_SetListType, bufferVar, bufferSize, 0); bufferSize += 4; dt = asCDataType::CreateNullHandle(); // No need to initialize the handle as the buffer is already initialized with zeroes } else if( dt.GetTypeInfo() && dt.GetTypeInfo()->flags & asOBJ_VALUE ) { // For value types with default constructor we need to call the constructor asSTypeBehaviour *beh = dt.GetBehaviour(); int func = 0; if( beh ) func = beh->construct; if( func == 0 && (dt.GetTypeInfo()->flags & asOBJ_POD) == 0 ) { asCString str; str.Format(TXT_NO_DEFAULT_CONSTRUCTOR_FOR_s, dt.GetTypeInfo()->GetName()); Error(str, valueNode); } else if( func ) { // Values on the list must be aligned to 32bit boundaries, except if the type is smaller than 32bit. if( bufferSize & 0x3 ) bufferSize += 4 - (bufferSize & 0x3); // Call the constructor as a normal function bcInit.InstrSHORT_DW(asBC_PshListElmnt, bufferVar, bufferSize); asCExprContext ctx(engine); PerformFunctionCall(func, &ctx, false, 0, CastToObjectType(dt.GetTypeInfo())); bcInit.AddCode(&ctx.bc); } } else if( !dt.IsObjectHandle() && dt.GetTypeInfo() && dt.GetTypeInfo()->flags & asOBJ_REF ) { // For ref types (not handles) we need to call the default factory asSTypeBehaviour *beh = dt.GetBehaviour(); int func = 0; if( beh ) func = beh->factory; if( func == 0 ) { asCString str; str.Format(TXT_NO_DEFAULT_CONSTRUCTOR_FOR_s, dt.GetTypeInfo()->GetName()); Error(str, valueNode); } else if( func ) { asCExprContext rctx(engine); PerformFunctionCall(func, &rctx, false, 0, CastToObjectType(dt.GetTypeInfo())); // Values on the list must be aligned to 32bit boundaries, except if the type is smaller than 32bit. if( bufferSize & 0x3 ) bufferSize += 4 - (bufferSize & 0x3); asCExprContext lctx(engine); lctx.bc.InstrSHORT_DW(asBC_PshListElmnt, bufferVar, bufferSize); lctx.type.Set(dt); lctx.type.isLValue = true; lctx.type.isExplicitHandle = true; lctx.type.dataType.MakeReference(true); asCExprContext ctx(engine); DoAssignment(&ctx, &lctx, &rctx, valueNode, valueNode, ttAssignment, valueNode); if( !lctx.type.dataType.IsPrimitive() ) ctx.bc.Instr(asBC_PopPtr); // Release temporary variables used by expression ReleaseTemporaryVariable(ctx.type, &ctx.bc); ProcessDeferredParams(&ctx); bcInit.AddCode(&ctx.bc); } } } } if( !isEmpty ) { // Determine size of the element if( dt.IsPrimitive() || (!dt.IsNullHandle() && (dt.GetTypeInfo()->flags & asOBJ_VALUE)) ) size = dt.GetSizeInMemoryBytes(); else size = AS_PTR_SIZE*4; asASSERT( size <= 4 || (size & 0x3) == 0 ); bufferSize += size; } // Move to the next element patternNode = patternNode->next; valueNode = valueNode->next; if( isEmpty ) { // The caller will determine if the empty element should be ignored or not return 1; } } else asASSERT( false ); return 0; } void asCCompiler::CompileStatement(asCScriptNode *statement, bool *hasReturn, asCByteCode *bc) { // Don't clear the hasReturn flag if this is an empty statement // to avoid false errors of 'not all paths return' if( statement->nodeType != snExpressionStatement || statement->firstChild ) *hasReturn = false; if( statement->nodeType == snStatementBlock ) CompileStatementBlock(statement, true, hasReturn, bc); else if( statement->nodeType == snIf ) CompileIfStatement(statement, hasReturn, bc); else if( statement->nodeType == snFor ) CompileForStatement(statement, bc); else if( statement->nodeType == snWhile ) CompileWhileStatement(statement, bc); else if( statement->nodeType == snDoWhile ) CompileDoWhileStatement(statement, bc); else if( statement->nodeType == snExpressionStatement ) CompileExpressionStatement(statement, bc); else if( statement->nodeType == snBreak ) CompileBreakStatement(statement, bc); else if( statement->nodeType == snContinue ) CompileContinueStatement(statement, bc); else if( statement->nodeType == snSwitch ) CompileSwitchStatement(statement, hasReturn, bc); else if( statement->nodeType == snReturn ) { CompileReturnStatement(statement, bc); *hasReturn = true; } } void asCCompiler::CompileSwitchStatement(asCScriptNode *snode, bool *, asCByteCode *bc) { // TODO: inheritance: Must guarantee that all options in the switch case call a constructor, or that none call it. // Reserve label for break statements int breakLabel = nextLabel++; breakLabels.PushLast(breakLabel); // Add a variable scope that will be used by CompileBreak // to know where to stop deallocating variables AddVariableScope(true, false); //--------------------------- // Compile the switch expression //------------------------------- // Compile the switch expression asCExprContext expr(engine); CompileAssignment(snode->firstChild, &expr); // Verify that the expression is a primitive type if( !expr.type.dataType.IsIntegerType() && !expr.type.dataType.IsUnsignedType() ) { Error(TXT_SWITCH_MUST_BE_INTEGRAL, snode->firstChild); return; } ProcessPropertyGetAccessor(&expr, snode); // TODO: Need to support 64bit integers // Convert the expression to a 32bit variable asCDataType to; if( expr.type.dataType.IsIntegerType() ) to.SetTokenType(ttInt); else if( expr.type.dataType.IsUnsignedType() ) to.SetTokenType(ttUInt); // Make sure the value is in a variable if( expr.type.dataType.IsReference() ) ConvertToVariable(&expr); ImplicitConversion(&expr, to, snode->firstChild, asIC_IMPLICIT_CONV, true); ConvertToVariable(&expr); int offset = expr.type.stackOffset; ProcessDeferredParams(&expr); //------------------------------- // Determine case values and labels //-------------------------------- // Remember the first label so that we can later pass the // correct label to each CompileCase() int firstCaseLabel = nextLabel; int defaultLabel = 0; asCArray caseValues; asCArray caseLabels; // Compile all case comparisons and make them jump to the right label asCScriptNode *cnode = snode->firstChild->next; while( cnode ) { // Each case should have a constant expression if( cnode->firstChild && cnode->firstChild->nodeType == snExpression ) { // Compile expression asCExprContext c(engine); CompileExpression(cnode->firstChild, &c); // Verify that the result is a constant if( !c.type.isConstant ) Error(TXT_SWITCH_CASE_MUST_BE_CONSTANT, cnode->firstChild); // Verify that the result is an integral number if (!c.type.dataType.IsIntegerType() && !c.type.dataType.IsUnsignedType()) Error(TXT_SWITCH_MUST_BE_INTEGRAL, cnode->firstChild); else { ImplicitConversion(&c, to, cnode->firstChild, asIC_IMPLICIT_CONV, true); // Has this case been declared already? if (caseValues.IndexOf(c.type.GetConstantDW()) >= 0) Error(TXT_DUPLICATE_SWITCH_CASE, cnode->firstChild); // TODO: Optimize: We can insert the numbers sorted already // Store constant for later use caseValues.PushLast(c.type.GetConstantDW()); // Reserve label for this case caseLabels.PushLast(nextLabel++); } } else { // TODO: It shouldn't be necessary for the default case to be the last one. // Is default the last case? if( cnode->next ) { Error(TXT_DEFAULT_MUST_BE_LAST, cnode); break; } // Reserve label for this case defaultLabel = nextLabel++; } cnode = cnode->next; } // check for empty switch if (caseValues.GetLength() == 0) { Error(TXT_EMPTY_SWITCH, snode); return; } if( defaultLabel == 0 ) defaultLabel = breakLabel; //--------------------------------- // Output the optimized case comparisons // with jumps to the case code //------------------------------------ // Sort the case values by increasing value. Do the sort together with the labels // A simple bubble sort is sufficient since we don't expect a huge number of values for( asUINT fwd = 1; fwd < caseValues.GetLength(); fwd++ ) { for( int bck = fwd - 1; bck >= 0; bck-- ) { int bckp = bck + 1; if( caseValues[bck] > caseValues[bckp] ) { // Swap the values in both arrays int swap = caseValues[bckp]; caseValues[bckp] = caseValues[bck]; caseValues[bck] = swap; swap = caseLabels[bckp]; caseLabels[bckp] = caseLabels[bck]; caseLabels[bck] = swap; } else break; } } // Find ranges of consecutive numbers asCArray ranges; ranges.PushLast(0); asUINT n; for( n = 1; n < caseValues.GetLength(); ++n ) { // We can join numbers that are less than 5 numbers // apart since the output code will still be smaller if( caseValues[n] > caseValues[n-1] + 5 ) ranges.PushLast(n); } // If the value is larger than the largest case value, jump to default int tmpOffset = AllocateVariable(asCDataType::CreatePrimitive(ttInt, false), true); expr.bc.InstrSHORT_DW(asBC_SetV4, (short)tmpOffset, caseValues[caseValues.GetLength()-1]); expr.bc.InstrW_W(asBC_CMPi, offset, tmpOffset); expr.bc.InstrDWORD(asBC_JP, defaultLabel); ReleaseTemporaryVariable(tmpOffset, &expr.bc); // TODO: runtime optimize: We could possibly optimize this even more by doing a // binary search instead of a linear search through the ranges // For each range int range; for( range = 0; range < (int)ranges.GetLength(); range++ ) { // Find the largest value in this range int maxRange = caseValues[ranges[range]]; int index = ranges[range]; for( ; (index < (int)caseValues.GetLength()) && (caseValues[index] <= maxRange + 5); index++ ) maxRange = caseValues[index]; // If there are only 2 numbers then it is better to compare them directly if( index - ranges[range] > 2 ) { // If the value is smaller than the smallest case value in the range, jump to default tmpOffset = AllocateVariable(asCDataType::CreatePrimitive(ttInt, false), true); expr.bc.InstrSHORT_DW(asBC_SetV4, (short)tmpOffset, caseValues[ranges[range]]); expr.bc.InstrW_W(asBC_CMPi, offset, tmpOffset); expr.bc.InstrDWORD(asBC_JS, defaultLabel); ReleaseTemporaryVariable(tmpOffset, &expr.bc); int nextRangeLabel = nextLabel++; // If this is the last range we don't have to make this test if( range < (int)ranges.GetLength() - 1 ) { // If the value is larger than the largest case value in the range, jump to the next range tmpOffset = AllocateVariable(asCDataType::CreatePrimitive(ttInt, false), true); expr.bc.InstrSHORT_DW(asBC_SetV4, (short)tmpOffset, maxRange); expr.bc.InstrW_W(asBC_CMPi, offset, tmpOffset); expr.bc.InstrDWORD(asBC_JP, nextRangeLabel); ReleaseTemporaryVariable(tmpOffset, &expr.bc); } // Jump forward according to the value tmpOffset = AllocateVariable(asCDataType::CreatePrimitive(ttInt, false), true); expr.bc.InstrSHORT_DW(asBC_SetV4, (short)tmpOffset, caseValues[ranges[range]]); expr.bc.InstrW_W_W(asBC_SUBi, tmpOffset, offset, tmpOffset); ReleaseTemporaryVariable(tmpOffset, &expr.bc); expr.bc.JmpP(tmpOffset, maxRange - caseValues[ranges[range]]); // Add the list of jumps to the correct labels (any holes, jump to default) index = ranges[range]; for( int i = caseValues[index]; i <= maxRange; i++ ) { if( caseValues[index] == i ) expr.bc.InstrINT(asBC_JMP, caseLabels[index++]); else expr.bc.InstrINT(asBC_JMP, defaultLabel); } expr.bc.Label((short)nextRangeLabel); } else { // Simply make a comparison with each value for( int i = ranges[range]; i < index; ++i ) { tmpOffset = AllocateVariable(asCDataType::CreatePrimitive(ttInt, false), true); expr.bc.InstrSHORT_DW(asBC_SetV4, (short)tmpOffset, caseValues[i]); expr.bc.InstrW_W(asBC_CMPi, offset, tmpOffset); expr.bc.InstrDWORD(asBC_JZ, caseLabels[i]); ReleaseTemporaryVariable(tmpOffset, &expr.bc); } } } // Catch any value that falls trough expr.bc.InstrINT(asBC_JMP, defaultLabel); // Release the temporary variable previously stored ReleaseTemporaryVariable(expr.type, &expr.bc); // TODO: optimize: Should optimize each piece individually expr.bc.OptimizeLocally(tempVariableOffsets); //---------------------------------- // Output case implementations //---------------------------------- // Compile case implementations, each one with the label before it cnode = snode->firstChild->next; while( cnode ) { // Each case should have a constant expression if( cnode->firstChild && cnode->firstChild->nodeType == snExpression ) { expr.bc.Label((short)firstCaseLabel++); CompileCase(cnode->firstChild->next, &expr.bc); } else { expr.bc.Label((short)defaultLabel); // Is default the last case? if( cnode->next ) { // We've already reported this error break; } CompileCase(cnode->firstChild, &expr.bc); } cnode = cnode->next; } //-------------------------------- bc->AddCode(&expr.bc); // Add break label bc->Label((short)breakLabel); breakLabels.PopLast(); RemoveVariableScope(); } void asCCompiler::CompileCase(asCScriptNode *node, asCByteCode *bc) { bool isFinished = false; bool hasReturn = false; bool hasUnreachableCode = false; while( node ) { if( !hasUnreachableCode && (hasReturn || isFinished) ) { hasUnreachableCode = true; Warning(TXT_UNREACHABLE_CODE, node); break; } if( node->nodeType == snBreak || node->nodeType == snContinue ) isFinished = true; asCByteCode statement(engine); if( node->nodeType == snDeclaration ) { Error(TXT_DECL_IN_SWITCH, node); // Compile it anyway to avoid further compiler errors CompileDeclaration(node, &statement); } else CompileStatement(node, &hasReturn, &statement); LineInstr(bc, node->tokenPos); bc->AddCode(&statement); if( !hasCompileErrors ) asASSERT( tempVariables.GetLength() == 0 ); node = node->next; } } void asCCompiler::CompileIfStatement(asCScriptNode *inode, bool *hasReturn, asCByteCode *bc) { // We will use one label for the if statement // and possibly another for the else statement int afterLabel = nextLabel++; // Compile the expression asCExprContext expr(engine); int r = CompileAssignment(inode->firstChild, &expr); if( r == 0 ) { // Allow value types to be converted to bool using 'bool opImplConv()' if( expr.type.dataType.GetTypeInfo() && (expr.type.dataType.GetTypeInfo()->GetFlags() & asOBJ_VALUE) ) ImplicitConversion(&expr, asCDataType::CreatePrimitive(ttBool, false), inode, asIC_IMPLICIT_CONV); if( !expr.type.dataType.IsEqualExceptRefAndConst(asCDataType::CreatePrimitive(ttBool, true)) ) Error(TXT_EXPR_MUST_BE_BOOL, inode->firstChild); else { if( expr.type.dataType.IsReference() ) ConvertToVariable(&expr); ProcessDeferredParams(&expr); if( !expr.type.isConstant ) { ProcessPropertyGetAccessor(&expr, inode); ConvertToVariable(&expr); // Add a test expr.bc.InstrSHORT(asBC_CpyVtoR4, expr.type.stackOffset); expr.bc.Instr(asBC_ClrHi); expr.bc.InstrDWORD(asBC_JZ, afterLabel); ReleaseTemporaryVariable(expr.type, &expr.bc); expr.bc.OptimizeLocally(tempVariableOffsets); bc->AddCode(&expr.bc); } #if AS_SIZEOF_BOOL == 1 else if( expr.type.GetConstantB() == 0 ) #else else if (expr.type.GetConstantDW() == 0) #endif { // Jump to the else case bc->InstrINT(asBC_JMP, afterLabel); // TODO: Should we warn that the expression will always go to the else? } } } // Compile the if statement bool origIsConstructorCalled = m_isConstructorCalled; bool hasReturn1; asCByteCode ifBC(engine); CompileStatement(inode->firstChild->next, &hasReturn1, &ifBC); // Add the byte code LineInstr(bc, inode->firstChild->next->tokenPos); bc->AddCode(&ifBC); if( inode->firstChild->next->nodeType == snExpressionStatement && inode->firstChild->next->firstChild == 0 ) { // Don't allow if( expr ); Error(TXT_IF_WITH_EMPTY_STATEMENT, inode->firstChild->next); } // If one of the statements call the constructor, the other must as well // otherwise it is possible the constructor is never called bool constructorCall1 = false; bool constructorCall2 = false; if( !origIsConstructorCalled && m_isConstructorCalled ) constructorCall1 = true; // Do we have an else statement? if( inode->firstChild->next != inode->lastChild ) { // Reset the constructor called flag so the else statement can call the constructor too m_isConstructorCalled = origIsConstructorCalled; int afterElse = 0; if( !hasReturn1 ) { afterElse = nextLabel++; // Add jump to after the else statement bc->InstrINT(asBC_JMP, afterElse); } // Add label for the else statement bc->Label((short)afterLabel); bool hasReturn2; asCByteCode elseBC(engine); CompileStatement(inode->lastChild, &hasReturn2, &elseBC); // Add byte code for the else statement LineInstr(bc, inode->lastChild->tokenPos); bc->AddCode(&elseBC); if( inode->lastChild->nodeType == snExpressionStatement && inode->lastChild->firstChild == 0 ) { // Don't allow if( expr ) {} else; Error(TXT_ELSE_WITH_EMPTY_STATEMENT, inode->lastChild); } if( !hasReturn1 ) { // Add label for the end of else statement bc->Label((short)afterElse); } // The if statement only has return if both alternatives have *hasReturn = hasReturn1 && hasReturn2; if( !origIsConstructorCalled && m_isConstructorCalled ) constructorCall2 = true; } else { // Add label for the end of if statement bc->Label((short)afterLabel); *hasReturn = false; } // Make sure both or neither conditions call a constructor if( (constructorCall1 && !constructorCall2) || (constructorCall2 && !constructorCall1) ) { Error(TXT_BOTH_CONDITIONS_MUST_CALL_CONSTRUCTOR, inode); } m_isConstructorCalled = origIsConstructorCalled || constructorCall1 || constructorCall2; } void asCCompiler::CompileForStatement(asCScriptNode *fnode, asCByteCode *bc) { // Add a variable scope that will be used by CompileBreak/Continue to know where to stop deallocating variables AddVariableScope(true, true); // We will use three labels for the for loop int conditionLabel = nextLabel++; int afterLabel = nextLabel++; int continueLabel = nextLabel++; int insideLabel = nextLabel++; continueLabels.PushLast(continueLabel); breakLabels.PushLast(afterLabel); //--------------------------------------- // Compile the initialization statement asCByteCode initBC(engine); LineInstr(&initBC, fnode->firstChild->tokenPos); if( fnode->firstChild->nodeType == snDeclaration ) CompileDeclaration(fnode->firstChild, &initBC); else CompileExpressionStatement(fnode->firstChild, &initBC); //----------------------------------- // Compile the condition statement asCExprContext expr(engine); asCScriptNode *second = fnode->firstChild->next; if( second->firstChild ) { int r = CompileAssignment(second->firstChild, &expr); if( r >= 0 ) { // Allow value types to be converted to bool using 'bool opImplConv()' if( expr.type.dataType.GetTypeInfo() && (expr.type.dataType.GetTypeInfo()->GetFlags() & asOBJ_VALUE) ) ImplicitConversion(&expr, asCDataType::CreatePrimitive(ttBool, false), second->firstChild, asIC_IMPLICIT_CONV); if( !expr.type.dataType.IsEqualExceptRefAndConst(asCDataType::CreatePrimitive(ttBool, true)) ) Error(TXT_EXPR_MUST_BE_BOOL, second); else { if( expr.type.dataType.IsReference() ) ConvertToVariable(&expr); ProcessDeferredParams(&expr); ProcessPropertyGetAccessor(&expr, second); // If expression is false exit the loop ConvertToVariable(&expr); expr.bc.InstrSHORT(asBC_CpyVtoR4, expr.type.stackOffset); expr.bc.Instr(asBC_ClrHi); expr.bc.InstrDWORD(asBC_JNZ, insideLabel); ReleaseTemporaryVariable(expr.type, &expr.bc); expr.bc.OptimizeLocally(tempVariableOffsets); // Prepend the line instruction for the condition asCByteCode tmp(engine); LineInstr(&tmp, second->firstChild->tokenPos); tmp.AddCode(&expr.bc); expr.bc.AddCode(&tmp); } } } //--------------------------- // Compile the increment statement(s) asCByteCode nextBC(engine); asCScriptNode *cnode = second->next; while( cnode && cnode->nodeType == snExpressionStatement && cnode != fnode->lastChild ) { LineInstr(&nextBC, cnode->tokenPos); CompileExpressionStatement(cnode, &nextBC); cnode = cnode->next; } //------------------------------ // Compile loop statement bool hasReturn; asCByteCode forBC(engine); CompileStatement(fnode->lastChild, &hasReturn, &forBC); //------------------------------- // Join the code pieces bc->AddCode(&initBC); bc->InstrDWORD(asBC_JMP, conditionLabel); bc->Label((short)insideLabel); // Add a suspend bytecode inside the loop to guarantee // that the application can suspend the execution bc->Instr(asBC_SUSPEND); bc->InstrPTR(asBC_JitEntry, 0); LineInstr(bc, fnode->lastChild->tokenPos); bc->AddCode(&forBC); bc->Label((short)continueLabel); bc->AddCode(&nextBC); bc->Label((short)conditionLabel); if( expr.bc.GetLastInstr() == -1 ) // There is no condition, so we just always jump bc->InstrDWORD(asBC_JMP, insideLabel); else bc->AddCode(&expr.bc); bc->Label((short)afterLabel); continueLabels.PopLast(); breakLabels.PopLast(); // Deallocate variables in this block, in reverse order for( int n = (int)variables->variables.GetLength() - 1; n >= 0; n-- ) { sVariable *v = variables->variables[n]; // Call variable destructors here, for variables not yet destroyed CallDestructor(v->type, v->stackOffset, v->onHeap, bc); // Don't deallocate function parameters if( v->stackOffset > 0 ) DeallocateVariable(v->stackOffset); } RemoveVariableScope(); } void asCCompiler::CompileWhileStatement(asCScriptNode *wnode, asCByteCode *bc) { // Add a variable scope that will be used by CompileBreak/Continue to know where to stop deallocating variables AddVariableScope(true, true); // We will use two labels for the while loop int beforeLabel = nextLabel++; int afterLabel = nextLabel++; continueLabels.PushLast(beforeLabel); breakLabels.PushLast(afterLabel); // Add label before the expression bc->Label((short)beforeLabel); // Compile expression asCExprContext expr(engine); int r = CompileAssignment(wnode->firstChild, &expr); if( r == 0 ) { // Allow value types to be converted to bool using 'bool opImplConv()' if( expr.type.dataType.GetTypeInfo() && (expr.type.dataType.GetTypeInfo()->GetFlags() & asOBJ_VALUE) ) ImplicitConversion(&expr, asCDataType::CreatePrimitive(ttBool, false), wnode->firstChild, asIC_IMPLICIT_CONV); if( !expr.type.dataType.IsEqualExceptRefAndConst(asCDataType::CreatePrimitive(ttBool, true)) ) Error(TXT_EXPR_MUST_BE_BOOL, wnode->firstChild); else { if( expr.type.dataType.IsReference() ) ConvertToVariable(&expr); ProcessDeferredParams(&expr); ProcessPropertyGetAccessor(&expr, wnode); // Add byte code for the expression ConvertToVariable(&expr); // Jump to end of statement if expression is false expr.bc.InstrSHORT(asBC_CpyVtoR4, expr.type.stackOffset); expr.bc.Instr(asBC_ClrHi); expr.bc.InstrDWORD(asBC_JZ, afterLabel); ReleaseTemporaryVariable(expr.type, &expr.bc); expr.bc.OptimizeLocally(tempVariableOffsets); bc->AddCode(&expr.bc); } } // Add a suspend bytecode inside the loop to guarantee // that the application can suspend the execution bc->Instr(asBC_SUSPEND); bc->InstrPTR(asBC_JitEntry, 0); // Compile statement bool hasReturn; asCByteCode whileBC(engine); CompileStatement(wnode->lastChild, &hasReturn, &whileBC); // Add byte code for the statement LineInstr(bc, wnode->lastChild->tokenPos); bc->AddCode(&whileBC); // Jump to the expression bc->InstrINT(asBC_JMP, beforeLabel); // Add label after the statement bc->Label((short)afterLabel); continueLabels.PopLast(); breakLabels.PopLast(); RemoveVariableScope(); } void asCCompiler::CompileDoWhileStatement(asCScriptNode *wnode, asCByteCode *bc) { // Add a variable scope that will be used by CompileBreak/Continue to know where to stop deallocating variables AddVariableScope(true, true); // We will use two labels for the while loop int beforeLabel = nextLabel++; int beforeTest = nextLabel++; int afterLabel = nextLabel++; continueLabels.PushLast(beforeTest); breakLabels.PushLast(afterLabel); // Add label before the statement bc->Label((short)beforeLabel); // Compile statement bool hasReturn; asCByteCode whileBC(engine); CompileStatement(wnode->firstChild, &hasReturn, &whileBC); // Add byte code for the statement LineInstr(bc, wnode->firstChild->tokenPos); bc->AddCode(&whileBC); // Add label before the expression bc->Label((short)beforeTest); // Add a suspend bytecode inside the loop to guarantee // that the application can suspend the execution bc->Instr(asBC_SUSPEND); bc->InstrPTR(asBC_JitEntry, 0); // Add a line instruction LineInstr(bc, wnode->lastChild->tokenPos); // Compile expression asCExprContext expr(engine); CompileAssignment(wnode->lastChild, &expr); // Allow value types to be converted to bool using 'bool opImplConv()' if( expr.type.dataType.GetTypeInfo() && (expr.type.dataType.GetTypeInfo()->GetFlags() & asOBJ_VALUE) ) ImplicitConversion(&expr, asCDataType::CreatePrimitive(ttBool, false), wnode->lastChild, asIC_IMPLICIT_CONV); if( !expr.type.dataType.IsEqualExceptRefAndConst(asCDataType::CreatePrimitive(ttBool, true)) ) Error(TXT_EXPR_MUST_BE_BOOL, wnode->firstChild); else { if( expr.type.dataType.IsReference() ) ConvertToVariable(&expr); ProcessDeferredParams(&expr); ProcessPropertyGetAccessor(&expr, wnode); // Add byte code for the expression ConvertToVariable(&expr); // Jump to next iteration if expression is true expr.bc.InstrSHORT(asBC_CpyVtoR4, expr.type.stackOffset); expr.bc.Instr(asBC_ClrHi); expr.bc.InstrDWORD(asBC_JNZ, beforeLabel); ReleaseTemporaryVariable(expr.type, &expr.bc); expr.bc.OptimizeLocally(tempVariableOffsets); bc->AddCode(&expr.bc); } // Add label after the statement bc->Label((short)afterLabel); continueLabels.PopLast(); breakLabels.PopLast(); RemoveVariableScope(); } void asCCompiler::CompileBreakStatement(asCScriptNode *node, asCByteCode *bc) { if( breakLabels.GetLength() == 0 ) { Error(TXT_INVALID_BREAK, node); return; } // Add destructor calls for all variables that will go out of scope // Put this clean up in a block to allow exception handler to understand them bc->Block(true); asCVariableScope *vs = variables; while( !vs->isBreakScope ) { for( int n = (int)vs->variables.GetLength() - 1; n >= 0; n-- ) CallDestructor(vs->variables[n]->type, vs->variables[n]->stackOffset, vs->variables[n]->onHeap, bc); vs = vs->parent; } bc->Block(false); bc->InstrINT(asBC_JMP, breakLabels[breakLabels.GetLength()-1]); } void asCCompiler::CompileContinueStatement(asCScriptNode *node, asCByteCode *bc) { if( continueLabels.GetLength() == 0 ) { Error(TXT_INVALID_CONTINUE, node); return; } // Add destructor calls for all variables that will go out of scope // Put this clean up in a block to allow exception handler to understand them bc->Block(true); asCVariableScope *vs = variables; while( !vs->isContinueScope ) { for( int n = (int)vs->variables.GetLength() - 1; n >= 0; n-- ) CallDestructor(vs->variables[n]->type, vs->variables[n]->stackOffset, vs->variables[n]->onHeap, bc); vs = vs->parent; } bc->Block(false); bc->InstrINT(asBC_JMP, continueLabels[continueLabels.GetLength()-1]); } void asCCompiler::CompileExpressionStatement(asCScriptNode *enode, asCByteCode *bc) { if( enode->firstChild ) { // Compile the expression asCExprContext expr(engine); CompileAssignment(enode->firstChild, &expr); // Must not have unused ambiguous names if( expr.IsClassMethod() || expr.IsGlobalFunc() ) Error(TXT_INVALID_EXPRESSION_AMBIGUOUS_NAME, enode); // Must not have unused anonymous functions if( expr.IsLambda() ) Error(TXT_INVALID_EXPRESSION_LAMBDA, enode); // If we get here and there is still an unprocessed property // accessor, then process it as a get access. Don't call if there is // already a compile error, or we might report an error that is not valid if( !hasCompileErrors ) ProcessPropertyGetAccessor(&expr, enode); // Pop the value from the stack if( !expr.type.dataType.IsPrimitive() ) expr.bc.Instr(asBC_PopPtr); // Release temporary variables used by expression ReleaseTemporaryVariable(expr.type, &expr.bc); ProcessDeferredParams(&expr); expr.bc.OptimizeLocally(tempVariableOffsets); bc->AddCode(&expr.bc); } } void asCCompiler::PrepareTemporaryVariable(asCScriptNode *node, asCExprContext *ctx, bool forceOnHeap) { // The input can be either an object or funcdef, either as handle or reference asASSERT(ctx->type.dataType.IsObject() || ctx->type.dataType.IsFuncdef()); // If the object already is stored in temporary variable then nothing needs to be done // Note, a type can be temporary without being a variable, in which case it is holding off // on releasing a previously used object. if( ctx->type.isTemporary && ctx->type.isVariable && !(forceOnHeap && !IsVariableOnHeap(ctx->type.stackOffset)) ) { // If the temporary object is currently not a reference // the expression needs to be reevaluated to a reference if( !ctx->type.dataType.IsReference() ) { ctx->bc.Instr(asBC_PopPtr); ctx->bc.InstrSHORT(asBC_PSF, ctx->type.stackOffset); ctx->type.dataType.MakeReference(true); } return; } // Allocate temporary variable asCDataType dt = ctx->type.dataType; dt.MakeReference(false); dt.MakeReadOnly(false); int offset = AllocateVariable(dt, true, forceOnHeap); // Objects stored on the stack are not considered references dt.MakeReference(IsVariableOnHeap(offset)); asCExprValue lvalue; lvalue.Set(dt); lvalue.isExplicitHandle = ctx->type.isExplicitHandle; bool isExplicitHandle = ctx->type.isExplicitHandle; bool prevIsTemp = ctx->type.isTemporary; int prevStackOffset = ctx->type.stackOffset; CompileInitAsCopy(dt, offset, &ctx->bc, ctx, node, false); // Release the previous temporary variable if it hasn't already been released if( prevIsTemp && tempVariables.Exists(prevStackOffset) ) ReleaseTemporaryVariable(prevStackOffset, &ctx->bc); // Push the reference to the temporary variable on the stack ctx->bc.InstrSHORT(asBC_PSF, (short)offset); ctx->type.Set(dt); ctx->type.isTemporary = true; ctx->type.stackOffset = (short)offset; ctx->type.isVariable = true; ctx->type.isExplicitHandle = isExplicitHandle; ctx->type.dataType.MakeReference(IsVariableOnHeap(offset)); } void asCCompiler::CompileReturnStatement(asCScriptNode *rnode, asCByteCode *bc) { // Get return type and location sVariable *v = variables->GetVariable("return"); // Basic validations if( v->type.GetSizeOnStackDWords() > 0 && !rnode->firstChild ) { Error(TXT_MUST_RETURN_VALUE, rnode); return; } else if( v->type.GetSizeOnStackDWords() == 0 && rnode->firstChild ) { Error(TXT_CANT_RETURN_VALUE, rnode); return; } // Compile the expression if( rnode->firstChild ) { // Compile the expression asCExprContext expr(engine); int r = CompileAssignment(rnode->firstChild, &expr); if( r < 0 ) return; if( v->type.IsReference() ) { // The expression that gives the reference must not use any of the // variables that must be destroyed upon exit, because then it means // reference will stay alive while the clean-up is done, which could // potentially mean that the reference is invalidated by the clean-up. // // When the function is returning a reference, the clean-up of the // variables must be done before the evaluation of the expression. // // A reference to a global variable, or a class member for class methods // should be allowed to be returned. if( !(expr.type.dataType.IsReference() || (expr.type.dataType.IsObject() && !expr.type.dataType.IsObjectHandle())) ) { // Clean up the potential deferred parameters ProcessDeferredParams(&expr); Error(TXT_NOT_VALID_REFERENCE, rnode); return; } // No references to local variables, temporary variables, or parameters // are allowed to be returned, since they go out of scope when the function // returns. Even reference parameters are disallowed, since it is not possible // to know the scope of them. The exception is the 'this' pointer, which // is treated by the compiler as a local variable, but isn't really so. if( (expr.type.isVariable && !(expr.type.stackOffset == 0 && outFunc->objectType)) || expr.type.isTemporary ) { // Clean up the potential deferred parameters ProcessDeferredParams(&expr); Error(TXT_CANNOT_RETURN_REF_TO_LOCAL, rnode); return; } // The type must match exactly as we cannot convert // the reference without loosing the original value if( !(v->type.IsEqualExceptConst(expr.type.dataType) || ((expr.type.dataType.IsObject() || expr.type.dataType.IsFuncdef()) && !expr.type.dataType.IsObjectHandle() && v->type.IsEqualExceptRefAndConst(expr.type.dataType))) || (!v->type.IsReadOnly() && expr.type.dataType.IsReadOnly()) ) { // Clean up the potential deferred parameters ProcessDeferredParams(&expr); asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, expr.type.dataType.Format(outFunc->nameSpace).AddressOf(), v->type.Format(outFunc->nameSpace).AddressOf()); Error(str, rnode); return; } // The expression must not have any deferred expressions, because the evaluation // of these cannot be done without keeping the reference which is not safe if( expr.deferredParams.GetLength() ) { // Clean up the potential deferred parameters ProcessDeferredParams(&expr); Error(TXT_REF_CANT_BE_RETURNED_DEFERRED_PARAM, rnode); return; } // Make sure the expression isn't using any local variables that // will need to be cleaned up before the function completes asCArray usedVars; expr.bc.GetVarsUsed(usedVars); for( asUINT n = 0; n < usedVars.GetLength(); n++ ) { int var = GetVariableSlot(usedVars[n]); if( var != -1 ) { asCDataType dt = variableAllocations[var]; if( dt.IsObject() ) { ProcessDeferredParams(&expr); Error(TXT_REF_CANT_BE_RETURNED_LOCAL_VARS, rnode); return; } } } // Can't return the reference if could point to a local variable if( expr.type.isRefToLocal ) { ProcessDeferredParams(&expr); Error(TXT_REF_CANT_BE_TO_LOCAL_VAR, rnode); return; } // All objects in the function must be cleaned up before the expression // is evaluated, otherwise there is a possibility that the cleanup will // invalidate the reference. // Destroy the local variables before loading // the reference into the register. This will // be done before the expression is evaluated. DestroyVariables(bc); // For primitives the reference is already in the register, // but for non-primitives the reference is on the stack so we // need to load it into the register if( !expr.type.dataType.IsPrimitive() ) { if( !expr.type.dataType.IsObjectHandle() && expr.type.dataType.IsReference() ) expr.bc.Instr(asBC_RDSPtr); expr.bc.Instr(asBC_PopRPtr); } // There are no temporaries to release so we're done } else // if( !v->type.IsReference() ) { ProcessPropertyGetAccessor(&expr, rnode); // Prepare the value for assignment IsVariableInitialized(&expr.type, rnode->firstChild); if( v->type.IsPrimitive() ) { if( expr.type.dataType.IsReference() ) ConvertToVariable(&expr); // Implicitly convert the value to the return type ImplicitConversion(&expr, v->type, rnode->firstChild, asIC_IMPLICIT_CONV); // Verify that the conversion was successful if( expr.type.dataType != v->type ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_s, expr.type.dataType.Format(outFunc->nameSpace).AddressOf(), v->type.Format(outFunc->nameSpace).AddressOf()); Error(str, rnode); return; } else { ConvertToVariable(&expr); // Clean up the local variables and process deferred parameters DestroyVariables(&expr.bc); ProcessDeferredParams(&expr); ReleaseTemporaryVariable(expr.type, &expr.bc); // Load the variable in the register if( v->type.GetSizeOnStackDWords() == 1 ) expr.bc.InstrSHORT(asBC_CpyVtoR4, expr.type.stackOffset); else expr.bc.InstrSHORT(asBC_CpyVtoR8, expr.type.stackOffset); } } else if( v->type.IsObject() || v->type.IsFuncdef() ) { // Value types are returned on the stack, in a location // that has been reserved by the calling function. if( outFunc->DoesReturnOnStack() ) { // TODO: runtime optimize: If the return type has a constructor that takes the type of the expression, // it should be called directly instead of first converting the expression and // then copy the value. if( !v->type.IsEqualExceptRefAndConst(expr.type.dataType) ) { ImplicitConversion(&expr, v->type, rnode->firstChild, asIC_IMPLICIT_CONV); if( !v->type.IsEqualExceptRefAndConst(expr.type.dataType) ) { asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, expr.type.dataType.Format(outFunc->nameSpace).AddressOf(), v->type.Format(outFunc->nameSpace).AddressOf()); Error(str, rnode->firstChild); return; } } int offset = outFunc->objectType ? -AS_PTR_SIZE : 0; CompileInitAsCopy(v->type, offset, &expr.bc, &expr, rnode->firstChild, true); // Clean up the local variables and process deferred parameters DestroyVariables(&expr.bc); ProcessDeferredParams(&expr); } else { asASSERT( (v->type.GetTypeInfo()->flags & asOBJ_REF) || v->type.IsFuncdef() ); // Prepare the expression to be loaded into the object // register. This will place the reference in local variable PrepareArgument(&v->type, &expr, rnode->firstChild, false, 0); // Pop the reference to the temporary variable expr.bc.Instr(asBC_PopPtr); // Clean up the local variables and process deferred parameters DestroyVariables(&expr.bc); ProcessDeferredParams(&expr); // Load the object pointer into the object register // LOADOBJ also clears the address in the variable expr.bc.InstrSHORT(asBC_LOADOBJ, expr.type.stackOffset); // LOADOBJ cleared the address in the variable so the object will not be freed // here, but the temporary variable must still be freed so the slot can be reused // By releasing without the bytecode we do just that. ReleaseTemporaryVariable(expr.type, 0); } } } expr.bc.OptimizeLocally(tempVariableOffsets); bc->AddCode(&expr.bc); } else { // For functions that don't return anything // we just detroy the local variables DestroyVariables(bc); } // Jump to the end of the function bc->InstrINT(asBC_JMP, 0); } void asCCompiler::DestroyVariables(asCByteCode *bc) { // Call destructor on all variables except for the function parameters // Put the clean-up in a block to allow exception handler to understand this bc->Block(true); asCVariableScope *vs = variables; while( vs ) { for( int n = (int)vs->variables.GetLength() - 1; n >= 0; n-- ) if( vs->variables[n]->stackOffset > 0 ) CallDestructor(vs->variables[n]->type, vs->variables[n]->stackOffset, vs->variables[n]->onHeap, bc); vs = vs->parent; } bc->Block(false); } void asCCompiler::AddVariableScope(bool isBreakScope, bool isContinueScope) { variables = asNEW(asCVariableScope)(variables); if( variables == 0 ) { // Out of memory return; } variables->isBreakScope = isBreakScope; variables->isContinueScope = isContinueScope; } void asCCompiler::RemoveVariableScope() { if( variables ) { asCVariableScope *var = variables; variables = variables->parent; asDELETE(var,asCVariableScope); } } void asCCompiler::Error(const asCString &msg, asCScriptNode *node) { asCString str; int r = 0, c = 0; asASSERT( node ); if( node ) script->ConvertPosToRowCol(node->tokenPos, &r, &c); builder->WriteError(script->name, msg, r, c); hasCompileErrors = true; } void asCCompiler::Warning(const asCString &msg, asCScriptNode *node) { asCString str; int r = 0, c = 0; asASSERT( node ); if( node ) script->ConvertPosToRowCol(node->tokenPos, &r, &c); builder->WriteWarning(script->name, msg, r, c); } void asCCompiler::Information(const asCString &msg, asCScriptNode *node) { asCString str; int r = 0, c = 0; asASSERT( node ); if( node ) script->ConvertPosToRowCol(node->tokenPos, &r, &c); builder->WriteInfo(script->name, msg, r, c, false); } void asCCompiler::PrintMatchingFuncs(asCArray &funcs, asCScriptNode *node, asCObjectType *inType) { int r = 0, c = 0; asASSERT( node ); if( node ) script->ConvertPosToRowCol(node->tokenPos, &r, &c); for( unsigned int n = 0; n < funcs.GetLength(); n++ ) { asCScriptFunction *func = builder->GetFunctionDescription(funcs[n]); if( inType && func->funcType == asFUNC_VIRTUAL ) func = inType->virtualFunctionTable[func->vfTableIdx]; builder->WriteInfo(script->name, func->GetDeclaration(true, false, true), r, c, false); } } int asCCompiler::AllocateVariableNotIn(const asCDataType &type, bool isTemporary, bool forceOnHeap, asCExprContext *ctx) { int l = int(reservedVariables.GetLength()); ctx->bc.GetVarsUsed(reservedVariables); int var = AllocateVariable(type, isTemporary, forceOnHeap); reservedVariables.SetLength(l); return var; } int asCCompiler::AllocateVariable(const asCDataType &type, bool isTemporary, bool forceOnHeap) { asCDataType t(type); t.MakeReference(false); if( t.IsPrimitive() && t.GetSizeOnStackDWords() == 1 ) t.SetTokenType(ttInt); if( t.IsPrimitive() && t.GetSizeOnStackDWords() == 2 ) t.SetTokenType(ttDouble); // Only null handles have the token type unrecognized token asASSERT( t.IsObjectHandle() || t.GetTokenType() != ttUnrecognizedToken ); bool isOnHeap = true; if( t.IsPrimitive() || (t.GetTypeInfo() && (t.GetTypeInfo()->GetFlags() & asOBJ_VALUE) && !forceOnHeap) ) { // Primitives and value types (unless overridden) are allocated on the stack isOnHeap = false; } // Find a free location with the same type for( asUINT n = 0; n < freeVariables.GetLength(); n++ ) { int slot = freeVariables[n]; if( variableAllocations[slot].IsEqualExceptConst(t) && variableIsTemporary[slot] == isTemporary && variableIsOnHeap[slot] == isOnHeap ) { // We can't return by slot, must count variable sizes int offset = GetVariableOffset(slot); // Verify that it is not in the list of reserved variables bool isUsed = false; if( reservedVariables.GetLength() ) isUsed = reservedVariables.Exists(offset); if( !isUsed ) { if( n != freeVariables.GetLength() - 1 ) freeVariables[n] = freeVariables.PopLast(); else freeVariables.PopLast(); if( isTemporary ) tempVariables.PushLast(offset); return offset; } } } variableAllocations.PushLast(t); variableIsTemporary.PushLast(isTemporary); variableIsOnHeap.PushLast(isOnHeap); int offset = GetVariableOffset((int)variableAllocations.GetLength()-1); if( isTemporary ) { // Add offset to the currently allocated temporary variables tempVariables.PushLast(offset); // Add offset to all known offsets to temporary variables, whether allocated or not tempVariableOffsets.PushLast(offset); } return offset; } int asCCompiler::GetVariableOffset(int varIndex) { // Return offset to the last dword on the stack // Start at 1 as offset 0 is reserved for the this pointer (or first argument for global functions) int varOffset = 1; // Skip lower variables for( int n = 0; n < varIndex; n++ ) { if( !variableIsOnHeap[n] && variableAllocations[n].IsObject() ) varOffset += variableAllocations[n].GetSizeInMemoryDWords(); else varOffset += variableAllocations[n].GetSizeOnStackDWords(); } if( varIndex < (int)variableAllocations.GetLength() ) { // For variables larger than 1 dword the returned offset should be to the last dword int size; if( !variableIsOnHeap[varIndex] && variableAllocations[varIndex].IsObject() ) size = variableAllocations[varIndex].GetSizeInMemoryDWords(); else size = variableAllocations[varIndex].GetSizeOnStackDWords(); if( size > 1 ) varOffset += size-1; } return varOffset; } int asCCompiler::GetVariableSlot(int offset) { int varOffset = 1; for( asUINT n = 0; n < variableAllocations.GetLength(); n++ ) { if( !variableIsOnHeap[n] && variableAllocations[n].IsObject() ) varOffset += -1 + variableAllocations[n].GetSizeInMemoryDWords(); else varOffset += -1 + variableAllocations[n].GetSizeOnStackDWords(); if( varOffset == offset ) return n; varOffset++; } return -1; } bool asCCompiler::IsVariableOnHeap(int offset) { int varSlot = GetVariableSlot(offset); if( varSlot < 0 ) { // This happens for function arguments that are considered as on the heap return true; } return variableIsOnHeap[varSlot]; } void asCCompiler::DeallocateVariable(int offset) { // Remove temporary variable int n; for( n = 0; n < (int)tempVariables.GetLength(); n++ ) { if( offset == tempVariables[n] ) { if( n == (int)tempVariables.GetLength()-1 ) tempVariables.PopLast(); else tempVariables[n] = tempVariables.PopLast(); break; } } // Mark the variable slot available for new allocations n = GetVariableSlot(offset); if( n != -1 ) { freeVariables.PushLast(n); return; } // We might get here if the variable was implicitly declared // because it was used before a formal declaration, in this case // the offset is 0x7FFF asASSERT(offset == 0x7FFF); } void asCCompiler::ReleaseTemporaryVariable(asCExprValue &t, asCByteCode *bc) { if( t.isTemporary ) { ReleaseTemporaryVariable(t.stackOffset, bc); t.isTemporary = false; } } void asCCompiler::ReleaseTemporaryVariable(int offset, asCByteCode *bc) { asASSERT( tempVariables.Exists(offset) ); if( bc ) { // We need to call the destructor on the true variable type int n = GetVariableSlot(offset); asASSERT( n >= 0 ); if( n >= 0 ) { asCDataType dt = variableAllocations[n]; bool isOnHeap = variableIsOnHeap[n]; // Call destructor CallDestructor(dt, offset, isOnHeap, bc); } } DeallocateVariable(offset); } void asCCompiler::Dereference(asCExprContext *ctx, bool generateCode) { if( ctx->type.dataType.IsReference() ) { if( ctx->type.dataType.IsObject() || ctx->type.dataType.IsFuncdef() ) { ctx->type.dataType.MakeReference(false); if( generateCode ) ctx->bc.Instr(asBC_RDSPtr); } else { // This should never happen as primitives are treated differently asASSERT(false); } } } bool asCCompiler::IsVariableInitialized(asCExprValue *type, asCScriptNode *node) { // No need to check if there is no variable scope if( variables == 0 ) return true; // Temporary variables are assumed to be initialized if( type->isTemporary ) return true; // Verify that it is a variable if( !type->isVariable ) return true; // Find the variable sVariable *v = variables->GetVariableByOffset(type->stackOffset); // The variable isn't found if it is a constant, in which case it is guaranteed to be initialized if( v == 0 ) return true; if( v->isInitialized ) return true; // Complex types don't need this test if( v->type.IsObject() || v->type.IsFuncdef() ) return true; // Mark as initialized so that the user will not be bothered again v->isInitialized = true; // Write warning asCString str; str.Format(TXT_s_NOT_INITIALIZED, (const char *)v->name.AddressOf()); Warning(str, node); return false; } void asCCompiler::PrepareOperand(asCExprContext *ctx, asCScriptNode *node) { // Check if the variable is initialized (if it indeed is a variable) IsVariableInitialized(&ctx->type, node); asCDataType to = ctx->type.dataType; to.MakeReference(false); ImplicitConversion(ctx, to, node, asIC_IMPLICIT_CONV); ProcessDeferredParams(ctx); } void asCCompiler::PrepareForAssignment(asCDataType *lvalue, asCExprContext *rctx, asCScriptNode *node, bool toTemporary, asCExprContext *lvalueExpr) { // Reserve the temporary variables used in the lvalue expression so they won't end up being used by the rvalue too int l = int(reservedVariables.GetLength()); if( lvalueExpr ) lvalueExpr->bc.GetVarsUsed(reservedVariables); ProcessPropertyGetAccessor(rctx, node); // Make sure the rvalue is initialized if it is a variable IsVariableInitialized(&rctx->type, node); if( lvalue->IsPrimitive() ) { if( rctx->type.dataType.IsPrimitive() ) { if( rctx->type.dataType.IsReference() ) { // Cannot do implicit conversion of references so we first convert the reference to a variable ConvertToVariableNotIn(rctx, lvalueExpr); } } // Implicitly convert the value to the right type ImplicitConversion(rctx, *lvalue, node, asIC_IMPLICIT_CONV); // Check data type if( !lvalue->IsEqualExceptRefAndConst(rctx->type.dataType) ) { asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, rctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), lvalue->Format(outFunc->nameSpace).AddressOf()); Error(str, node); rctx->type.SetDummy(); } // Make sure the rvalue is a variable if( !rctx->type.isVariable ) ConvertToVariableNotIn(rctx, lvalueExpr); } else { asCDataType to = *lvalue; to.MakeReference(false); // TODO: ImplicitConversion should know to do this by itself // First convert to a handle which will do a reference cast if( !lvalue->IsObjectHandle() && (lvalue->GetTypeInfo()->flags & asOBJ_SCRIPT_OBJECT) ) to.MakeHandle(true); // Don't allow the implicit conversion to create an object ImplicitConversion(rctx, to, node, asIC_IMPLICIT_CONV, true, !toTemporary); if( !lvalue->IsObjectHandle() && (lvalue->GetTypeInfo()->flags & asOBJ_SCRIPT_OBJECT) ) { // Then convert to a reference, which will validate the handle to.MakeHandle(false); ImplicitConversion(rctx, to, node, asIC_IMPLICIT_CONV, true, !toTemporary); } // Check data type if( !lvalue->IsEqualExceptRefAndConst(rctx->type.dataType) ) { asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, rctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), lvalue->Format(outFunc->nameSpace).AddressOf()); Error(str, node); } else { // If the assignment will be made with the copy behaviour then the rvalue must not be a reference asASSERT(!lvalue->IsObject() || !rctx->type.dataType.IsReference()); } } // Unreserve variables reservedVariables.SetLength(l); } bool asCCompiler::IsLValue(asCExprValue &type) { if( !type.isLValue ) return false; if( type.dataType.IsReadOnly() ) return false; if( !type.dataType.IsObject() && !type.isVariable && !type.dataType.IsReference() ) return false; return true; } int asCCompiler::PerformAssignment(asCExprValue *lvalue, asCExprValue *rvalue, asCByteCode *bc, asCScriptNode *node) { if( lvalue->dataType.IsReadOnly() ) { Error(TXT_REF_IS_READ_ONLY, node); return -1; } if( lvalue->dataType.IsPrimitive() ) { if( lvalue->isVariable ) { // Copy the value between the variables directly if( lvalue->dataType.GetSizeInMemoryDWords() == 1 ) bc->InstrW_W(asBC_CpyVtoV4, lvalue->stackOffset, rvalue->stackOffset); else bc->InstrW_W(asBC_CpyVtoV8, lvalue->stackOffset, rvalue->stackOffset); // Mark variable as initialized sVariable *v = variables->GetVariableByOffset(lvalue->stackOffset); if( v ) v->isInitialized = true; } else if( lvalue->dataType.IsReference() ) { // Copy the value of the variable to the reference in the register int s = lvalue->dataType.GetSizeInMemoryBytes(); if( s == 1 ) bc->InstrSHORT(asBC_WRTV1, rvalue->stackOffset); else if( s == 2 ) bc->InstrSHORT(asBC_WRTV2, rvalue->stackOffset); else if( s == 4 ) bc->InstrSHORT(asBC_WRTV4, rvalue->stackOffset); else if( s == 8 ) bc->InstrSHORT(asBC_WRTV8, rvalue->stackOffset); } else { Error(TXT_NOT_VALID_LVALUE, node); return -1; } } else if( !lvalue->isExplicitHandle ) { asCExprContext ctx(engine); ctx.type = *lvalue; Dereference(&ctx, true); *lvalue = ctx.type; bc->AddCode(&ctx.bc); asSTypeBehaviour *beh = lvalue->dataType.GetBehaviour(); if( beh && beh->copy && beh->copy != engine->scriptTypeBehaviours.beh.copy ) { asCExprContext res(engine); PerformFunctionCall(beh->copy, &res, false, 0, CastToObjectType(lvalue->dataType.GetTypeInfo())); bc->AddCode(&res.bc); *lvalue = res.type; } else if( beh && beh->copy == engine->scriptTypeBehaviours.beh.copy ) { // Call the default copy operator for script classes // This is done differently because the default copy operator // is registered as returning int&, but in reality it returns // a reference to the object. // TODO: Avoid this special case by implementing a copystub for // script classes that uses the default copy operator bc->Call(asBC_CALLSYS, beh->copy, 2*AS_PTR_SIZE); bc->Instr(asBC_PshRPtr); } else { // Default copy operator if( lvalue->dataType.GetSizeInMemoryDWords() == 0 || !(lvalue->dataType.GetTypeInfo()->flags & asOBJ_POD) ) { asCString msg; msg.Format(TXT_NO_DEFAULT_COPY_OP_FOR_s, lvalue->dataType.GetTypeInfo()->name.AddressOf()); Error(msg, node); return -1; } // Copy larger data types from a reference // TODO: runtime optimize: COPY should pop both arguments and store the reference in the register. bc->InstrSHORT_DW(asBC_COPY, (short)lvalue->dataType.GetSizeInMemoryDWords(), engine->GetTypeIdFromDataType(lvalue->dataType)); } } else { // TODO: The object handle can be stored in a variable as well if( !lvalue->dataType.IsReference() ) { Error(TXT_NOT_VALID_REFERENCE, node); return -1; } if( lvalue->dataType.IsFuncdef() ) bc->InstrPTR(asBC_REFCPY, &engine->functionBehaviours); else bc->InstrPTR(asBC_REFCPY, lvalue->dataType.GetTypeInfo()); // Mark variable as initialized if( variables ) { sVariable *v = variables->GetVariableByOffset(lvalue->stackOffset); if( v ) v->isInitialized = true; } } return 0; } bool asCCompiler::CompileRefCast(asCExprContext *ctx, const asCDataType &to, bool isExplicit, asCScriptNode *node, bool generateCode) { bool conversionDone = false; asCArray ops; asUINT n; // A ref cast must not remove the constness bool isConst = ctx->type.dataType.IsObjectConst(); // Find a suitable opCast or opImplCast method asCObjectType *ot = CastToObjectType(ctx->type.dataType.GetTypeInfo()); for( n = 0; ot && n < ot->methods.GetLength(); n++ ) { asCScriptFunction *func = engine->scriptFunctions[ot->methods[n]]; if( (isExplicit && func->name == "opCast") || func->name == "opImplCast" ) { // Is the operator for the output type? if( func->returnType.GetTypeInfo() != to.GetTypeInfo() ) continue; // Can't call a non-const function on a const object if( isConst && !func->IsReadOnly() ) continue; ops.PushLast(func->id); } } // Filter the list by constness to remove const methods if there are matching non-const methods FilterConst(ops, !isConst); // Give an error more than one opCast methods were found if (ops.GetLength() > 1) { if (isExplicit && generateCode) { asCString str; str.Format(TXT_MULTIPLE_MATCHING_SIGNATURES_TO_s, "opCast"); Error(str, node); PrintMatchingFuncs(ops, node, ot); } // Return that the conversion was done to avoid further complaints conversionDone = true; ctx->type.Set(to); return conversionDone; } // Should only have one behaviour for each output type if( ops.GetLength() == 1 ) { conversionDone = true; if( generateCode ) { // TODO: runtime optimize: Instead of producing bytecode for checking if the handle is // null, we can create a special CALLSYS instruction that checks // if the object pointer is null and if so sets the object register // to null directly without executing the function. // // Alternatively I could force the ref cast behaviours be global // functions with 1 parameter, even though they should still be // registered with RegisterObjectBehaviour() if( (ctx->type.dataType.GetTypeInfo()->flags & asOBJ_REF) && !(ctx->type.dataType.GetTypeInfo()->flags & asOBJ_NOHANDLE)) { // Add code to avoid calling the cast behaviour if the handle is already null, // because that will raise a null pointer exception due to the cast behaviour // being a class method, and the this pointer cannot be null. if (!ctx->type.isVariable) { Dereference(ctx, true); ConvertToVariable(ctx); } // The reference on the stack will not be used ctx->bc.Instr(asBC_PopPtr); // TODO: runtime optimize: should have immediate comparison for null pointer int offset = AllocateVariable(asCDataType::CreateNullHandle(), true); // TODO: runtime optimize: ClrVPtr is not necessary, because the VM should initialize the variable to null anyway (it is currently not done for null pointers though) ctx->bc.InstrSHORT(asBC_ClrVPtr, (asWORD)offset); ctx->bc.InstrW_W(asBC_CmpPtr, ctx->type.stackOffset, offset); DeallocateVariable(offset); int afterLabel = nextLabel++; ctx->bc.InstrDWORD(asBC_JZ, afterLabel); // Call the cast operator ctx->bc.InstrSHORT(asBC_PSF, ctx->type.stackOffset); ctx->bc.Instr(asBC_RDSPtr); ctx->type.dataType.MakeReference(false); asCArray args; MakeFunctionCall(ctx, ops[0], CastToObjectType(ctx->type.dataType.GetTypeInfo()), args, node); ctx->bc.Instr(asBC_PopPtr); int endLabel = nextLabel++; ctx->bc.InstrINT(asBC_JMP, endLabel); ctx->bc.Label((short)afterLabel); // Make a NULL pointer ctx->bc.InstrSHORT(asBC_ClrVPtr, ctx->type.stackOffset); ctx->bc.Label((short)endLabel); // Push the reference to the handle on the stack ctx->bc.InstrSHORT(asBC_PSF, ctx->type.stackOffset); } else { // Value types cannot be null, so there is no need to check for this. // Likewise for reference types that are registered with asOBJ_NOHANDLE // as those are only expected as registered global properties that cannot // be modified anyway. // Call the cast operator asCArray args; MakeFunctionCall(ctx, ops[0], CastToObjectType(ctx->type.dataType.GetTypeInfo()), args, node); } } else { asCScriptFunction *func = engine->scriptFunctions[ops[0]]; ctx->type.Set(func->returnType); } } else if( ops.GetLength() == 0 && !(ctx->type.dataType.GetTypeInfo()->flags & asOBJ_SCRIPT_OBJECT) ) { // Check for the generic ref cast method: void opCast(?&out) for( n = 0; ot && n < ot->methods.GetLength(); n++ ) { asCScriptFunction *func = engine->scriptFunctions[ot->methods[n]]; if( (isExplicit && func->name == "opCast") || func->name == "opImplCast" ) { // Does the operator take the ?&out parameter? if( func->returnType.GetTokenType() != ttVoid || func->parameterTypes.GetLength() != 1 || func->parameterTypes[0].GetTokenType() != ttQuestion || func->inOutFlags[0] != asTM_OUTREF ) continue; ops.PushLast(func->id); } } // It shouldn't be possible to have more than one // TODO: Should be allowed to have different implementations for const and non-const references asASSERT( ops.GetLength() <= 1 ); if( ops.GetLength() == 1 ) { conversionDone = true; if( generateCode ) { asASSERT(to.IsObjectHandle()); int afterLabel = 0; bool doNullCheck = false; asCExprContext tmp(engine); if ((ctx->type.dataType.GetTypeInfo()->flags & asOBJ_REF) && !(ctx->type.dataType.GetTypeInfo()->flags & asOBJ_NOHANDLE)) { tmp.bc.AddCode(&ctx->bc); tmp.Merge(ctx); // Add code to avoid calling the cast behaviour if the handle is already null, // because that will raise a null pointer exception due to the cast behaviour // being a class method, and the this pointer cannot be null. doNullCheck = true; if (!ctx->type.isVariable) { Dereference(&tmp, true); ConvertToVariable(&tmp); } // The reference on the stack will not be used tmp.bc.Instr(asBC_PopPtr); // TODO: runtime optimize: should have immediate comparison for null pointer int offset = AllocateVariable(asCDataType::CreateNullHandle(), true); // TODO: runtime optimize: ClrVPtr is not necessary, because the VM should initialize the variable to null anyway (it is currently not done for null pointers though) tmp.bc.InstrSHORT(asBC_ClrVPtr, (asWORD)offset); tmp.bc.InstrW_W(asBC_CmpPtr, tmp.type.stackOffset, offset); DeallocateVariable(offset); afterLabel = nextLabel++; tmp.bc.InstrDWORD(asBC_JZ, afterLabel); // Place the object pointer on the stack ctx->bc.InstrSHORT(asBC_PSF, (short)tmp.type.stackOffset); } // Allocate a temporary variable of the requested handle type int stackOffset = AllocateVariableNotIn(to, true, false, ctx); // Pass the reference of that variable to the function as output parameter asCDataType toRef(to); toRef.MakeReference(true); asCArray args; asCExprContext arg(engine); arg.bc.InstrSHORT(asBC_PSF, (short)stackOffset); // Don't mark the variable as temporary, so it won't be freed too early arg.type.SetVariable(toRef, stackOffset, false); arg.type.isLValue = true; arg.type.isExplicitHandle = true; args.PushLast(&arg); // Call the behaviour method MakeFunctionCall(ctx, ops[0], CastToObjectType(ctx->type.dataType.GetTypeInfo()), args, node); if (doNullCheck) { // Add the call after the null check tmp.bc.AddCode(&ctx->bc); ctx->bc.AddCode(&tmp.bc); int endLabel = nextLabel++; ctx->bc.InstrINT(asBC_JMP, endLabel); ctx->bc.Label((short)afterLabel); // Make a NULL pointer ctx->bc.InstrSHORT(asBC_ClrVPtr, (short)stackOffset); ctx->bc.Label((short)endLabel); } // Use the reference to the variable as the result of the expression // Now we can mark the variable as temporary ctx->type.SetVariable(toRef, stackOffset, true); ctx->bc.InstrSHORT(asBC_PSF, (short)stackOffset); } else { // All casts are legal ctx->type.Set(to); } } } // If the script object didn't implement a matching opCast or opImplCast // then check if the desired type is part of the hierarchy if( !conversionDone && (ctx->type.dataType.GetTypeInfo()->flags & asOBJ_SCRIPT_OBJECT) ) { // We need it to be a reference if( !ctx->type.dataType.IsReference() ) { asCDataType toRef = ctx->type.dataType; toRef.MakeReference(true); ImplicitConversion(ctx, toRef, 0, isExplicit ? asIC_EXPLICIT_REF_CAST : asIC_IMPLICIT_CONV, generateCode); } if( isExplicit ) { // Allow dynamic cast between object handles (only for script objects). // At run time this may result in a null handle, // which when used will throw an exception conversionDone = true; if( generateCode ) { ctx->bc.InstrDWORD(asBC_Cast, engine->GetTypeIdFromDataType(to)); // Allocate a temporary variable for the returned object int returnOffset = AllocateVariable(to, true); // Move the pointer from the object register to the temporary variable ctx->bc.InstrSHORT(asBC_STOREOBJ, (short)returnOffset); ctx->bc.InstrSHORT(asBC_PSF, (short)returnOffset); ReleaseTemporaryVariable(ctx->type, &ctx->bc); ctx->type.SetVariable(to, returnOffset, true); ctx->type.dataType.MakeReference(true); } else { ctx->type.dataType = to; ctx->type.dataType.MakeReference(true); } } else { if( CastToObjectType(ctx->type.dataType.GetTypeInfo())->DerivesFrom(to.GetTypeInfo()) ) { conversionDone = true; ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); } } // A ref cast must not remove the constness if( isConst ) ctx->type.dataType.MakeHandleToConst(true); } return conversionDone; } asUINT asCCompiler::ImplicitConvPrimitiveToPrimitive(asCExprContext *ctx, const asCDataType &toOrig, asCScriptNode *node, EImplicitConv convType, bool generateCode) { asCDataType to = toOrig; to.MakeReference(false); asASSERT( !ctx->type.dataType.IsReference() ); // Maybe no conversion is needed if( to.IsEqualExceptConst(ctx->type.dataType) ) { // A primitive is const or not ctx->type.dataType.MakeReadOnly(to.IsReadOnly()); return asCC_NO_CONV; } // Is the conversion an ambiguous enum value? if( ctx->enumValue != "" ) { if( to.IsEnumType() ) { // Attempt to resolve an ambiguous enum value asCDataType out; asDWORD value; if( builder->GetEnumValueFromType(CastToEnumType(to.GetTypeInfo()), ctx->enumValue.AddressOf(), out, value) ) { ctx->type.SetConstantDW(out, value); ctx->type.dataType.MakeReadOnly(to.IsReadOnly()); // Reset the enum value since we no longer need it ctx->enumValue = ""; // It wasn't really a conversion. The compiler just resolved the ambiguity (or not) return asCC_NO_CONV; } } // The enum value is ambiguous if( node && generateCode ) Error(TXT_FOUND_MULTIPLE_ENUM_VALUES, node); // Set a dummy to allow the compiler to try to continue the conversion ctx->type.SetDummy(); } // Determine the cost of this conversion asUINT cost = asCC_NO_CONV; if( (to.IsIntegerType() || to.IsUnsignedType()) && (ctx->type.dataType.IsFloatType() || ctx->type.dataType.IsDoubleType()) ) cost = asCC_INT_FLOAT_CONV; else if ((to.IsFloatType() || to.IsDoubleType()) && (ctx->type.dataType.IsIntegerType() || ctx->type.dataType.IsUnsignedType())) cost = asCC_INT_FLOAT_CONV; else if (ctx->type.dataType.IsEnumType() && to.IsIntegerType() && to.GetSizeInMemoryBytes() == ctx->type.dataType.GetSizeInMemoryBytes() ) cost = asCC_ENUM_SAME_SIZE_CONV; else if (ctx->type.dataType.IsEnumType() && to.IsIntegerType() && to.GetSizeInMemoryBytes() != ctx->type.dataType.GetSizeInMemoryBytes()) cost = asCC_ENUM_DIFF_SIZE_CONV; else if( to.IsUnsignedType() && ctx->type.dataType.IsIntegerType() ) cost = asCC_SIGNED_CONV; else if( to.IsIntegerType() && ctx->type.dataType.IsUnsignedType() ) cost = asCC_SIGNED_CONV; else if( to.GetSizeInMemoryBytes() != ctx->type.dataType.GetSizeInMemoryBytes() ) cost = asCC_PRIMITIVE_SIZE_CONV; // Start by implicitly converting constant values if( ctx->type.isConstant ) { ImplicitConversionConstant(ctx, to, node, convType); ctx->type.dataType.MakeReadOnly(to.IsReadOnly()); return cost; } // Allow implicit conversion between numbers if( generateCode ) { // When generating the code the decision has already been made, so we don't bother determining the cost // Convert smaller types to 32bit first int s = ctx->type.dataType.GetSizeInMemoryBytes(); if( s < 4 ) { ConvertToTempVariable(ctx); if( ctx->type.dataType.IsIntegerType() ) { if( s == 1 ) ctx->bc.InstrSHORT(asBC_sbTOi, ctx->type.stackOffset); else if( s == 2 ) ctx->bc.InstrSHORT(asBC_swTOi, ctx->type.stackOffset); ctx->type.dataType.SetTokenType(ttInt); } else if( ctx->type.dataType.IsUnsignedType() ) { if( s == 1 ) ctx->bc.InstrSHORT(asBC_ubTOi, ctx->type.stackOffset); else if( s == 2 ) ctx->bc.InstrSHORT(asBC_uwTOi, ctx->type.stackOffset); ctx->type.dataType.SetTokenType(ttUInt); } } if( (to.IsIntegerType() && to.GetSizeInMemoryDWords() == 1 && !to.IsEnumType()) || (to.IsEnumType() && convType == asIC_EXPLICIT_VAL_CAST) ) { if( ctx->type.dataType.IsIntegerType() || ctx->type.dataType.IsUnsignedType() ) { if( ctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); } else { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); ctx->bc.InstrW_W(asBC_i64TOi, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); } } else if( ctx->type.dataType.IsFloatType() ) { ConvertToTempVariable(ctx); ctx->bc.InstrSHORT(asBC_fTOi, ctx->type.stackOffset); ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); if( convType != asIC_EXPLICIT_VAL_CAST ) Warning(TXT_FLOAT_CONV_TO_INT_CAUSE_TRUNC, node); } else if( ctx->type.dataType.IsDoubleType() ) { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); ctx->bc.InstrW_W(asBC_dTOi, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); if( convType != asIC_EXPLICIT_VAL_CAST ) Warning(TXT_FLOAT_CONV_TO_INT_CAUSE_TRUNC, node); } // Convert to smaller integer if necessary s = to.GetSizeInMemoryBytes(); if( s < 4 ) { ConvertToTempVariable(ctx); if( s == 1 ) ctx->bc.InstrSHORT(asBC_iTOb, ctx->type.stackOffset); else if( s == 2 ) ctx->bc.InstrSHORT(asBC_iTOw, ctx->type.stackOffset); } } else if( to.IsIntegerType() && to.GetSizeInMemoryDWords() == 2 ) { if( ctx->type.dataType.IsIntegerType() || ctx->type.dataType.IsUnsignedType() ) { if( ctx->type.dataType.GetSizeInMemoryDWords() == 2 ) { ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); } else { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); if( ctx->type.dataType.IsUnsignedType() ) ctx->bc.InstrW_W(asBC_uTOi64, offset, ctx->type.stackOffset); else ctx->bc.InstrW_W(asBC_iTOi64, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); } } else if( ctx->type.dataType.IsFloatType() ) { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); ctx->bc.InstrW_W(asBC_fTOi64, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); if( convType != asIC_EXPLICIT_VAL_CAST ) Warning(TXT_FLOAT_CONV_TO_INT_CAUSE_TRUNC, node); } else if( ctx->type.dataType.IsDoubleType() ) { ConvertToTempVariable(ctx); ctx->bc.InstrSHORT(asBC_dTOi64, ctx->type.stackOffset); ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); if( convType != asIC_EXPLICIT_VAL_CAST ) Warning(TXT_FLOAT_CONV_TO_INT_CAUSE_TRUNC, node); } } else if( to.IsUnsignedType() && to.GetSizeInMemoryDWords() == 1 ) { if( ctx->type.dataType.IsIntegerType() || ctx->type.dataType.IsUnsignedType() ) { if( ctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); } else { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); ctx->bc.InstrW_W(asBC_i64TOi, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); } } else if( ctx->type.dataType.IsFloatType() ) { ConvertToTempVariable(ctx); ctx->bc.InstrSHORT(asBC_fTOu, ctx->type.stackOffset); ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); if( convType != asIC_EXPLICIT_VAL_CAST ) Warning(TXT_FLOAT_CONV_TO_INT_CAUSE_TRUNC, node); } else if( ctx->type.dataType.IsDoubleType() ) { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); ctx->bc.InstrW_W(asBC_dTOu, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); if( convType != asIC_EXPLICIT_VAL_CAST ) Warning(TXT_FLOAT_CONV_TO_INT_CAUSE_TRUNC, node); } // Convert to smaller integer if necessary s = to.GetSizeInMemoryBytes(); if( s < 4 ) { ConvertToTempVariable(ctx); if( s == 1 ) ctx->bc.InstrSHORT(asBC_iTOb, ctx->type.stackOffset); else if( s == 2 ) ctx->bc.InstrSHORT(asBC_iTOw, ctx->type.stackOffset); } } else if( to.IsUnsignedType() && to.GetSizeInMemoryDWords() == 2 ) { if( ctx->type.dataType.IsIntegerType() || ctx->type.dataType.IsUnsignedType() ) { if( ctx->type.dataType.GetSizeInMemoryDWords() == 2 ) { ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); } else { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); if( ctx->type.dataType.IsUnsignedType() ) ctx->bc.InstrW_W(asBC_uTOi64, offset, ctx->type.stackOffset); else ctx->bc.InstrW_W(asBC_iTOi64, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); } } else if( ctx->type.dataType.IsFloatType() ) { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); ctx->bc.InstrW_W(asBC_fTOu64, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); if( convType != asIC_EXPLICIT_VAL_CAST ) Warning(TXT_FLOAT_CONV_TO_INT_CAUSE_TRUNC, node); } else if( ctx->type.dataType.IsDoubleType() ) { ConvertToTempVariable(ctx); ctx->bc.InstrSHORT(asBC_dTOu64, ctx->type.stackOffset); ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); if( convType != asIC_EXPLICIT_VAL_CAST ) Warning(TXT_FLOAT_CONV_TO_INT_CAUSE_TRUNC, node); } } else if( to.IsFloatType() ) { if( ctx->type.dataType.IsIntegerType() && ctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { ConvertToTempVariable(ctx); ctx->bc.InstrSHORT(asBC_iTOf, ctx->type.stackOffset); ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); } else if( ctx->type.dataType.IsIntegerType() && ctx->type.dataType.GetSizeInMemoryDWords() == 2 ) { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); ctx->bc.InstrW_W(asBC_i64TOf, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); } else if( ctx->type.dataType.IsUnsignedType() && ctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { ConvertToTempVariable(ctx); ctx->bc.InstrSHORT(asBC_uTOf, ctx->type.stackOffset); ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); } else if( ctx->type.dataType.IsUnsignedType() && ctx->type.dataType.GetSizeInMemoryDWords() == 2 ) { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); ctx->bc.InstrW_W(asBC_u64TOf, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); } else if( ctx->type.dataType.IsDoubleType() ) { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); ctx->bc.InstrW_W(asBC_dTOf, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); } } else if( to.IsDoubleType() ) { if( ctx->type.dataType.IsIntegerType() && ctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); ctx->bc.InstrW_W(asBC_iTOd, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); } else if( ctx->type.dataType.IsIntegerType() && ctx->type.dataType.GetSizeInMemoryDWords() == 2 ) { ConvertToTempVariable(ctx); ctx->bc.InstrSHORT(asBC_i64TOd, ctx->type.stackOffset); ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); } else if( ctx->type.dataType.IsUnsignedType() && ctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); ctx->bc.InstrW_W(asBC_uTOd, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); } else if( ctx->type.dataType.IsUnsignedType() && ctx->type.dataType.GetSizeInMemoryDWords() == 2 ) { ConvertToTempVariable(ctx); ctx->bc.InstrSHORT(asBC_u64TOd, ctx->type.stackOffset); ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); } else if( ctx->type.dataType.IsFloatType() ) { ConvertToTempVariable(ctx); ReleaseTemporaryVariable(ctx->type, &ctx->bc); int offset = AllocateVariable(to, true); ctx->bc.InstrW_W(asBC_fTOd, offset, ctx->type.stackOffset); ctx->type.SetVariable(to, offset, true); } } } else { if( ((to.IsIntegerType() && !to.IsEnumType()) || to.IsUnsignedType() || to.IsFloatType() || to.IsDoubleType() || (to.IsEnumType() && convType == asIC_EXPLICIT_VAL_CAST)) && (ctx->type.dataType.IsIntegerType() || ctx->type.dataType.IsUnsignedType() || ctx->type.dataType.IsFloatType() || ctx->type.dataType.IsDoubleType()) ) { ctx->type.dataType.SetTokenType(to.GetTokenType()); ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); } } // Primitive types on the stack, can be const or non-const ctx->type.dataType.MakeReadOnly(to.IsReadOnly()); return cost; } asUINT asCCompiler::ImplicitConvLambdaToFunc(asCExprContext *ctx, const asCDataType &to, asCScriptNode * /*node*/, EImplicitConv /*convType*/, bool generateCode) { asASSERT( to.IsFuncdef() && ctx->IsLambda() ); // Check that the lambda has the correct amount of arguments asUINT count = 0; asCScriptNode *argNode = ctx->exprNode->firstChild; while( argNode->nodeType == snIdentifier ) { count++; argNode = argNode->next; } asASSERT( argNode->nodeType == snStatementBlock ); asCScriptFunction *funcDef = CastToFuncdefType(to.GetTypeInfo())->funcdef; if( funcDef->parameterTypes.GetLength() != count ) return asCC_NO_CONV; // The Lambda can be used as this funcdef ctx->type.dataType = to; if( generateCode ) { // Build a unique name for the anonymous function asCString name; if( m_globalVar ) name.Format("$%s$%d", m_globalVar->name.AddressOf(), numLambdas++); else name.Format("$%s$%d", outFunc->GetDeclaration(), numLambdas++); // Register the lambda with the builder for later compilation asCScriptFunction *func = builder->RegisterLambda(ctx->exprNode, script, funcDef, name, outFunc->nameSpace); asASSERT( func == 0 || funcDef->IsSignatureExceptNameEqual(func) ); ctx->bc.InstrPTR(asBC_FuncPtr, func); // Clear the expression node as it is no longer valid ctx->exprNode = 0; } return asCC_CONST_CONV; } asUINT asCCompiler::ImplicitConversion(asCExprContext *ctx, const asCDataType &to, asCScriptNode *node, EImplicitConv convType, bool generateCode, bool allowObjectConstruct) { asASSERT( ctx->type.dataType.GetTokenType() != ttUnrecognizedToken || ctx->type.dataType.IsNullHandle() || ctx->IsAnonymousInitList() ); if( to.IsFuncdef() && ctx->IsLambda() ) return ImplicitConvLambdaToFunc(ctx, to, node, convType, generateCode); if (ctx->IsAnonymousInitList()) { if (to.GetBehaviour() && to.GetBehaviour()->listFactory) { if (generateCode) CompilerAnonymousInitList(ctx->exprNode, ctx, to); else ctx->type.dataType = to; } return asCC_NO_CONV; } // No conversion from void to any other type if( ctx->type.dataType.GetTokenType() == ttVoid ) return asCC_NO_CONV; // No conversion from class method to any type (it requires delegate) if( ctx->IsClassMethod() ) return asCC_NO_CONV; // Do we want a var type? if( to.GetTokenType() == ttQuestion ) { // Any type can be converted to a var type, but only when not generating code asASSERT( !generateCode ); ctx->type.dataType = to; return asCC_VARIABLE_CONV; } // Do we want a primitive? else if( to.IsPrimitive() ) { if( !ctx->type.dataType.IsPrimitive() ) return ImplicitConvObjectToPrimitive(ctx, to, node, convType, generateCode); else return ImplicitConvPrimitiveToPrimitive(ctx, to, node, convType, generateCode); } else // The target is a complex type { if( ctx->type.dataType.IsPrimitive() ) return ImplicitConvPrimitiveToObject(ctx, to, node, convType, generateCode, allowObjectConstruct); else if( ctx->type.IsNullConstant() || ctx->type.dataType.GetTypeInfo() ) return ImplicitConvObjectToObject(ctx, to, node, convType, generateCode, allowObjectConstruct); } return asCC_NO_CONV; } asUINT asCCompiler::ImplicitConvObjectToPrimitive(asCExprContext *ctx, const asCDataType &to, asCScriptNode *node, EImplicitConv convType, bool generateCode) { if( ctx->type.isExplicitHandle ) { // An explicit handle cannot be converted to a primitive if( convType != asIC_IMPLICIT_CONV && node ) { asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, ctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), to.Format(outFunc->nameSpace).AddressOf()); Error(str, node); } return asCC_NO_CONV; } // TODO: Must use the const cast behaviour if the object is read-only // Find matching value cast behaviours // Here we're only interested in those that convert the type to a primitive type asCArray funcs; asCObjectType *ot = CastToObjectType(ctx->type.dataType.GetTypeInfo()); if( ot == 0 ) { if( convType != asIC_IMPLICIT_CONV && node ) { asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, ctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), to.Format(outFunc->nameSpace).AddressOf()); Error(str, node); } return asCC_NO_CONV; } if( convType == asIC_EXPLICIT_VAL_CAST ) { for( unsigned int n = 0; n < ot->methods.GetLength(); n++ ) { // accept both implicit and explicit cast asCScriptFunction *mthd = engine->scriptFunctions[ot->methods[n]]; if( (mthd->name == "opConv" || mthd->name == "opImplConv") && mthd->parameterTypes.GetLength() == 0 && mthd->returnType.IsPrimitive() ) funcs.PushLast(ot->methods[n]); } } else { for( unsigned int n = 0; n < ot->methods.GetLength(); n++ ) { // accept only implicit cast asCScriptFunction *mthd = engine->scriptFunctions[ot->methods[n]]; if( mthd->name == "opImplConv" && mthd->parameterTypes.GetLength() == 0 && mthd->returnType.IsPrimitive() ) funcs.PushLast(ot->methods[n]); } } int funcId = 0; if( to.IsMathType() ) { // This matrix describes the priorities of the types to search for, for each target type // The first column is the target type, the priorities goes from left to right eTokenType matchMtx[10][10] = { {ttDouble, ttFloat, ttInt64, ttUInt64, ttInt, ttUInt, ttInt16, ttUInt16, ttInt8, ttUInt8}, {ttFloat, ttDouble, ttInt64, ttUInt64, ttInt, ttUInt, ttInt16, ttUInt16, ttInt8, ttUInt8}, {ttInt64, ttUInt64, ttInt, ttUInt, ttInt16, ttUInt16, ttInt8, ttUInt8, ttDouble, ttFloat}, {ttUInt64, ttInt64, ttUInt, ttInt, ttUInt16, ttInt16, ttUInt8, ttInt8, ttDouble, ttFloat}, {ttInt, ttUInt, ttInt64, ttUInt64, ttInt16, ttUInt16, ttInt8, ttUInt8, ttDouble, ttFloat}, {ttUInt, ttInt, ttUInt64, ttInt64, ttUInt16, ttInt16, ttUInt8, ttInt8, ttDouble, ttFloat}, {ttInt16, ttUInt16, ttInt, ttUInt, ttInt64, ttUInt64, ttInt8, ttUInt8, ttDouble, ttFloat}, {ttUInt16, ttInt16, ttUInt, ttInt, ttUInt64, ttInt64, ttUInt8, ttInt8, ttDouble, ttFloat}, {ttInt8, ttUInt8, ttInt16, ttUInt16, ttInt, ttUInt, ttInt64, ttUInt64, ttDouble, ttFloat}, {ttUInt8, ttInt8, ttUInt16, ttInt16, ttUInt, ttInt, ttUInt64, ttInt64, ttDouble, ttFloat}, }; // Which row to use? eTokenType *row = 0; for( unsigned int type = 0; type < 10; type++ ) { if( to.GetTokenType() == matchMtx[type][0] ) { row = &matchMtx[type][0]; break; } } // Find the best matching cast operator if( row ) { asCDataType target(to); // Priority goes from left to right in the matrix for( unsigned int attempt = 0; attempt < 10 && funcId == 0; attempt++ ) { target.SetTokenType(row[attempt]); for( unsigned int n = 0; n < funcs.GetLength(); n++ ) { asCScriptFunction *descr = builder->GetFunctionDescription(funcs[n]); if( descr->returnType.IsEqualExceptRefAndConst(target) ) { funcId = funcs[n]; break; } } } } } else { // Only accept the exact conversion for non-math types // Find the matching cast operator for( unsigned int n = 0; n < funcs.GetLength(); n++ ) { asCScriptFunction *descr = builder->GetFunctionDescription(funcs[n]); if( descr->returnType.IsEqualExceptRefAndConst(to) ) { funcId = funcs[n]; break; } } } // Did we find a suitable function? if( funcId != 0 ) { asCScriptFunction *descr = builder->GetFunctionDescription(funcId); if( generateCode ) { Dereference(ctx, true); PerformFunctionCall(funcId, ctx); } else ctx->type.Set(descr->returnType); // Allow one more implicit conversion to another primitive type return asCC_OBJ_TO_PRIMITIVE_CONV + ImplicitConversion(ctx, to, node, convType, generateCode, false); } // TODO: clean-up: This part is similar to what is in ImplicitConvObjectValue // If no direct conversion is found we should look for the generic form 'void opConv(?&out)' funcs.SetLength(0); for( asUINT n = 0; n < ot->methods.GetLength(); n++ ) { asCScriptFunction *func = engine->scriptFunctions[ot->methods[n]]; if( ((convType == asIC_EXPLICIT_VAL_CAST) && func->name == "opConv") || func->name == "opImplConv" ) { // Does the operator take the ?&out parameter? if( func->returnType != asCDataType::CreatePrimitive(ttVoid, false) || func->parameterTypes.GetLength() != 1 || func->parameterTypes[0].GetTokenType() != ttQuestion || func->inOutFlags[0] != asTM_OUTREF ) continue; funcs.PushLast(ot->methods[n]); } } // TODO: If there are multiple valid value casts, then we must choose the most appropriate one asASSERT( funcs.GetLength() <= 1 ); if( funcs.GetLength() == 1 ) { if( generateCode ) { // Allocate a temporary variable of the requested type int stackOffset = AllocateVariableNotIn(to, true, false, ctx); CallDefaultConstructor(to, stackOffset, IsVariableOnHeap(stackOffset), &ctx->bc, node); // Pass the reference of that variable to the function as output parameter asCDataType toRef(to); toRef.MakeReference(true); toRef.MakeReadOnly(false); asCArray args; asCExprContext arg(engine); // Don't mark the variable as temporary, so it won't be freed too early arg.type.SetVariable(toRef, stackOffset, false); arg.type.isLValue = true; arg.exprNode = node; args.PushLast(&arg); // Call the behaviour method MakeFunctionCall(ctx, funcs[0], CastToObjectType(ctx->type.dataType.GetTypeInfo()), args, node); // Use the reference to the variable as the result of the expression // Now we can mark the variable as temporary toRef.MakeReference(false); ctx->type.SetVariable(toRef, stackOffset, true); } else ctx->type.Set(to); return asCC_OBJ_TO_PRIMITIVE_CONV; } if( convType != asIC_IMPLICIT_CONV && node ) { asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, ctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), to.Format(outFunc->nameSpace).AddressOf()); Error(str, node); } return asCC_NO_CONV; } asUINT asCCompiler::ImplicitConvObjectRef(asCExprContext *ctx, const asCDataType &to, asCScriptNode *node, EImplicitConv convType, bool generateCode) { // Convert null to any object type handle, but not to a non-handle type if( ctx->type.IsNullConstant() && ctx->methodName == "" ) { if( to.IsObjectHandle() ) { ctx->type.dataType = to; return asCC_REF_CONV; } return asCC_NO_CONV; } asASSERT(ctx->type.dataType.GetTypeInfo() || ctx->methodName != ""); // First attempt to convert the base type without instantiating another instance if( to.GetTypeInfo() != ctx->type.dataType.GetTypeInfo() && ctx->methodName == "" ) { // If the to type is an interface and the from type implements it, then we can convert it immediately if( ctx->type.dataType.GetTypeInfo()->Implements(to.GetTypeInfo()) ) { ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); return asCC_REF_CONV; } // If the to type is a class and the from type derives from it, then we can convert it immediately else if( ctx->type.dataType.GetTypeInfo()->DerivesFrom(to.GetTypeInfo()) ) { ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); return asCC_REF_CONV; } // If the types are not equal yet, then we may still be able to find a reference cast else if( ctx->type.dataType.GetTypeInfo() != to.GetTypeInfo() ) { // We may still be able to find an implicit ref cast behaviour CompileRefCast(ctx, to, convType == asIC_EXPLICIT_REF_CAST, node, generateCode); // Was the conversion done? if( ctx->type.dataType.GetTypeInfo() == to.GetTypeInfo() ) return asCC_REF_CONV; } } // Convert matching function types if( to.IsFuncdef() ) { // If the input expression is already a funcdef, check if it can be converted if( ctx->type.dataType.IsFuncdef() && to.GetTypeInfo() != ctx->type.dataType.GetTypeInfo() ) { asCScriptFunction *toFunc = CastToFuncdefType(to.GetTypeInfo())->funcdef; asCScriptFunction *fromFunc = CastToFuncdefType(ctx->type.dataType.GetTypeInfo())->funcdef; if( toFunc->IsSignatureExceptNameEqual(fromFunc) ) { ctx->type.dataType.SetTypeInfo(to.GetTypeInfo()); return asCC_REF_CONV; } } // If the input expression is a deferred function ref, check if there is a matching func if( ctx->methodName != "" ) { // Determine the namespace asSNameSpace *ns = 0; asCString name = ""; int pos = ctx->methodName.FindLast("::"); if( pos >= 0 ) { asCString nsName = ctx->methodName.SubString(0, pos+2); // Trim off the last :: if( nsName.GetLength() > 2 ) nsName.SetLength(nsName.GetLength()-2); ns = DetermineNameSpace(nsName); name = ctx->methodName.SubString(pos+2); } else { DetermineNameSpace(""); name = ctx->methodName; } asCArray funcs; if( ns ) builder->GetFunctionDescriptions(name.AddressOf(), funcs, ns); // Check if any of the functions have perfect match asCScriptFunction *toFunc = CastToFuncdefType(to.GetTypeInfo())->funcdef; for( asUINT n = 0; n < funcs.GetLength(); n++ ) { asCScriptFunction *func = builder->GetFunctionDescription(funcs[n]); if( toFunc->IsSignatureExceptNameEqual(func) ) { if( generateCode ) { ctx->bc.InstrPTR(asBC_FuncPtr, func); // Make sure the identified function is shared if we're compiling a shared function if( !func->IsShared() && outFunc->IsShared() ) { asCString msg; msg.Format(TXT_SHARED_CANNOT_CALL_NON_SHARED_FUNC_s, func->GetDeclaration()); Error(msg, node); } } ctx->type.dataType = asCDataType::CreateType(to.GetTypeInfo(), false); return asCC_REF_CONV; } } } } return asCC_NO_CONV; } asUINT asCCompiler::ImplicitConvObjectValue(asCExprContext *ctx, const asCDataType &to, asCScriptNode *node, EImplicitConv convType, bool generateCode) { asUINT cost = asCC_NO_CONV; // If the base type is still different, and we are allowed to instance // another object then we can try an implicit value cast if( to.GetTypeInfo() != ctx->type.dataType.GetTypeInfo() ) { // TODO: Implement support for implicit constructor/factory asCObjectType *ot = CastToObjectType(ctx->type.dataType.GetTypeInfo()); if( ot == 0 ) return cost; asCArray funcs; if( convType == asIC_EXPLICIT_VAL_CAST ) { for( unsigned int n = 0; n < ot->methods.GetLength(); n++ ) { asCScriptFunction *func = engine->scriptFunctions[ot->methods[n]]; // accept both implicit and explicit cast if( (func->name == "opConv" || func->name == "opImplConv") && func->returnType.GetTypeInfo() == to.GetTypeInfo() && func->parameterTypes.GetLength() == 0 ) funcs.PushLast(ot->methods[n]); } } else { for( unsigned int n = 0; n < ot->methods.GetLength(); n++ ) { asCScriptFunction *func = engine->scriptFunctions[ot->methods[n]]; // accept only implicit cast if( func->name == "opImplConv" && func->returnType.GetTypeInfo() == to.GetTypeInfo() && func->parameterTypes.GetLength() == 0 ) funcs.PushLast(ot->methods[n]); } } // TODO: If there are multiple valid value casts, then we must choose the most appropriate one asASSERT( funcs.GetLength() <= 1 ); if( funcs.GetLength() == 1 ) { asCScriptFunction *f = builder->GetFunctionDescription(funcs[0]); if( generateCode ) { Dereference(ctx, true); bool useVariable = false; int stackOffset = 0; if( f->DoesReturnOnStack() ) { useVariable = true; stackOffset = AllocateVariable(f->returnType, true); // Push the pointer to the pre-allocated space for the return value ctx->bc.InstrSHORT(asBC_PSF, short(stackOffset)); // The object pointer is already on the stack, but should be the top // one, so we need to swap the pointers in order to get the correct ctx->bc.Instr(asBC_SwapPtr); } PerformFunctionCall(funcs[0], ctx, false, 0, 0, useVariable, stackOffset); } else ctx->type.Set(f->returnType); cost = asCC_TO_OBJECT_CONV; } else { // TODO: cleanup: This part is similar to the second half of ImplicitConvObjectToPrimitive // Look for a value cast with variable type for( asUINT n = 0; n < ot->methods.GetLength(); n++ ) { asCScriptFunction *func = engine->scriptFunctions[ot->methods[n]]; if( ((convType == asIC_EXPLICIT_VAL_CAST) && func->name == "opConv") || func->name == "opImplConv" ) { // Does the operator take the ?&out parameter? if( func->returnType != asCDataType::CreatePrimitive(ttVoid, false) || func->parameterTypes.GetLength() != 1 || func->parameterTypes[0].GetTokenType() != ttQuestion || func->inOutFlags[0] != asTM_OUTREF ) continue; funcs.PushLast(ot->methods[n]); } } // TODO: If there are multiple valid value casts, then we must choose the most appropriate one asASSERT( funcs.GetLength() <= 1 ); if( funcs.GetLength() == 1 ) { cost = asCC_TO_OBJECT_CONV; if( generateCode ) { // Allocate a temporary variable of the requested type int stackOffset = AllocateVariableNotIn(to, true, false, ctx); CallDefaultConstructor(to, stackOffset, IsVariableOnHeap(stackOffset), &ctx->bc, node); // Pass the reference of that variable to the function as output parameter asCDataType toRef(to); toRef.MakeReference(false); asCExprContext arg(engine); arg.bc.InstrSHORT(asBC_PSF, (short)stackOffset); // If this an object on the heap, the pointer must be dereferenced if( IsVariableOnHeap(stackOffset) ) arg.bc.Instr(asBC_RDSPtr); // Don't mark the variable as temporary, so it won't be freed too early arg.type.SetVariable(toRef, stackOffset, false); arg.type.isLValue = true; arg.exprNode = node; // Mark the argument as clean, so that MakeFunctionCall knows it // doesn't have to make a copy of it in order to protect the value arg.isCleanArg = true; // Call the behaviour method asCArray args; args.PushLast(&arg); MakeFunctionCall(ctx, funcs[0], CastToObjectType(ctx->type.dataType.GetTypeInfo()), args, node); // Use the reference to the variable as the result of the expression // Now we can mark the variable as temporary ctx->type.SetVariable(toRef, stackOffset, true); ctx->bc.InstrSHORT(asBC_PSF, (short)stackOffset); } else { // All casts are legal ctx->type.Set(to); } } } } return cost; } asUINT asCCompiler::ImplicitConvObjectToObject(asCExprContext *ctx, const asCDataType &to, asCScriptNode *node, EImplicitConv convType, bool generateCode, bool allowObjectConstruct) { // First try a ref cast asUINT cost = ImplicitConvObjectRef(ctx, to, node, convType, generateCode); // If the desired type is an asOBJ_ASHANDLE then we'll assume it is allowed to implicitly // construct the object through any of the available constructors if( to.GetTypeInfo() && (to.GetTypeInfo()->flags & asOBJ_ASHANDLE) && to.GetTypeInfo() != ctx->type.dataType.GetTypeInfo() && allowObjectConstruct ) { asCArray funcs; funcs = CastToObjectType(to.GetTypeInfo())->beh.constructors; asCArray args; args.PushLast(ctx); cost = asCC_TO_OBJECT_CONV + MatchFunctions(funcs, args, node, 0, 0, 0, false, true, false); // Did we find a matching constructor? if( funcs.GetLength() == 1 ) { if( generateCode ) { // If the ASHANDLE receives a variable type parameter, then we need to // make sure the expression is treated as a handle and not as a value asCScriptFunction *func = engine->scriptFunctions[funcs[0]]; if( func->parameterTypes[0].GetTokenType() == ttQuestion ) { if( !ctx->type.isExplicitHandle ) { asCDataType toHandle = ctx->type.dataType; toHandle.MakeHandle(true); toHandle.MakeReference(true); toHandle.MakeHandleToConst(ctx->type.dataType.IsReadOnly()); ImplicitConversion(ctx, toHandle, node, asIC_IMPLICIT_CONV, true, false); asASSERT( ctx->type.dataType.IsObjectHandle() ); } ctx->type.isExplicitHandle = true; } // TODO: This should really reuse the code from CompileConstructCall // Allocate the new object asCExprValue tempObj; tempObj.dataType = to; tempObj.dataType.MakeReference(false); tempObj.stackOffset = (short)AllocateVariable(tempObj.dataType, true); tempObj.dataType.MakeReference(true); tempObj.isTemporary = true; tempObj.isVariable = true; bool onHeap = IsVariableOnHeap(tempObj.stackOffset); // Push the address of the object on the stack asCExprContext e(engine); if( onHeap ) e.bc.InstrSHORT(asBC_VAR, tempObj.stackOffset); PrepareFunctionCall(funcs[0], &e.bc, args); MoveArgsToStack(funcs[0], &e.bc, args, false); // If the object is allocated on the stack, then call the constructor as a normal function if( onHeap ) { int offset = 0; asCScriptFunction *descr = builder->GetFunctionDescription(funcs[0]); offset = descr->parameterTypes[0].GetSizeOnStackDWords(); e.bc.InstrWORD(asBC_GETREF, (asWORD)offset); } else e.bc.InstrSHORT(asBC_PSF, tempObj.stackOffset); PerformFunctionCall(funcs[0], &e, onHeap, &args, CastToObjectType(tempObj.dataType.GetTypeInfo())); // Add tag that the object has been initialized e.bc.ObjInfo(tempObj.stackOffset, asOBJ_INIT); // The constructor doesn't return anything, // so we have to manually inform the type of // the return value e.type = tempObj; if( !onHeap ) e.type.dataType.MakeReference(false); // Push the address of the object on the stack again e.bc.InstrSHORT(asBC_PSF, tempObj.stackOffset); MergeExprBytecodeAndType(ctx, &e); } else { ctx->type.Set(asCDataType::CreateType(to.GetTypeInfo(), false)); } } } // If the base type is still different, and we are allowed to instance // another object then we can try an implicit value cast if( to.GetTypeInfo() != ctx->type.dataType.GetTypeInfo() && allowObjectConstruct ) { // Attempt implicit value cast cost = ImplicitConvObjectValue(ctx, to, node, convType, generateCode); } // If we still haven't converted the base type to the correct type, then there is // no need to continue as it is not possible to do the conversion if( to.GetTypeInfo() != ctx->type.dataType.GetTypeInfo() ) return asCC_NO_CONV; if( to.IsObjectHandle() ) { // There is no extra cost in converting to a handle // reference to handle -> handle // reference -> handle // object -> handle // handle -> reference to handle // reference -> reference to handle // object -> reference to handle if( (!ctx->type.dataType.IsObjectHandle() && ctx->type.dataType.IsReadOnly() && !to.IsHandleToConst()) || (ctx->type.dataType.IsObjectHandle() && ctx->type.dataType.IsHandleToConst() && !to.IsHandleToConst()) ) { // String literals can be implicitly converted to temporary local variables in order to pass them to functions expecting non-const // TODO: NEWSTRING: Should have an engine property to warn or error on this if (ctx->type.isConstant && ctx->type.dataType.IsEqualExceptRefAndConst(engine->stringType)) { if (generateCode) PrepareTemporaryVariable(node, ctx); else { ctx->type.dataType.MakeReadOnly(false); ctx->type.isConstant = false; } // Add the cost for the copy cost += asCC_TO_OBJECT_CONV; } else if( convType != asIC_IMPLICIT_CONV ) { asASSERT(node); asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, ctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), to.Format(outFunc->nameSpace).AddressOf()); Error(str, node); } } if( !ctx->type.dataType.IsObjectHandle() ) { // An object type can be directly converted to a handle of the // same type by doing a ref copy to a new variable if( ctx->type.dataType.SupportHandles() ) { asCDataType dt = ctx->type.dataType; dt.MakeHandle(true); dt.MakeReference(false); if( generateCode ) { // If the expression is already a local variable, then it is not // necessary to do a ref copy, as the ref objects on the stack are // really handles, only the handles cannot be modified. if( ctx->type.isVariable ) { bool isHandleToConst = ctx->type.dataType.IsReadOnly(); ctx->type.dataType.MakeReadOnly(false); ctx->type.dataType.MakeHandle(true); ctx->type.dataType.MakeReadOnly(true); ctx->type.dataType.MakeHandleToConst(isHandleToConst); if( to.IsReference() && !ctx->type.dataType.IsReference() ) { ctx->bc.Instr(asBC_PopPtr); ctx->bc.InstrSHORT(asBC_PSF, ctx->type.stackOffset); ctx->type.dataType.MakeReference(true); } else if( ctx->type.dataType.IsReference() ) { ctx->bc.Instr(asBC_RDSPtr); ctx->type.dataType.MakeReference(false); } } else { int offset = AllocateVariable(dt, true); if( ctx->type.dataType.IsReference() ) ctx->bc.Instr(asBC_RDSPtr); ctx->bc.InstrSHORT(asBC_PSF, (short)offset); if (dt.IsFuncdef()) ctx->bc.InstrPTR(asBC_REFCPY, &engine->functionBehaviours); else ctx->bc.InstrPTR(asBC_REFCPY, dt.GetTypeInfo()); ctx->bc.Instr(asBC_PopPtr); ctx->bc.InstrSHORT(asBC_PSF, (short)offset); ReleaseTemporaryVariable(ctx->type, &ctx->bc); if( to.IsReference() ) dt.MakeReference(true); else ctx->bc.Instr(asBC_RDSPtr); ctx->type.SetVariable(dt, offset, true); } } else ctx->type.dataType = dt; // When this conversion is done the expression is no longer an lvalue ctx->type.isLValue = false; } } if( ctx->type.dataType.IsObjectHandle() ) { // A handle to non-const can be converted to a // handle to const, but not the other way if( to.IsHandleToConst() ) ctx->type.dataType.MakeHandleToConst(true); // A const handle can be converted to a non-const // handle and vice versa as the handle is just a value ctx->type.dataType.MakeReadOnly(to.IsReadOnly()); } if( to.IsReference() && !ctx->type.dataType.IsReference() ) { if( generateCode ) { asASSERT( ctx->type.dataType.IsObjectHandle() ); // If the input type is a handle, then a simple ref copy is enough bool isExplicitHandle = ctx->type.isExplicitHandle; ctx->type.isExplicitHandle = ctx->type.dataType.IsObjectHandle(); // If the input type is read-only we'll need to temporarily // remove this constness, otherwise the assignment will fail bool typeIsReadOnly = ctx->type.dataType.IsReadOnly(); ctx->type.dataType.MakeReadOnly(false); // If the object already is a temporary variable, then the copy // doesn't have to be made as it is already a unique object PrepareTemporaryVariable(node, ctx); ctx->type.dataType.MakeReadOnly(typeIsReadOnly); ctx->type.isExplicitHandle = isExplicitHandle; } // A non-reference can be converted to a reference, // by putting the value in a temporary variable ctx->type.dataType.MakeReference(true); // Since it is a new temporary variable it doesn't have to be const ctx->type.dataType.MakeReadOnly(to.IsReadOnly()); } else if( !to.IsReference() && ctx->type.dataType.IsReference() ) { Dereference(ctx, generateCode); } } else // if( !to.IsObjectHandle() ) { if( !to.IsReference() ) { // reference to handle -> object // handle -> object // reference -> object // An implicit handle can be converted to an object by adding a check for null pointer if( ctx->type.dataType.IsObjectHandle() && !ctx->type.isExplicitHandle ) { if( generateCode ) { if( ctx->type.dataType.IsReference() ) { // The pointer on the stack refers to the handle ctx->bc.Instr(asBC_ChkRefS); } else { // The pointer on the stack refers to the object ctx->bc.Instr(asBC_CHKREF); } } ctx->type.dataType.MakeHandle(false); } // A const object can be converted to a non-const object through a copy if( ctx->type.dataType.IsReadOnly() && !to.IsReadOnly() && allowObjectConstruct ) { // Does the object type allow a copy to be made? if( ctx->type.dataType.CanBeCopied() ) { if( generateCode ) { // Make a temporary object with the copy PrepareTemporaryVariable(node, ctx); } // In case the object was already in a temporary variable, then the function // didn't really do anything so we need to remove the constness here ctx->type.dataType.MakeReadOnly(false); // Add the cost for the copy cost += asCC_TO_OBJECT_CONV; } } if( ctx->type.dataType.IsReference() ) { // This may look strange, but a value type allocated on the stack is already // correct, so nothing should be done other than remove the mark as reference. // For types allocated on the heap, it is necessary to dereference the pointer // that is currently on the stack if( IsVariableOnHeap(ctx->type.stackOffset) ) Dereference(ctx, generateCode); else ctx->type.dataType.MakeReference(false); } // A non-const object can be converted to a const object directly if( !ctx->type.dataType.IsReadOnly() && to.IsReadOnly() ) { ctx->type.dataType.MakeReadOnly(true); } } else // if( to.IsReference() ) { // reference to handle -> reference // handle -> reference // object -> reference if( ctx->type.dataType.IsReference() ) { if( ctx->type.isExplicitHandle && ctx->type.dataType.GetTypeInfo() && (ctx->type.dataType.GetTypeInfo()->flags & asOBJ_ASHANDLE) ) { // ASHANDLE objects are really value types, so explicit handle can be removed ctx->type.isExplicitHandle = false; ctx->type.dataType.MakeHandle(false); } // A reference to a handle can be converted to a reference to an object // by first reading the address, then verifying that it is not null if( !to.IsObjectHandle() && ctx->type.dataType.IsObjectHandle() && !ctx->type.isExplicitHandle ) { ctx->type.dataType.MakeHandle(false); if( generateCode ) ctx->bc.Instr(asBC_ChkRefS); } // A reference to a non-const can be converted to a reference to a const if( to.IsReadOnly() ) ctx->type.dataType.MakeReadOnly(true); else if( ctx->type.dataType.IsReadOnly() && allowObjectConstruct ) { // A reference to a const can be converted to a reference to a // non-const by copying the object to a temporary variable ctx->type.dataType.MakeReadOnly(false); if( generateCode ) { // If the object already is a temporary variable, then the copy // doesn't have to be made as it is already a unique object PrepareTemporaryVariable(node, ctx); } // Add the cost for the copy cost += asCC_TO_OBJECT_CONV; } } else // if( !ctx->type.dataType.IsReference() ) { // A non-reference handle can be converted to a non-handle reference by checking against null handle if( ctx->type.dataType.IsObjectHandle() ) { bool readOnly = false; if( ctx->type.dataType.IsHandleToConst() ) readOnly = true; if( generateCode ) { if( ctx->type.isVariable ) ctx->bc.InstrSHORT(asBC_ChkNullV, ctx->type.stackOffset); else ctx->bc.Instr(asBC_CHKREF); } ctx->type.dataType.MakeHandle(false); ctx->type.dataType.MakeReference(true); // Make sure a handle to const isn't converted to non-const reference if( readOnly ) ctx->type.dataType.MakeReadOnly(true); } else { // A value type allocated on the stack is differentiated // by it not being a reference. But it can be handled as // reference by pushing the pointer on the stack if( (ctx->type.dataType.GetTypeInfo()->GetFlags() & asOBJ_VALUE) && (ctx->type.isVariable || ctx->type.isTemporary) && !IsVariableOnHeap(ctx->type.stackOffset) ) { // Actually the pointer is already pushed on the stack in // CompileVariableAccess, so we don't need to do anything else } else if( generateCode ) { // A non-reference can be converted to a reference, // by putting the value in a temporary variable // If the input type is read-only we'll need to temporarily // remove this constness, otherwise the assignment will fail bool typeIsReadOnly = ctx->type.dataType.IsReadOnly(); ctx->type.dataType.MakeReadOnly(false); // If the object already is a temporary variable, then the copy // doesn't have to be made as it is already a unique object PrepareTemporaryVariable(node, ctx); ctx->type.dataType.MakeReadOnly(typeIsReadOnly); // Add the cost for the copy cost += asCC_TO_OBJECT_CONV; } // This may look strange as the conversion was to make the expression a reference // but a value type allocated on the stack is a reference even without the type // being marked as such. ctx->type.dataType.MakeReference(IsVariableOnHeap(ctx->type.stackOffset)); } if (to.IsReadOnly()) { // This doesn't cost anything ctx->type.dataType.MakeReadOnly(true); } if (!to.IsReadOnly() && ctx->type.dataType.IsReadOnly()) { // A const object can be converted to a non-const object through a copy if (allowObjectConstruct || convType == asIC_EXPLICIT_VAL_CAST) { ctx->type.dataType.MakeReadOnly(false); if (generateCode) { // Make a temporary copy of the object in order to make it non-const PrepareTemporaryVariable(node, ctx); } // Add the cost for the copy cost += asCC_TO_OBJECT_CONV; } // String literals can be implicitly converted to temporary local variables in order to pass them to functions expecting non-const // TODO: NEWSTRING: Should have an engine property to warn or error on this if (ctx->type.isConstant && ctx->type.dataType.IsEqualExceptRefAndConst(engine->stringType)) { if (generateCode) PrepareTemporaryVariable(node, ctx); else { ctx->type.dataType.MakeReadOnly(false); ctx->type.isConstant = false; } // Add the cost for the copy cost += asCC_TO_OBJECT_CONV; } } } } } return cost; } asUINT asCCompiler::ImplicitConvPrimitiveToObject(asCExprContext *ctx, const asCDataType &to, asCScriptNode * /*node*/, EImplicitConv /*isExplicit*/, bool generateCode, bool /*allowObjectConstruct*/) { // Reference types currently don't allow implicit conversion from primitive to object // TODO: Allow implicit conversion to scoped reference types as they are supposed to appear like ordinary value types asCObjectType *objType = CastToObjectType(to.GetTypeInfo()); asASSERT( objType || CastToFuncdefType(to.GetTypeInfo()) ); if( !objType || (objType->flags & asOBJ_REF) ) return asCC_NO_CONV; // For value types the object must have a constructor that takes a single primitive argument either by value or as input reference asCArray funcs; for( asUINT n = 0; n < objType->beh.constructors.GetLength(); n++ ) { asCScriptFunction *func = engine->scriptFunctions[objType->beh.constructors[n]]; if( func->parameterTypes.GetLength() == 1 && func->parameterTypes[0].IsPrimitive() && !(func->inOutFlags[0] & asTM_OUTREF) ) { funcs.PushLast(func->id); } } if( funcs.GetLength() == 0 ) return asCC_NO_CONV; // Check if it is possible to choose a best match asCExprContext arg(engine); arg.type = ctx->type; arg.exprNode = ctx->exprNode; // Use the same node for compiler messages asCArray args; args.PushLast(&arg); asUINT cost = asCC_TO_OBJECT_CONV + MatchFunctions(funcs, args, 0, 0, 0, objType, false, true, false); if( funcs.GetLength() != 1 ) return asCC_NO_CONV; if( !generateCode ) { ctx->type.Set(to); return cost; } // TODO: clean up: This part is similar to CompileConstructCall(). It should be put in a common function // Clear the type of ctx, as the type is moved to the arg ctx->type.SetDummy(); // Value types and script types are allocated through the constructor asCExprValue tempObj; tempObj.dataType = to; tempObj.stackOffset = (short)AllocateVariable(to, true); tempObj.dataType.MakeReference(true); tempObj.isTemporary = true; tempObj.isVariable = true; bool onHeap = IsVariableOnHeap(tempObj.stackOffset); // Push the address of the object on the stack if( onHeap ) ctx->bc.InstrSHORT(asBC_VAR, tempObj.stackOffset); PrepareFunctionCall(funcs[0], &ctx->bc, args); MoveArgsToStack(funcs[0], &ctx->bc, args, false); if( !(objType->flags & asOBJ_REF) ) { // If the object is allocated on the stack, then call the constructor as a normal function if( onHeap ) { int offset = 0; asCScriptFunction *descr = builder->GetFunctionDescription(funcs[0]); for( asUINT n = 0; n < args.GetLength(); n++ ) offset += descr->parameterTypes[n].GetSizeOnStackDWords(); ctx->bc.InstrWORD(asBC_GETREF, (asWORD)offset); } else ctx->bc.InstrSHORT(asBC_PSF, tempObj.stackOffset); PerformFunctionCall(funcs[0], ctx, onHeap, &args, CastToObjectType(tempObj.dataType.GetTypeInfo())); // Add tag that the object has been initialized ctx->bc.ObjInfo(tempObj.stackOffset, asOBJ_INIT); // The constructor doesn't return anything, // so we have to manually inform the type of // the return value ctx->type = tempObj; if( !onHeap ) ctx->type.dataType.MakeReference(false); // Push the address of the object on the stack again ctx->bc.InstrSHORT(asBC_PSF, tempObj.stackOffset); } else { asASSERT( objType->flags & asOBJ_SCOPED ); // Call the factory to create the reference type PerformFunctionCall(funcs[0], ctx, false, &args); } return cost; } void asCCompiler::ImplicitConversionConstant(asCExprContext *from, const asCDataType &to, asCScriptNode *node, EImplicitConv convType) { asASSERT(from->type.isConstant); // TODO: node should be the node of the value that is // converted (not the operator that provokes the implicit // conversion) // If the base type is correct there is no more to do if( to.IsEqualExceptRefAndConst(from->type.dataType) ) return; // References cannot be constants if( from->type.dataType.IsReference() ) return; if( (to.IsIntegerType() && to.GetSizeInMemoryDWords() == 1 && !to.IsEnumType()) || (to.IsEnumType() && convType == asIC_EXPLICIT_VAL_CAST) ) { if( from->type.dataType.IsFloatType() || from->type.dataType.IsDoubleType() || from->type.dataType.IsUnsignedType() || from->type.dataType.IsIntegerType() ) { asCDataType targetDt; if (to.IsEnumType()) targetDt = to; else targetDt = asCDataType::CreatePrimitive(ttInt, true); // Transform the value // Float constants can be implicitly converted to int if( from->type.dataType.IsFloatType() ) { float fc = from->type.GetConstantF(); int ic = int(fc); if( float(ic) != fc ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantDW(targetDt, ic); } // Double constants can be implicitly converted to int else if( from->type.dataType.IsDoubleType() ) { double fc = from->type.GetConstantD(); int ic = int(fc); if( double(ic) != fc ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantDW(targetDt, ic); } else if( from->type.dataType.IsUnsignedType() && from->type.dataType.GetSizeInMemoryDWords() == 1 ) { // Verify that it is possible to convert to signed without getting negative if( from->type.dataType.GetSizeInMemoryBytes() == 4 && int(from->type.GetConstantDW()) < 0 && convType != asIC_EXPLICIT_VAL_CAST && node != 0 ) Warning(TXT_CHANGE_SIGN, node); // Convert to 32bit if( from->type.dataType.GetSizeInMemoryBytes() == 1 ) from->type.SetConstantDW(targetDt, from->type.GetConstantB()); else if (from->type.dataType.GetSizeInMemoryBytes() == 2) from->type.SetConstantDW(targetDt, from->type.GetConstantW()); else from->type.dataType = targetDt; } else if( from->type.dataType.IsUnsignedType() && from->type.dataType.GetSizeInMemoryDWords() == 2 ) { if (asQWORD(from->type.GetConstantQW()) >> 31) if (convType != asIC_EXPLICIT_VAL_CAST && node) Warning(TXT_VALUE_TOO_LARGE_FOR_TYPE, node); // Convert to 32bit from->type.SetConstantDW(targetDt, int(from->type.GetConstantQW())); } else if (from->type.dataType.IsIntegerType() && from->type.dataType.GetSizeInMemoryDWords() == 2) { if (int(from->type.GetConstantQW()) != asINT64(from->type.GetConstantQW())) if (convType != asIC_EXPLICIT_VAL_CAST && node) Warning(TXT_VALUE_TOO_LARGE_FOR_TYPE, node); // Convert to 32bit from->type.SetConstantDW(targetDt, int(from->type.GetConstantQW())); } else if (from->type.dataType.IsIntegerType() && from->type.dataType.GetSizeInMemoryBytes() < 4) { // Convert to 32bit if (from->type.dataType.GetSizeInMemoryBytes() == 1) from->type.SetConstantDW(targetDt, (asINT8)from->type.GetConstantB()); else if (from->type.dataType.GetSizeInMemoryBytes() == 2) from->type.SetConstantDW(targetDt, (asINT16)from->type.GetConstantW()); } else { // Only int32 and enums should come here and as these are 32bit // already nothing needs to be done except set the target type asASSERT((from->type.dataType.GetTokenType() == ttInt || from->type.dataType.IsEnumType()) && from->type.dataType.GetSizeInMemoryBytes() == 4); from->type.dataType = targetDt; } } // Check if a downsize is necessary if( to.IsIntegerType() && from->type.dataType.IsIntegerType() && from->type.dataType.GetSizeInMemoryBytes() > to.GetSizeInMemoryBytes() ) { // Verify if it is possible if( to.GetSizeInMemoryBytes() == 1 ) { if( asINT8(from->type.GetConstantDW()) != int(from->type.GetConstantDW()) ) if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_VALUE_TOO_LARGE_FOR_TYPE, node); from->type.SetConstantB(asCDataType::CreatePrimitive(to.GetTokenType(), true), asINT8(from->type.GetConstantDW())); } else if( to.GetSizeInMemoryBytes() == 2 ) { if( asINT16(from->type.GetConstantDW()) != int(from->type.GetConstantDW()) ) if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_VALUE_TOO_LARGE_FOR_TYPE, node); from->type.SetConstantW(asCDataType::CreatePrimitive(to.GetTokenType(), true), asINT16(from->type.GetConstantDW())); } } } else if( to.IsIntegerType() && to.GetSizeInMemoryDWords() == 2 ) { // Float constants can be implicitly converted to int if( from->type.dataType.IsFloatType() ) { float fc = from->type.GetConstantF(); asINT64 ic = asINT64(fc); if( float(ic) != fc ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantQW(asCDataType::CreatePrimitive(ttInt64, true), ic); } // Double constants can be implicitly converted to int else if( from->type.dataType.IsDoubleType() ) { double fc = from->type.GetConstantD(); asINT64 ic = asINT64(fc); if( double(ic) != fc ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantQW(asCDataType::CreatePrimitive(ttInt64, true), ic); } else if( from->type.dataType.IsUnsignedType() ) { // Convert to 64bit if( from->type.dataType.GetSizeInMemoryBytes() == 1 ) from->type.SetConstantQW(asCDataType::CreatePrimitive(ttInt64, true), from->type.GetConstantB()); else if( from->type.dataType.GetSizeInMemoryBytes() == 2 ) from->type.SetConstantQW(asCDataType::CreatePrimitive(ttInt64, true), from->type.GetConstantW()); else if( from->type.dataType.GetSizeInMemoryBytes() == 4 ) from->type.SetConstantQW(asCDataType::CreatePrimitive(ttInt64, true), from->type.GetConstantDW()); else if( from->type.dataType.GetSizeInMemoryBytes() == 8 ) { if( asINT64(from->type.GetConstantQW()) < 0 ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_CHANGE_SIGN, node); } from->type.dataType = asCDataType::CreatePrimitive(ttInt64, true); } } else if( from->type.dataType.IsIntegerType() ) { // Convert to 64bit if( from->type.dataType.GetSizeInMemoryBytes() == 1 ) from->type.SetConstantQW(asCDataType::CreatePrimitive(ttInt64, true), (asINT8)from->type.GetConstantB()); else if( from->type.dataType.GetSizeInMemoryBytes() == 2 ) from->type.SetConstantQW(asCDataType::CreatePrimitive(ttInt64, true), (asINT16)from->type.GetConstantW()); else if( from->type.dataType.GetSizeInMemoryBytes() == 4 ) from->type.SetConstantQW(asCDataType::CreatePrimitive(ttInt64, true), (int)from->type.GetConstantDW()); } } else if( to.IsUnsignedType() && to.GetSizeInMemoryDWords() == 1 ) { if( from->type.dataType.IsFloatType() ) { float fc = from->type.GetConstantF(); // Some compilers set the value to 0 when converting a negative float to unsigned int. // To maintain a consistent behaviour across compilers we convert to int first. asUINT uic = asUINT(int(fc)); if( float(uic) != fc ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantDW(asCDataType::CreatePrimitive(ttUInt, true), uic); // Try once more, in case of a smaller type ImplicitConversionConstant(from, to, node, convType); } else if( from->type.dataType.IsDoubleType() ) { double fc = from->type.GetConstantD(); // Some compilers set the value to 0 when converting a negative double to unsigned int. // To maintain a consistent behaviour across compilers we convert to int first. asUINT uic = asUINT(int(fc)); if( double(uic) != fc ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantDW(asCDataType::CreatePrimitive(ttUInt, true), uic); // Try once more, in case of a smaller type ImplicitConversionConstant(from, to, node, convType); } else if( from->type.dataType.IsIntegerType() ) { // Verify that it is possible to convert to unsigned without loosing negative if( (from->type.dataType.GetSizeInMemoryBytes() > 4 && asINT64(from->type.GetConstantQW()) < 0) || (from->type.dataType.GetSizeInMemoryBytes() == 4 && int(from->type.GetConstantDW()) < 0) || (from->type.dataType.GetSizeInMemoryBytes() == 2 && asINT16(from->type.GetConstantW()) < 0) || (from->type.dataType.GetSizeInMemoryBytes() == 1 && asINT8(from->type.GetConstantB()) < 0)) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_CHANGE_SIGN, node); } // Check if any data is lost if( from->type.dataType.GetSizeInMemoryBytes() > 4 && (from->type.GetConstantQW() >> 32) != 0 && (from->type.GetConstantQW() >> 32) != 0xFFFFFFFF ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_VALUE_TOO_LARGE_FOR_TYPE, node); } // Convert to 32bit if( from->type.dataType.GetSizeInMemoryBytes() == 1 ) from->type.SetConstantDW(asCDataType::CreatePrimitive(ttUInt, true), (asINT8)from->type.GetConstantB()); else if( from->type.dataType.GetSizeInMemoryBytes() == 2 ) from->type.SetConstantDW(asCDataType::CreatePrimitive(ttUInt, true), (asINT16)from->type.GetConstantW()); else if (from->type.dataType.GetSizeInMemoryBytes() == 4 ) from->type.SetConstantDW(asCDataType::CreatePrimitive(ttUInt, true), (int)from->type.GetConstantDW()); else from->type.SetConstantDW(asCDataType::CreatePrimitive(ttUInt, true), (int)(asINT64)from->type.GetConstantQW()); // Try once more, in case of a smaller type ImplicitConversionConstant(from, to, node, convType); } else if( from->type.dataType.IsUnsignedType() && from->type.dataType.GetSizeInMemoryBytes() < 4 ) { // Convert to 32bit if( from->type.dataType.GetSizeInMemoryBytes() == 1 ) from->type.SetConstantDW(asCDataType::CreatePrimitive(ttUInt, true), from->type.GetConstantB()); else if( from->type.dataType.GetSizeInMemoryBytes() == 2 ) from->type.SetConstantDW(asCDataType::CreatePrimitive(ttUInt, true), from->type.GetConstantW()); // Try once more, in case of a smaller type ImplicitConversionConstant(from, to, node, convType); } else if( from->type.dataType.IsUnsignedType() && from->type.dataType.GetSizeInMemoryBytes() > to.GetSizeInMemoryBytes() ) { // Verify if it is possible if( to.GetSizeInMemoryBytes() == 1 ) { if( asBYTE(from->type.GetConstantDW()) != from->type.GetConstantDW() ) if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_VALUE_TOO_LARGE_FOR_TYPE, node); from->type.SetConstantB(asCDataType::CreatePrimitive(to.GetTokenType(), true), asBYTE(from->type.GetConstantDW())); } else if( to.GetSizeInMemoryBytes() == 2 ) { if( asWORD(from->type.GetConstantDW()) != from->type.GetConstantDW()) if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_VALUE_TOO_LARGE_FOR_TYPE, node); from->type.SetConstantW(asCDataType::CreatePrimitive(to.GetTokenType(), true), asWORD(from->type.GetConstantDW())); } else if (to.GetSizeInMemoryBytes() == 4) { if( asDWORD(from->type.GetConstantQW()) != from->type.GetConstantQW()) if (convType != asIC_EXPLICIT_VAL_CAST && node) Warning(TXT_VALUE_TOO_LARGE_FOR_TYPE, node); from->type.SetConstantDW(asCDataType::CreatePrimitive(to.GetTokenType(), true), asDWORD(from->type.GetConstantQW())); } } } else if( to.IsUnsignedType() && to.GetSizeInMemoryDWords() == 2 ) { if( from->type.dataType.IsFloatType() ) { float fc = from->type.GetConstantF(); // Convert first to int64 then to uint64 to avoid negative float becoming 0 on gnuc base compilers asQWORD uic = asQWORD(asINT64(fc)); #if !defined(_MSC_VER) || _MSC_VER > 1200 // MSVC++ 6 // MSVC6 doesn't support this conversion if( float(uic) != fc ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } #endif from->type.SetConstantQW(asCDataType::CreatePrimitive(ttUInt64, true), uic); } else if( from->type.dataType.IsDoubleType() ) { double fc = from->type.GetConstantD(); // Convert first to int64 then to uint64 to avoid negative float becoming 0 on gnuc base compilers asQWORD uic = asQWORD(asINT64(fc)); #if !defined(_MSC_VER) || _MSC_VER > 1200 // MSVC++ 6 // MSVC6 doesn't support this conversion if( double(uic) != fc ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } #endif from->type.SetConstantQW(asCDataType::CreatePrimitive(ttUInt64, true), uic); } else if( from->type.dataType.IsIntegerType() && from->type.dataType.GetSizeInMemoryDWords() == 1 ) { // Convert to 64bit if( from->type.dataType.GetSizeInMemoryBytes() == 1 ) from->type.SetConstantQW(asCDataType::CreatePrimitive(ttUInt64, true), (asINT64)(asINT8)from->type.GetConstantB()); else if( from->type.dataType.GetSizeInMemoryBytes() == 2 ) from->type.SetConstantQW(asCDataType::CreatePrimitive(ttUInt64, true), (asINT64)(asINT16)from->type.GetConstantW()); else if( from->type.dataType.GetSizeInMemoryBytes() == 4 ) from->type.SetConstantQW(asCDataType::CreatePrimitive(ttUInt64, true), (asINT64)(int)from->type.GetConstantDW()); // Verify that it is possible to convert to unsigned without loosing negative if( asINT64(from->type.GetConstantQW()) < 0 ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_CHANGE_SIGN, node); } from->type.dataType = asCDataType::CreatePrimitive(ttUInt64, true); } else if( from->type.dataType.IsIntegerType() && from->type.dataType.GetSizeInMemoryDWords() == 2 ) { // Verify that it is possible to convert to unsigned without loosing negative if( asINT64(from->type.GetConstantQW()) < 0 ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_CHANGE_SIGN, node); } from->type.dataType = asCDataType::CreatePrimitive(ttUInt64, true); } else if( from->type.dataType.IsUnsignedType() ) { // Convert to 64bit if( from->type.dataType.GetSizeInMemoryBytes() == 1 ) from->type.SetConstantQW(asCDataType::CreatePrimitive(ttUInt64, true), from->type.GetConstantB()); else if( from->type.dataType.GetSizeInMemoryBytes() == 2 ) from->type.SetConstantQW(asCDataType::CreatePrimitive(ttUInt64, true), from->type.GetConstantW()); else if( from->type.dataType.GetSizeInMemoryBytes() == 4 ) from->type.SetConstantQW(asCDataType::CreatePrimitive(ttUInt64, true), from->type.GetConstantDW()); } } else if( to.IsFloatType() ) { if( from->type.dataType.IsDoubleType() ) { double ic = from->type.GetConstantD(); float fc = float(ic); from->type.SetConstantF(asCDataType::CreatePrimitive(to.GetTokenType(), true), fc); } else if( from->type.dataType.IsIntegerType() && from->type.dataType.GetSizeInMemoryDWords() == 1 ) { // Must properly convert value in case the from value is smaller int ic; if( from->type.dataType.GetSizeInMemoryBytes() == 1 ) ic = (asINT8)from->type.GetConstantB(); else if( from->type.dataType.GetSizeInMemoryBytes() == 2 ) ic = (asINT16)from->type.GetConstantW(); else ic = (int)from->type.GetConstantDW(); float fc = float(ic); if( int(fc) != ic ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantF(asCDataType::CreatePrimitive(to.GetTokenType(), true), fc); } else if( from->type.dataType.IsIntegerType() && from->type.dataType.GetSizeInMemoryDWords() == 2 ) { float fc = float(asINT64(from->type.GetConstantQW())); if( asINT64(fc) != asINT64(from->type.GetConstantQW()) ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantF(asCDataType::CreatePrimitive(to.GetTokenType(), true), fc); } else if( from->type.dataType.IsUnsignedType() && from->type.dataType.GetSizeInMemoryDWords() == 1 ) { // Must properly convert value in case the from value is smaller unsigned int uic; if( from->type.dataType.GetSizeInMemoryBytes() == 1 ) uic = from->type.GetConstantB(); else if( from->type.dataType.GetSizeInMemoryBytes() == 2 ) uic = from->type.GetConstantW(); else uic = from->type.GetConstantDW(); float fc = float(uic); if( (unsigned int)(fc) != uic ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantF(asCDataType::CreatePrimitive(to.GetTokenType(), true), fc); } else if( from->type.dataType.IsUnsignedType() && from->type.dataType.GetSizeInMemoryDWords() == 2 ) { float fc = float((asINT64)from->type.GetConstantQW()); if( asQWORD(fc) != from->type.GetConstantQW()) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantF(asCDataType::CreatePrimitive(to.GetTokenType(), true), fc); } } else if( to.IsDoubleType() ) { if( from->type.dataType.IsFloatType() ) { float ic = from->type.GetConstantF(); double fc = double(ic); from->type.SetConstantD(asCDataType::CreatePrimitive(to.GetTokenType(), true), fc); } else if( from->type.dataType.IsIntegerType() && from->type.dataType.GetSizeInMemoryDWords() == 1 ) { // Must properly convert value in case the from value is smaller int ic; if( from->type.dataType.GetSizeInMemoryBytes() == 1 ) ic = (asINT8)from->type.GetConstantB(); else if( from->type.dataType.GetSizeInMemoryBytes() == 2 ) ic = (asINT16)from->type.GetConstantW(); else ic = (int)from->type.GetConstantDW(); double fc = double(ic); if( int(fc) != ic ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantD(asCDataType::CreatePrimitive(to.GetTokenType(), true), fc); } else if( from->type.dataType.IsIntegerType() && from->type.dataType.GetSizeInMemoryDWords() == 2 ) { double fc = double(asINT64(from->type.GetConstantQW())); if( asINT64(fc) != asINT64(from->type.GetConstantQW()) ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantD(asCDataType::CreatePrimitive(to.GetTokenType(), true), fc); } else if( from->type.dataType.IsUnsignedType() && from->type.dataType.GetSizeInMemoryDWords() == 1 ) { // Must properly convert value in case the from value is smaller unsigned int uic; if( from->type.dataType.GetSizeInMemoryBytes() == 1 ) uic = from->type.GetConstantB(); else if( from->type.dataType.GetSizeInMemoryBytes() == 2 ) uic = from->type.GetConstantW(); else uic = from->type.GetConstantDW(); double fc = double(uic); if( (unsigned int)(fc) != uic ) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantD(asCDataType::CreatePrimitive(to.GetTokenType(), true), fc); } else if( from->type.dataType.IsUnsignedType() && from->type.dataType.GetSizeInMemoryDWords() == 2 ) { double fc = double((asINT64)from->type.GetConstantQW()); if( asQWORD(fc) != from->type.GetConstantQW()) { if( convType != asIC_EXPLICIT_VAL_CAST && node ) Warning(TXT_NOT_EXACT, node); } from->type.SetConstantD(asCDataType::CreatePrimitive(to.GetTokenType(), true), fc); } } } int asCCompiler::DoAssignment(asCExprContext *ctx, asCExprContext *lctx, asCExprContext *rctx, asCScriptNode *lexpr, asCScriptNode *rexpr, eTokenType op, asCScriptNode *opNode) { // Don't allow any operators on expressions that take address of class method // If methodName is set but the type is not an object, then it is a global function if( lctx->methodName != "" || rctx->IsClassMethod() ) { Error(TXT_INVALID_OP_ON_METHOD, opNode); return -1; } // Implicit handle types should always be treated as handles in assignments if (lctx->type.dataType.GetTypeInfo() && (lctx->type.dataType.GetTypeInfo()->flags & asOBJ_IMPLICIT_HANDLE) ) { lctx->type.dataType.MakeHandle(true); lctx->type.isExplicitHandle = true; } // If the left hand expression is a property accessor, then that should be used // to do the assignment instead of the ordinary operator. The exception is when // the property accessor is for a handle property, and the operation is a value // assignment. if( (lctx->property_get || lctx->property_set) && !(lctx->type.dataType.IsObjectHandle() && !lctx->type.isExplicitHandle) ) { if( op != ttAssignment ) { // Generate the code for the compound assignment, i.e. get the value, apply operator, then set the value return ProcessPropertyGetSetAccessor(ctx, lctx, rctx, op, opNode); } // It is not allowed to do a handle assignment on a property // accessor that doesn't take a handle in the set accessor. if( lctx->property_set && lctx->type.isExplicitHandle ) { // set_opIndex has 2 arguments, where as normal setters have only 1 asCArray& parameterTypes = builder->GetFunctionDescription(lctx->property_set)->parameterTypes; if( !parameterTypes[parameterTypes.GetLength() - 1].IsObjectHandle() ) { // Process the property to free the memory ProcessPropertySetAccessor(lctx, rctx, opNode); Error(TXT_HANDLE_ASSIGN_ON_NON_HANDLE_PROP, opNode); return -1; } } MergeExprBytecodeAndType(ctx, lctx); return ProcessPropertySetAccessor(ctx, rctx, opNode); } else if( lctx->property_get && lctx->type.dataType.IsObjectHandle() && !lctx->type.isExplicitHandle ) { // Get the handle to the object that will be used for the value assignment ProcessPropertyGetAccessor(lctx, opNode); } if( lctx->type.dataType.IsPrimitive() ) { if( !lctx->type.isLValue ) { Error(TXT_NOT_LVALUE, lexpr); return -1; } if( op != ttAssignment ) { // Compute the operator before the assignment asCExprValue lvalue = lctx->type; if( lctx->type.isTemporary && !lctx->type.isVariable ) { // The temporary variable must not be freed until the // assignment has been performed. lvalue still holds // the information about the temporary variable lctx->type.isTemporary = false; } asCExprContext o(engine); CompileOperator(opNode, lctx, rctx, &o); MergeExprBytecode(rctx, &o); rctx->type = o.type; // Convert the rvalue to the right type and validate it PrepareForAssignment(&lvalue.dataType, rctx, rexpr, false); MergeExprBytecode(ctx, rctx); lctx->type = lvalue; // The lvalue continues the same, either it was a variable, or a reference in the register } else { // Convert the rvalue to the right type and validate it PrepareForAssignment(&lctx->type.dataType, rctx, rexpr, false, lctx); MergeExprBytecode(ctx, rctx); MergeExprBytecode(ctx, lctx); } ReleaseTemporaryVariable(rctx->type, &ctx->bc); PerformAssignment(&lctx->type, &rctx->type, &ctx->bc, opNode); ctx->type = lctx->type; } else if( lctx->type.isExplicitHandle ) { if( !lctx->type.isLValue ) { Error(TXT_NOT_LVALUE, lexpr); return -1; } // Object handles don't have any compound assignment operators if( op != ttAssignment ) { asCString str; str.Format(TXT_ILLEGAL_OPERATION_ON_s, lctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, lexpr); return -1; } if( lctx->type.dataType.GetTypeInfo() && (lctx->type.dataType.GetTypeInfo()->flags & asOBJ_ASHANDLE) ) { // The object is a value type but that should be treated as a handle // Make sure the right hand value is a handle if( !rctx->type.isExplicitHandle && !(rctx->type.dataType.GetTypeInfo() && (rctx->type.dataType.GetTypeInfo()->flags & asOBJ_ASHANDLE)) ) { // Function names can be considered handles already if( rctx->methodName == "" ) { asCDataType dt = rctx->type.dataType; dt.MakeHandle(true); dt.MakeReference(false); PrepareArgument(&dt, rctx, rexpr, true, asTM_INREF); if( !dt.IsEqualExceptRefAndConst(rctx->type.dataType) ) { asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, rctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), lctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, rexpr); return -1; } } // Mark the right hand expression as explicit handle even if the user didn't do it, otherwise // the code for moving the argument to the stack may not know to correctly handle the argument type // in case of variable parameter type. rctx->type.isExplicitHandle = true; } if( CompileOverloadedDualOperator(opNode, lctx, rctx, false, ctx, true) ) { // An overloaded assignment operator was found (or a compilation error occured) return 0; } // The object must implement the opAssign method asCString msg; msg.Format(TXT_NO_APPROPRIATE_OPHNDLASSIGN_s, lctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(msg.AddressOf(), opNode); return -1; } else { asCDataType dt = lctx->type.dataType; dt.MakeReference(false); PrepareArgument(&dt, rctx, rexpr, false, asTM_INREF , true); if( !dt.IsEqualExceptRefAndConst(rctx->type.dataType) ) { asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, rctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), lctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, rexpr); return -1; } MergeExprBytecode(ctx, rctx); MergeExprBytecode(ctx, lctx); ctx->bc.InstrWORD(asBC_GETOBJREF, AS_PTR_SIZE); PerformAssignment(&lctx->type, &rctx->type, &ctx->bc, opNode); ReleaseTemporaryVariable(rctx->type, &ctx->bc); ctx->type = lctx->type; // After the handle assignment the original handle is left on the stack ctx->type.dataType.MakeReference(false); } } else // if( lctx->type.dataType.IsObject() ) { // The lvalue reference may be marked as a temporary, if for example // it was originated as a handle returned from a function. In such // cases it must be possible to assign values to it anyway. if( lctx->type.dataType.IsObjectHandle() && !lctx->type.isExplicitHandle ) { // Convert the handle to a object reference asCDataType to; to = lctx->type.dataType; to.MakeHandle(false); ImplicitConversion(lctx, to, lexpr, asIC_IMPLICIT_CONV); lctx->type.isLValue = true; // Handle may not have been an lvalue, but the dereferenced object is } // Check for overloaded assignment operator if( CompileOverloadedDualOperator(opNode, lctx, rctx, false, ctx) ) { // An overloaded assignment operator was found (or a compilation error occured) return 0; } // No registered operator was found. In case the operation is a direct // assignment and the rvalue is the same type as the lvalue, then we can // still use the byte-for-byte copy to do the assignment if( op != ttAssignment ) { asCString str; str.Format(TXT_ILLEGAL_OPERATION_ON_s, lctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, lexpr); return -1; } // If the left hand expression is simple, i.e. without any // function calls or allocations of memory, then we can avoid // doing a copy of the right hand expression (done by PrepareArgument). // Instead the reference to the value can be placed directly on the // stack. // // This optimization should only be done for value types, where // the application developer is responsible for making the // implementation safe against unwanted destruction of the input // reference before the time. bool simpleExpr = (lctx->type.dataType.GetTypeInfo()->GetFlags() & asOBJ_VALUE) && lctx->bc.IsSimpleExpression(); // Implicitly convert the rvalue to the type of the lvalue bool needConversion = false; if( !lctx->type.dataType.IsEqualExceptRefAndConst(rctx->type.dataType) ) needConversion = true; if( !simpleExpr || needConversion ) { asCDataType dt = lctx->type.dataType; dt.MakeReference(true); dt.MakeReadOnly(true); int r = PrepareArgument(&dt, rctx, rexpr, true, 1, !needConversion); if( r < 0 ) return -1; if( !dt.IsEqualExceptRefAndConst(rctx->type.dataType) ) { asCString str; str.Format(TXT_CANT_IMPLICITLY_CONVERT_s_TO_s, rctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), lctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, rexpr); return -1; } } else { // Process any property accessor first, before placing the final reference on the stack ProcessPropertyGetAccessor(rctx, rexpr); if( rctx->type.dataType.IsReference() && (!(rctx->type.isVariable || rctx->type.isTemporary) || IsVariableOnHeap(rctx->type.stackOffset)) ) rctx->bc.Instr(asBC_RDSPtr); } MergeExprBytecode(ctx, rctx); MergeExprBytecode(ctx, lctx); if( !simpleExpr || needConversion ) { if( (rctx->type.isVariable || rctx->type.isTemporary) ) { if( !IsVariableOnHeap(rctx->type.stackOffset) ) // TODO: runtime optimize: Actually the reference can be pushed on the stack directly // as the value allocated on the stack is guaranteed to be safe. // The bytecode optimizer should be able to determine this and optimize away the VAR + GETREF ctx->bc.InstrWORD(asBC_GETREF, AS_PTR_SIZE); else ctx->bc.InstrWORD(asBC_GETOBJREF, AS_PTR_SIZE); } } PerformAssignment(&lctx->type, &rctx->type, &ctx->bc, opNode); ReleaseTemporaryVariable(rctx->type, &ctx->bc); ctx->type = lctx->type; } return 0; } int asCCompiler::CompileAssignment(asCScriptNode *expr, asCExprContext *ctx) { asASSERT(expr->nodeType == snAssignment); asCScriptNode *lexpr = expr->firstChild; if( lexpr->next ) { // Compile the two expression terms asCExprContext lctx(engine), rctx(engine); int rr = CompileAssignment(lexpr->next->next, &rctx); int lr = CompileCondition(lexpr, &lctx); if( lr >= 0 && rr >= 0 ) return DoAssignment(ctx, &lctx, &rctx, lexpr, lexpr->next->next, lexpr->next->tokenType, lexpr->next); // Since the operands failed, the assignment was not computed ctx->type.SetDummy(); return -1; } return CompileCondition(lexpr, ctx); } int asCCompiler::CompileCondition(asCScriptNode *expr, asCExprContext *ctx) { asCExprValue ctype; // Compile the conditional expression asCScriptNode *cexpr = expr->firstChild; if( cexpr->next ) { //------------------------------- // Compile the condition asCExprContext e(engine); int r = CompileExpression(cexpr, &e); if( r < 0 ) e.type.SetConstantB(asCDataType::CreatePrimitive(ttBool, true), true); // Allow value types to be converted to bool using 'bool opImplConv()' if( e.type.dataType.GetTypeInfo() && (e.type.dataType.GetTypeInfo()->GetFlags() & asOBJ_VALUE) ) ImplicitConversion(&e, asCDataType::CreatePrimitive(ttBool, false), cexpr, asIC_IMPLICIT_CONV); if( r >= 0 && !e.type.dataType.IsEqualExceptRefAndConst(asCDataType::CreatePrimitive(ttBool, true)) ) { Error(TXT_EXPR_MUST_BE_BOOL, cexpr); e.type.SetConstantB(asCDataType::CreatePrimitive(ttBool, true), true); } ctype = e.type; ProcessPropertyGetAccessor(&e, cexpr); if( e.type.dataType.IsReference() ) ConvertToVariable(&e); ProcessDeferredParams(&e); //------------------------------- // Compile the left expression asCExprContext le(engine); int lr = CompileAssignment(cexpr->next, &le); // Resolve any function names already DetermineSingleFunc(&le, cexpr->next); //------------------------------- // Compile the right expression asCExprContext re(engine); int rr = CompileAssignment(cexpr->next->next, &re); DetermineSingleFunc(&re, cexpr->next->next); if( lr >= 0 && rr >= 0 ) { // Don't allow any operators on expressions that take address of class method if( le.IsClassMethod() || re.IsClassMethod() ) { Error(TXT_INVALID_OP_ON_METHOD, expr); return -1; } ProcessPropertyGetAccessor(&le, cexpr->next); ProcessPropertyGetAccessor(&re, cexpr->next->next); bool isExplicitHandle = le.type.isExplicitHandle || re.type.isExplicitHandle; // Allow a 0 or null in the first case to be implicitly converted to the second type if( le.type.isConstant && le.type.GetConstantData() == 0 && le.type.dataType.IsIntegerType() ) { asCDataType to = re.type.dataType; to.MakeReference(false); to.MakeReadOnly(true); ImplicitConversionConstant(&le, to, cexpr->next, asIC_IMPLICIT_CONV); } else if( le.type.IsNullConstant() ) { asCDataType to = re.type.dataType; to.MakeHandle(true); ImplicitConversion(&le, to, cexpr->next, asIC_IMPLICIT_CONV); } // Allow either case to be converted to const @ if the other is const @ if( (le.type.dataType.IsHandleToConst() && !le.type.IsNullConstant()) || (re.type.dataType.IsHandleToConst() && !re.type.dataType.IsNullHandle()) ) { le.type.dataType.MakeHandleToConst(true); re.type.dataType.MakeHandleToConst(true); } //--------------------------------- // Output the byte code int afterLabel = nextLabel++; int elseLabel = nextLabel++; // If left expression is void, then we don't need to store the result if( le.type.dataType.IsEqualExceptConst(asCDataType::CreatePrimitive(ttVoid, false)) ) { // Put the code for the condition expression on the output MergeExprBytecode(ctx, &e); // Added the branch decision ctx->type = e.type; ConvertToVariable(ctx); ctx->bc.InstrSHORT(asBC_CpyVtoR4, ctx->type.stackOffset); ctx->bc.Instr(asBC_ClrHi); ctx->bc.InstrDWORD(asBC_JZ, elseLabel); ReleaseTemporaryVariable(ctx->type, &ctx->bc); // Add the left expression MergeExprBytecode(ctx, &le); ctx->bc.InstrINT(asBC_JMP, afterLabel); // Add the right expression ctx->bc.Label((short)elseLabel); MergeExprBytecode(ctx, &re); ctx->bc.Label((short)afterLabel); // Make sure both expressions have the same type if( le.type.dataType != re.type.dataType ) Error(TXT_BOTH_MUST_BE_SAME, expr); // Set the type of the result ctx->type = le.type; } else if (le.type.IsNullConstant() && re.type.IsNullConstant()) { // Special case for when both results are 'null' // TODO: Other expressions where both results are identical literal constants can probably also be handled this way // Put the code for the condition expression on the output MergeExprBytecode(ctx, &e); // Load the result into the register, but ignore the value since both paths give the same response ctx->type = e.type; ConvertToVariable(ctx); ctx->bc.InstrSHORT(asBC_CpyVtoR4, ctx->type.stackOffset); ReleaseTemporaryVariable(ctx->type, &ctx->bc); // Return a null constant ctx->bc.Instr(asBC_PshNull); ctx->type.SetNullConstant(); } else { // Allow "(a ? b : c) = d;" and "return (a ? b : c);" (where the latter returns the reference) // // Restrictions for the condition to be used as lvalue: // 1. both b and c must be of the same type and be lvalue references // 2. neither of the expressions can have any deferred arguments // that would have to be cleaned up after the reference // 3. neither expression can be temporary // // If either expression is local, the resulting lvalue is not valid // for return since it is not allowed to return references to local // variables. // // The reference to the local variable must be loaded into the register, // the resulting expression must not be considered as a local variable // with a stack offset (i.e. it will not be allowed to use asBC_VAR) if( le.type.isLValue && re.type.isLValue && le.deferredParams.GetLength() == 0 && re.deferredParams.GetLength() ==0 && !le.type.isTemporary && !re.type.isTemporary && le.type.dataType == re.type.dataType ) { // Put the code for the condition expression on the output MergeExprBytecode(ctx, &e); // Add the branch decision ctx->type = e.type; ConvertToVariable(ctx); ctx->bc.InstrSHORT(asBC_CpyVtoR4, ctx->type.stackOffset); ctx->bc.Instr(asBC_ClrHi); ctx->bc.InstrDWORD(asBC_JZ, elseLabel); ReleaseTemporaryVariable(ctx->type, &ctx->bc); // Start of the left expression MergeExprBytecode(ctx, &le); if( !le.type.dataType.IsReference() && le.type.isVariable ) { // Load the address of the variable into the register ctx->bc.InstrSHORT(asBC_LDV, le.type.stackOffset); } ctx->bc.InstrINT(asBC_JMP, afterLabel); // Start of the right expression ctx->bc.Label((short)elseLabel); MergeExprBytecode(ctx, &re); if( !re.type.dataType.IsReference() && re.type.isVariable ) { // Load the address of the variable into the register ctx->bc.InstrSHORT(asBC_LDV, re.type.stackOffset); } ctx->bc.Label((short)afterLabel); // In case the options were to objects, it is necessary to dereference the pointer on // the stack so it will point to the actual object, instead of the variable if( le.type.dataType.IsReference() && le.type.dataType.IsObject() && !le.type.dataType.IsObjectHandle() ) { asASSERT( re.type.dataType.IsReference() && re.type.dataType.IsObject() && !re.type.dataType.IsObjectHandle() ); ctx->bc.Instr(asBC_RDSPtr); } // The result is an lvalue ctx->type.isLValue = true; ctx->type.dataType = le.type.dataType; if( ctx->type.dataType.IsPrimitive() || ctx->type.dataType.IsObjectHandle() ) ctx->type.dataType.MakeReference(true); else ctx->type.dataType.MakeReference(false); // It can't be a treated as a variable, since we don't know which one was used ctx->type.isVariable = false; ctx->type.isTemporary = false; // Must remember if the reference was to a local variable, since it must not be allowed to be returned ctx->type.isRefToLocal = le.type.isVariable || le.type.isRefToLocal || re.type.isVariable || re.type.isRefToLocal; } else { // Allocate temporary variable and copy the result to that one asCExprValue temp; temp = le.type; temp.dataType.MakeReference(false); temp.dataType.MakeReadOnly(false); // Make sure the variable isn't used in any of the expressions, // as it would be overwritten which may cause crashes or less visible bugs int l = int(reservedVariables.GetLength()); e.bc.GetVarsUsed(reservedVariables); le.bc.GetVarsUsed(reservedVariables); re.bc.GetVarsUsed(reservedVariables); int offset = AllocateVariable(temp.dataType, true, false); reservedVariables.SetLength(l); temp.SetVariable(temp.dataType, offset, true); // TODO: copy: Use copy constructor if available. See PrepareTemporaryVariable() CallDefaultConstructor(temp.dataType, offset, IsVariableOnHeap(offset), &ctx->bc, expr); // Put the code for the condition expression on the output MergeExprBytecode(ctx, &e); // Add the branch decision ctx->type = e.type; ConvertToVariable(ctx); ctx->bc.InstrSHORT(asBC_CpyVtoR4, ctx->type.stackOffset); ctx->bc.Instr(asBC_ClrHi); ctx->bc.InstrDWORD(asBC_JZ, elseLabel); ReleaseTemporaryVariable(ctx->type, &ctx->bc); // Assign the result of the left expression to the temporary variable asCExprValue rtemp; rtemp = temp; if( rtemp.dataType.IsObjectHandle() ) rtemp.isExplicitHandle = true; PrepareForAssignment(&rtemp.dataType, &le, cexpr->next, true); MergeExprBytecode(ctx, &le); if( !rtemp.dataType.IsPrimitive() ) { ctx->bc.InstrSHORT(asBC_PSF, (short)offset); rtemp.dataType.MakeReference(IsVariableOnHeap(offset)); } asCExprValue result; result = rtemp; PerformAssignment(&result, &le.type, &ctx->bc, cexpr->next); if( !result.dataType.IsPrimitive() ) ctx->bc.Instr(asBC_PopPtr); // Pop the original value (always a pointer) // Release the old temporary variable ReleaseTemporaryVariable(le.type, &ctx->bc); ctx->bc.InstrINT(asBC_JMP, afterLabel); // Start of the right expression ctx->bc.Label((short)elseLabel); // Copy the result to the same temporary variable PrepareForAssignment(&rtemp.dataType, &re, cexpr->next, true); MergeExprBytecode(ctx, &re); if( !rtemp.dataType.IsPrimitive() ) { ctx->bc.InstrSHORT(asBC_PSF, (short)offset); rtemp.dataType.MakeReference(IsVariableOnHeap(offset)); } result = rtemp; PerformAssignment(&result, &re.type, &ctx->bc, cexpr->next); if( !result.dataType.IsPrimitive() ) ctx->bc.Instr(asBC_PopPtr); // Pop the original value (always a pointer) // Release the old temporary variable ReleaseTemporaryVariable(re.type, &ctx->bc); ctx->bc.Label((short)afterLabel); // Make sure both expressions have the same type if( !le.type.dataType.IsEqualExceptConst(re.type.dataType) ) Error(TXT_BOTH_MUST_BE_SAME, expr); // Set the temporary variable as output ctx->type = rtemp; ctx->type.isExplicitHandle = isExplicitHandle; if( !ctx->type.dataType.IsPrimitive() ) { ctx->bc.InstrSHORT(asBC_PSF, (short)offset); ctx->type.dataType.MakeReference(IsVariableOnHeap(offset)); } // Make sure the output isn't marked as being a literal constant ctx->type.isConstant = false; } } } else { ctx->type.SetDummy(); return -1; } } else return CompileExpression(cexpr, ctx); return 0; } int asCCompiler::CompileExpression(asCScriptNode *expr, asCExprContext *ctx) { asASSERT(expr->nodeType == snExpression); // Convert to polish post fix, i.e: a+b => ab+ asCArray postfix; ConvertToPostFix(expr, postfix); // Compile the postfix formatted expression return CompilePostFixExpression(&postfix, ctx); } void asCCompiler::ConvertToPostFix(asCScriptNode *expr, asCArray &postfix) { // The algorithm that I've implemented here is similar to // Djikstra's Shunting Yard algorithm, though I didn't know it at the time. // ref: http://en.wikipedia.org/wiki/Shunting-yard_algorithm // Count the nodes in order to preallocate the buffers int count = 0; asCScriptNode *node = expr->firstChild; while( node ) { count++; node = node->next; } asCArray stackA(count); asCArray &stackB = postfix; stackB.Allocate(count, false); node = expr->firstChild; while( node ) { int precedence = GetPrecedence(node); while( stackA.GetLength() > 0 && precedence <= GetPrecedence(stackA[stackA.GetLength()-1]) ) stackB.PushLast(stackA.PopLast()); stackA.PushLast(node); node = node->next; } while( stackA.GetLength() > 0 ) stackB.PushLast(stackA.PopLast()); } int asCCompiler::CompilePostFixExpression(asCArray *postfix, asCExprContext *ctx) { // Shouldn't send any byte code asASSERT(ctx->bc.GetLastInstr() == -1); // Set the context to a dummy type to avoid further // errors in case the expression fails to compile ctx->type.SetDummy(); // Evaluate the operands and operators asCArray free; asCArray expr; int ret = 0; for( asUINT n = 0; ret == 0 && n < postfix->GetLength(); n++ ) { asCScriptNode *node = (*postfix)[n]; if( node->nodeType == snExprTerm ) { asCExprContext *e = free.GetLength() ? free.PopLast() : asNEW(asCExprContext)(engine); expr.PushLast(e); e->exprNode = node; ret = CompileExpressionTerm(node, e); } else { asCExprContext *r = expr.PopLast(); asCExprContext *l = expr.PopLast(); // Now compile the operator asCExprContext *e = free.GetLength() ? free.PopLast() : asNEW(asCExprContext)(engine); ret = CompileOperator(node, l, r, e); expr.PushLast(e); // Free the operands l->Clear(); free.PushLast(l); r->Clear(); free.PushLast(r); } } if( ret == 0 ) { asASSERT(expr.GetLength() == 1); // The final result should be moved to the output context MergeExprBytecodeAndType(ctx, expr[0]); } // Clean up for( asUINT e = 0; e < expr.GetLength(); e++ ) asDELETE(expr[e], asCExprContext); for( asUINT f = 0; f < free.GetLength(); f++ ) asDELETE(free[f], asCExprContext); return ret; } int asCCompiler::CompilerAnonymousInitList(asCScriptNode *node, asCExprContext *ctx, const asCDataType &dt) { asASSERT(node->nodeType == snInitList); // Do not allow constructing non-shared types in shared functions if (outFunc->IsShared() && dt.GetTypeInfo() && !dt.GetTypeInfo()->IsShared()) { asCString msg; msg.Format(TXT_SHARED_CANNOT_USE_NON_SHARED_TYPE_s, dt.GetTypeInfo()->name.AddressOf()); Error(msg, node); } // Allocate and initialize the temporary object int offset = AllocateVariable(dt, true); CompileInitialization(node, &ctx->bc, dt, node, offset, 0, 0); // Push the reference to the object on the stack ctx->bc.InstrSHORT(asBC_PSF, (short)offset); ctx->type.SetVariable(dt, offset, true); ctx->type.isLValue = false; // If the variable is allocated on the heap we have a reference, // otherwise the actual object pointer is pushed on the stack. if (IsVariableOnHeap(offset)) ctx->type.dataType.MakeReference(true); return 0; } int asCCompiler::CompileExpressionTerm(asCScriptNode *node, asCExprContext *ctx) { // Shouldn't send any byte code asASSERT(ctx->bc.GetLastInstr() == -1); // Check if this is an initialization of a temp object with an initialization list if (node->firstChild ) { if (node->firstChild->nodeType == snDataType) { // Determine the type of the temporary object asCDataType dt = builder->CreateDataTypeFromNode(node->firstChild, script, outFunc->nameSpace); return CompilerAnonymousInitList(node->lastChild, ctx, dt); } else if (node->firstChild->nodeType == snInitList) { // As the type is not yet known, the init list will be compiled at a // later time when the type can be determined from the destination ctx->SetAnonymousInitList(node->firstChild); return 0; } } // Set the type as a dummy by default, in case of any compiler errors ctx->type.SetDummy(); // Compile the value node asCScriptNode *vnode = node->firstChild; while( vnode->nodeType != snExprValue ) vnode = vnode->next; asCExprContext v(engine); int r = CompileExpressionValue(vnode, &v); if( r < 0 ) return r; // Compile post fix operators asCScriptNode *pnode = vnode->next; while( pnode ) { r = CompileExpressionPostOp(pnode, &v); if( r < 0 ) return r; pnode = pnode->next; } // Compile pre fix operators pnode = vnode->prev; while( pnode ) { r = CompileExpressionPreOp(pnode, &v); if( r < 0 ) return r; pnode = pnode->prev; } // Return the byte code and final type description MergeExprBytecodeAndType(ctx, &v); return 0; } int asCCompiler::CompileVariableAccess(const asCString &name, const asCString &scope, asCExprContext *ctx, asCScriptNode *errNode, bool isOptional, bool noFunction, bool noGlobal, asCObjectType *objType) { bool found = false; // It is a local variable or parameter? // This is not accessible by default arg expressions sVariable *v = 0; if( !isCompilingDefaultArg && scope == "" && !objType && variables ) v = variables->GetVariable(name.AddressOf()); if( v ) { found = true; if( v->isPureConstant ) ctx->type.SetConstantData(v->type, v->constantValue); else if( v->type.IsPrimitive() ) { if( v->type.IsReference() ) { // Copy the reference into the register ctx->bc.InstrSHORT(asBC_PshVPtr, (short)v->stackOffset); ctx->bc.Instr(asBC_PopRPtr); ctx->type.Set(v->type); } else ctx->type.SetVariable(v->type, v->stackOffset, false); // Set as lvalue unless it is a const variable if( !v->type.IsReadOnly() ) ctx->type.isLValue = true; } else { ctx->bc.InstrSHORT(asBC_PSF, (short)v->stackOffset); ctx->type.SetVariable(v->type, v->stackOffset, false); // If the variable is allocated on the heap we have a reference, // otherwise the actual object pointer is pushed on the stack. if( v->onHeap || v->type.IsObjectHandle() ) ctx->type.dataType.MakeReference(true); // Implicitly dereference handle parameters sent by reference if( v->type.IsReference() && (!v->type.IsObject() || v->type.IsObjectHandle()) ) ctx->bc.Instr(asBC_RDSPtr); // Mark the object as safe for access unless it is a handle, as the // life time of the object is guaranteed throughout the scope. if( !v->type.IsObjectHandle() ) ctx->type.isHandleSafe = true; // Set as lvalue unless it is a const variable if (!v->type.IsReadOnly()) ctx->type.isLValue = true; } } // Is it a class member? // This is not accessible by default arg expressions if( !isCompilingDefaultArg && !found && ((objType) || (outFunc && outFunc->objectType && scope == "")) ) { if( name == THIS_TOKEN && !objType ) { asCDataType dt = asCDataType::CreateType(outFunc->objectType, outFunc->IsReadOnly()); // The object pointer is located at stack position 0 ctx->bc.InstrSHORT(asBC_PSF, 0); ctx->type.SetVariable(dt, 0, false); ctx->type.dataType.MakeReference(true); ctx->type.isLValue = true; // The 'this' handle is always considered safe (i.e. life time guaranteed) ctx->type.isHandleSafe = true; found = true; } if( !found ) { // See if there are any matching property accessors asCExprContext access(engine); if( objType ) access.type.Set(asCDataType::CreateType(objType, false)); else access.type.Set(asCDataType::CreateType(outFunc->objectType, outFunc->IsReadOnly())); access.type.dataType.MakeReference(true); int r = 0; if( errNode->next && errNode->next->tokenType == ttOpenBracket ) { // This is an index access, check if there is a property accessor that takes an index arg asCExprContext dummyArg(engine); r = FindPropertyAccessor(name, &access, &dummyArg, errNode, 0, true); } if( r == 0 ) { // Normal property access r = FindPropertyAccessor(name, &access, errNode, 0, true); } if( r < 0 ) return -1; if( access.property_get || access.property_set ) { if( !objType ) { // Prepare the bytecode for the member access // This is only done when accessing through the implicit this pointer ctx->bc.InstrSHORT(asBC_PSF, 0); } MergeExprBytecodeAndType(ctx, &access); found = true; } } if( !found ) { asCDataType dt; if( objType ) dt = asCDataType::CreateType(objType, false); else dt = asCDataType::CreateType(outFunc->objectType, false); asCObjectProperty *prop = builder->GetObjectProperty(dt, name.AddressOf()); if( prop ) { // Is the property access allowed? if( prop->isPrivate && prop->isInherited ) { if( engine->ep.privatePropAsProtected ) { // The application is allowing inherited classes to access private properties of the parent // class. This option is allowed to provide backwards compatibility with pre-2.30.0 versions // as it was how the compiler behaved earlier. asCString msg; msg.Format(TXT_ACCESSING_PRIVATE_PROP_s, name.AddressOf()); Warning(msg, errNode); } else { asCString msg; msg.Format(TXT_INHERITED_PRIVATE_PROP_ACCESS_s, name.AddressOf()); Error(msg, errNode); } } if( !objType ) { // The object pointer is located at stack position 0 // This is only done when accessing through the implicit this pointer ctx->bc.InstrSHORT(asBC_PSF, 0); ctx->type.SetVariable(dt, 0, false); ctx->type.dataType.MakeReference(true); Dereference(ctx, true); } // TODO: This is the same as what is in CompileExpressionPostOp // Put the offset on the stack ctx->bc.InstrSHORT_DW(asBC_ADDSi, (short)prop->byteOffset, engine->GetTypeIdFromDataType(dt)); if( prop->type.IsReference() ) ctx->bc.Instr(asBC_RDSPtr); // Reference to primitive must be stored in the temp register if( prop->type.IsPrimitive() ) { // TODO: runtime optimize: The ADD offset command should store the reference in the register directly ctx->bc.Instr(asBC_PopRPtr); } // Set the new type (keeping info about temp variable) ctx->type.dataType = prop->type; ctx->type.dataType.MakeReference(true); ctx->type.isVariable = false; ctx->type.isLValue = true; if( ctx->type.dataType.IsObject() && !ctx->type.dataType.IsObjectHandle() ) { // Objects that are members are not references ctx->type.dataType.MakeReference(false); // Objects that are members but not handles are safe as long as the parent object is safe if (!objType || ctx->type.isHandleSafe) ctx->type.isHandleSafe = true; } else if (ctx->type.dataType.IsObjectHandle()) { // Objects accessed through handles cannot be considered safe // as the handle can be cleared at any time ctx->type.isHandleSafe = false; } // If the object reference is const, the property will also be const ctx->type.dataType.MakeReadOnly(outFunc->IsReadOnly()); found = true; } else if( outFunc->objectType ) { // If it is not a property, it may still be the name of a method which can be used to create delegates asCObjectType *ot = outFunc->objectType; asCScriptFunction *func = 0; for( asUINT n = 0; n < ot->methods.GetLength(); n++ ) { asCScriptFunction *f = engine->scriptFunctions[ot->methods[n]]; if( f->name == name && (builder->module->accessMask & f->accessMask) ) { func = f; break; } } if( func ) { // An object method was found. Keep the name of the method in the expression, but // don't actually modify the bytecode at this point since it is not yet known what // the method will be used for, or even what overloaded method should be used. ctx->methodName = name; // Place the object pointer on the stack, as if the expression was this.func if( !objType ) { // The object pointer is located at stack position 0 // This is only done when accessing through the implicit this pointer ctx->bc.InstrSHORT(asBC_PSF, 0); ctx->type.SetVariable(asCDataType::CreateType(outFunc->objectType, false), 0, false); ctx->type.dataType.MakeReference(true); Dereference(ctx, true); } found = true; } } } } // Recursively search parent namespaces for global entities asCString currScope = scope; // Get the namespace for this scope. This may return null if the scope is an enum asSNameSpace *ns = DetermineNameSpace(currScope); if( ns && currScope != "::" ) currScope = ns->name; while( !found && !noGlobal && !objType ) { // Is it a global property? if( !found && ns ) { // See if there are any matching global property accessors asCExprContext access(engine); int r = 0; if( errNode->next && errNode->next->tokenType == ttOpenBracket ) { // This is an index access, check if there is a property accessor that takes an index arg asCExprContext dummyArg(engine); r = FindPropertyAccessor(name, &access, &dummyArg, errNode, ns); } if( r == 0 ) { // Normal property access r = FindPropertyAccessor(name, &access, errNode, ns); } if( r < 0 ) return -1; if( access.property_get || access.property_set ) { // Prepare the bytecode for the function call MergeExprBytecodeAndType(ctx, &access); found = true; } // See if there is any matching global property if( !found ) { bool isCompiled = true; bool isPureConstant = false; bool isAppProp = false; asQWORD constantValue = 0; asCGlobalProperty *prop = builder->GetGlobalProperty(name.AddressOf(), ns, &isCompiled, &isPureConstant, &constantValue, &isAppProp); if( prop ) { found = true; // Verify that the global property has been compiled already if( isCompiled ) { if( ctx->type.dataType.GetTypeInfo() && (ctx->type.dataType.GetTypeInfo()->flags & asOBJ_IMPLICIT_HANDLE) ) { ctx->type.dataType.MakeHandle(true); ctx->type.isExplicitHandle = true; } // If the global property is a pure constant // we can allow the compiler to optimize it. Pure // constants are global constant variables that were // initialized by literal constants. if (isPureConstant) ctx->type.SetConstantData(prop->type, constantValue); else { // A shared type must not access global vars, unless they // too are shared, e.g. application registered vars if( outFunc->IsShared() ) { if( !isAppProp ) { asCString str; str.Format(TXT_SHARED_CANNOT_ACCESS_NON_SHARED_VAR_s, prop->name.AddressOf()); Error(str, errNode); // Allow the compilation to continue to catch other problems } } ctx->type.Set(prop->type); ctx->type.isLValue = true; if( ctx->type.dataType.IsPrimitive() ) { // Load the address of the variable into the register ctx->bc.InstrPTR(asBC_LDG, prop->GetAddressOfValue()); ctx->type.dataType.MakeReference(true); } else { // Push the address of the variable on the stack ctx->bc.InstrPTR(asBC_PGA, prop->GetAddressOfValue()); // If the object is a value type or a non-handle variable to a reference type, // then we must validate the existance as it could potentially be accessed // before it is initialized. // This check is not needed for application registered properties, since they // are guaranteed to be valid by the application itself. if( !isAppProp && ((ctx->type.dataType.GetTypeInfo()->flags & asOBJ_VALUE) || !ctx->type.dataType.IsObjectHandle()) ) { ctx->bc.Instr(asBC_ChkRefS); } // If the address pushed on the stack is to a value type or an object // handle, then mark the expression as a reference. Addresses to a reference // type aren't marked as references to get correct behaviour if( (ctx->type.dataType.GetTypeInfo()->flags & asOBJ_VALUE) || ctx->type.dataType.IsObjectHandle() ) { ctx->type.dataType.MakeReference(true); } else { asASSERT( (ctx->type.dataType.GetTypeInfo()->flags & asOBJ_REF) && !ctx->type.dataType.IsObjectHandle() ); // It's necessary to dereference the pointer so the pointer on the stack will point to the actual object ctx->bc.Instr(asBC_RDSPtr); } } } } else { asCString str; str.Format(TXT_UNINITIALIZED_GLOBAL_VAR_s, prop->name.AddressOf()); Error(str, errNode); return -1; } } } } // Is it the name of a global function? if( !noFunction && !found && ns ) { asCArray funcs; builder->GetFunctionDescriptions(name.AddressOf(), funcs, ns); if( funcs.GetLength() > 0 ) { found = true; // Defer the evaluation of which function until it is actually used // Store the namespace and name of the function for later ctx->type.SetUndefinedFuncHandle(engine); ctx->methodName = ns ? ns->name + "::" + name : name; } } // Is it an enum value? if( !found ) { // The enum type may be declared in a namespace too asCTypeInfo *scopeType = 0; if( currScope != "" && currScope != "::" ) { builder->GetNameSpaceByString(currScope, outFunc->objectType ? outFunc->objectType->nameSpace : outFunc->nameSpace, errNode, script, &scopeType, false); if (CastToEnumType(scopeType) == 0) scopeType = 0; } asDWORD value = 0; asCDataType dt; if( scopeType && builder->GetEnumValueFromType(CastToEnumType(scopeType), name.AddressOf(), dt, value) ) { // scoped enum value found found = true; } else if( !engine->ep.requireEnumScope ) { // Look for the enum value without explicitly informing the enum type asSNameSpace *nsEnum = DetermineNameSpace(currScope); int e = 0; if(nsEnum) e = builder->GetEnumValue(name.AddressOf(), dt, value, nsEnum); if( e ) { found = true; if( e == 2 ) { // Ambiguous enum value: Save the name for resolution later. // The ambiguity could be resolved now, but I hesitate // to store too much information in the context. ctx->enumValue = name.AddressOf(); // We cannot set a dummy value because it will pass through // cleanly as an integer. ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttIdentifier, true), 0); return 0; } } } if( found ) { // Even if the enum type is not shared, and we're compiling a shared object, // the use of the values are still allowed, since they are treated as constants. // an enum value was resolved ctx->type.SetConstantDW(dt, value); } else { // If nothing was found because the scope doesn't match a namespace or an enum // then this should be reported as an error and the search interrupted if( !ns && !scopeType ) { ctx->type.SetDummy(); asCString str; str.Format(TXT_UNKNOWN_SCOPE_s, scope.AddressOf()); Error(str, errNode); return -1; } } } if( !found ) { if( currScope == "" || currScope == "::" ) break; // Move up to parent namespace int pos = currScope.FindLast("::"); if( pos >= 0 ) currScope = currScope.SubString(0, pos); else currScope = "::"; if( ns ) ns = engine->GetParentNameSpace(ns); } } // The name doesn't match any variable if( !found ) { // Give dummy value ctx->type.SetDummy(); if( !isOptional ) { // Prepend the scope to the name for the error message asCString ename; if( scope != "" && scope != "::" ) ename = scope + "::"; else ename = scope; ename += name; asCString str; str.Format(TXT_s_NOT_DECLARED, ename.AddressOf()); Error(str, errNode); // Declare the variable now so that it will not be reported again variables->DeclareVariable(name.AddressOf(), asCDataType::CreatePrimitive(ttInt, false), 0x7FFF, true); // Mark the variable as initialized so that the user will not be bother by it again v = variables->GetVariable(name.AddressOf()); asASSERT(v); if( v ) v->isInitialized = true; } // Return -1 to signal that the variable wasn't found return -1; } return 0; } int asCCompiler::CompileExpressionValue(asCScriptNode *node, asCExprContext *ctx) { // Shouldn't receive any byte code asASSERT(ctx->bc.GetLastInstr() == -1); asCScriptNode *vnode = node->firstChild; ctx->exprNode = vnode; if( vnode->nodeType == snVariableAccess ) { // Determine the scope resolution of the variable asCString scope = builder->GetScopeFromNode(vnode->firstChild, script, &vnode); // Determine the name of the variable asASSERT(vnode->nodeType == snIdentifier ); asCString name(&script->code[vnode->tokenPos], vnode->tokenLength); return CompileVariableAccess(name, scope, ctx, node); } else if( vnode->nodeType == snConstant ) { if( vnode->tokenType == ttIntConstant ) { asCString value(&script->code[vnode->tokenPos], vnode->tokenLength); bool overflow = false; asQWORD val = asStringScanUInt64(value.AddressOf(), 10, 0, &overflow); // Is the number bigger than a 64bit word? if (overflow) { Error(TXT_VALUE_TOO_LARGE_FOR_TYPE, vnode); // Set the value to zero to avoid further warnings val = 0; } // Do we need 64 bits? // If the 31st bit is set we'll treat the value as a signed 64bit number to avoid // incorrect warnings about changing signs if the value is assigned to a 64bit variable if( val>>31 ) { // Only if the value uses the last bit of a 64bit word do we consider the number unsigned if( val>>63 ) ctx->type.SetConstantQW(asCDataType::CreatePrimitive(ttUInt64, true), val); else ctx->type.SetConstantQW(asCDataType::CreatePrimitive(ttInt64, true), val); } else ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttInt, true), asDWORD(val)); } else if( vnode->tokenType == ttBitsConstant ) { asCString value(&script->code[vnode->tokenPos], vnode->tokenLength); // Let the function determine the radix from the prefix 0x = 16, 0d = 10, 0o = 8, or 0b = 2 bool overflow = false; asQWORD val = asStringScanUInt64(value.AddressOf(), 0, 0, &overflow); // Is the number bigger than a 64bit word? if (overflow) { Error(TXT_VALUE_TOO_LARGE_FOR_TYPE, vnode); // Set the value to zero to avoid further warnings val = 0; } // Do we need 64 bits? if( val>>32 ) ctx->type.SetConstantQW(asCDataType::CreatePrimitive(ttUInt64, true), val); else ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttUInt, true), asDWORD(val)); } else if( vnode->tokenType == ttFloatConstant ) { asCString value(&script->code[vnode->tokenPos], vnode->tokenLength); // TODO: Check for overflow size_t numScanned; float v = float(asStringScanDouble(value.AddressOf(), &numScanned)); ctx->type.SetConstantF(asCDataType::CreatePrimitive(ttFloat, true), v); #ifndef AS_USE_DOUBLE_AS_FLOAT // Don't check this if we have double as float, because then the whole token would be scanned (i.e. no f suffix) asASSERT(numScanned == vnode->tokenLength - 1); #endif } else if( vnode->tokenType == ttDoubleConstant ) { asCString value(&script->code[vnode->tokenPos], vnode->tokenLength); // TODO: Check for overflow size_t numScanned; double v = asStringScanDouble(value.AddressOf(), &numScanned); ctx->type.SetConstantD(asCDataType::CreatePrimitive(ttDouble, true), v); asASSERT(numScanned == vnode->tokenLength); } else if( vnode->tokenType == ttTrue || vnode->tokenType == ttFalse ) { #if AS_SIZEOF_BOOL == 1 ctx->type.SetConstantB(asCDataType::CreatePrimitive(ttBool, true), vnode->tokenType == ttTrue ? VALUE_OF_BOOLEAN_TRUE : 0); #else ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttBool, true), vnode->tokenType == ttTrue ? VALUE_OF_BOOLEAN_TRUE : 0); #endif } else if( vnode->tokenType == ttStringConstant || vnode->tokenType == ttMultilineStringConstant || vnode->tokenType == ttHeredocStringConstant ) { asCString str; asCScriptNode *snode = vnode->firstChild; if( script->code[snode->tokenPos] == '\'' && engine->ep.useCharacterLiterals ) { // Treat the single quoted string as a single character literal str.Assign(&script->code[snode->tokenPos+1], snode->tokenLength-2); asDWORD val = 0; if( str.GetLength() && (asBYTE)str[0] > 127 && engine->ep.scanner == 1 ) { // This is the start of a UTF8 encoded character. We need to decode it val = asStringDecodeUTF8(str.AddressOf(), 0); if( val == (asDWORD)-1 ) Error(TXT_INVALID_CHAR_LITERAL, vnode); } else { val = ProcessStringConstant(str, snode); if( val == (asDWORD)-1 ) Error(TXT_INVALID_CHAR_LITERAL, vnode); } ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttUInt, true), val); } else { // Process the string constants while( snode ) { asCString cat; if( snode->tokenType == ttStringConstant ) { cat.Assign(&script->code[snode->tokenPos+1], snode->tokenLength-2); ProcessStringConstant(cat, snode); } else if( snode->tokenType == ttMultilineStringConstant ) { if( !engine->ep.allowMultilineStrings ) Error(TXT_MULTILINE_STRINGS_NOT_ALLOWED, snode); cat.Assign(&script->code[snode->tokenPos+1], snode->tokenLength-2); ProcessStringConstant(cat, snode); } else if( snode->tokenType == ttHeredocStringConstant ) { cat.Assign(&script->code[snode->tokenPos+3], snode->tokenLength-6); ProcessHeredocStringConstant(cat, snode); } str += cat; snode = snode->next; } // Call the string factory function to create a string object if(engine->stringFactory == 0 ) { // Error Error(TXT_STRINGS_NOT_RECOGNIZED, vnode); // Give dummy value ctx->type.SetDummy(); return -1; } else { void *strPtr = const_cast(engine->stringFactory->GetStringConstant(str.AddressOf(), (asUINT)str.GetLength())); if (strPtr == 0) { // TODO: A better message is needed Error(TXT_NULL_POINTER_ACCESS, vnode); ctx->type.SetDummy(); return -1; } // Keep the pointer in the list for clean up at exit usedStringConstants.PushLast(strPtr); // Push the pointer on the stack. The string factory already guarantees that the // string object is valid throughout the lifetime of the script so no need to add // reference count or make local copy. ctx->bc.InstrPTR(asBC_PGA, strPtr); ctx->type.Set(engine->stringType); // Mark the string as literal constant so the compiler knows it is allowed // to treat it differently than an ordinary constant string variable ctx->type.isConstant = true; } } } else if( vnode->tokenType == ttNull ) { ctx->bc.Instr(asBC_PshNull); ctx->type.SetNullConstant(); } else asASSERT(false); } else if( vnode->nodeType == snFunctionCall ) { // Determine the scope resolution asCString scope = builder->GetScopeFromNode(vnode->firstChild, script); return CompileFunctionCall(vnode, ctx, 0, false, scope); } else if( vnode->nodeType == snConstructCall ) { return CompileConstructCall(vnode, ctx); } else if( vnode->nodeType == snAssignment ) { asCExprContext e(engine); int r = CompileAssignment(vnode, &e); if( r < 0 ) { ctx->type.SetDummy(); return r; } MergeExprBytecodeAndType(ctx, &e); } else if( vnode->nodeType == snCast ) { // Implement the cast operator return CompileConversion(vnode, ctx); } else if( vnode->nodeType == snUndefined && vnode->tokenType == ttVoid ) { // This is a void expression ctx->SetVoidExpression(); } else if( vnode->nodeType == snFunction ) { // This is an anonymous function // Defer the evaluation of the function until it known where it // will be used, which is where the signature will be defined ctx->SetLambda(vnode); } else asASSERT(false); return 0; } asUINT asCCompiler::ProcessStringConstant(asCString &cstr, asCScriptNode *node, bool processEscapeSequences) { int charLiteral = -1; // Process escape sequences asCArray str((int)cstr.GetLength()); for( asUINT n = 0; n < cstr.GetLength(); n++ ) { #ifdef AS_DOUBLEBYTE_CHARSET // Double-byte charset is only allowed for ASCII and not UTF16 encoded strings if( (cstr[n] & 0x80) && engine->ep.scanner == 0 && engine->ep.stringEncoding != 1 ) { // This is the lead character of a double byte character // include the trail character without checking it's value. str.PushLast(cstr[n]); n++; str.PushLast(cstr[n]); continue; } #endif asUINT val; if( processEscapeSequences && cstr[n] == '\\' ) { ++n; if( n == cstr.GetLength() ) { if( charLiteral == -1 ) charLiteral = 0; return charLiteral; } // Hexadecimal escape sequences will allow the construction of // invalid unicode sequences, but the string should also work as // a bytearray so we must support this. The code for working with // unicode text must be prepared to handle invalid unicode sequences if( cstr[n] == 'x' || cstr[n] == 'X' ) { ++n; if( n == cstr.GetLength() ) break; val = 0; int c = engine->ep.stringEncoding == 1 ? 4 : 2; for( ; c > 0 && n < cstr.GetLength(); c--, n++ ) { if( cstr[n] >= '0' && cstr[n] <= '9' ) val = val*16 + cstr[n] - '0'; else if( cstr[n] >= 'a' && cstr[n] <= 'f' ) val = val*16 + cstr[n] - 'a' + 10; else if( cstr[n] >= 'A' && cstr[n] <= 'F' ) val = val*16 + cstr[n] - 'A' + 10; else break; } // Rewind one, since the loop will increment it again n--; // Hexadecimal escape sequences produce exact value, even if it is not proper unicode chars if( engine->ep.stringEncoding == 0 ) { str.PushLast((asBYTE)val); } else { #ifndef AS_BIG_ENDIAN str.PushLast((asBYTE)val); str.PushLast((asBYTE)(val>>8)); #else str.PushLast((asBYTE)(val>>8)); str.PushLast((asBYTE)val); #endif } if( charLiteral == -1 ) charLiteral = val; continue; } else if( cstr[n] == 'u' || cstr[n] == 'U' ) { // \u expects 4 hex digits // \U expects 8 hex digits bool expect2 = cstr[n] == 'u'; int c = expect2 ? 4 : 8; val = 0; for( ; c > 0; c-- ) { ++n; if( n == cstr.GetLength() ) break; if( cstr[n] >= '0' && cstr[n] <= '9' ) val = val*16 + cstr[n] - '0'; else if( cstr[n] >= 'a' && cstr[n] <= 'f' ) val = val*16 + cstr[n] - 'a' + 10; else if( cstr[n] >= 'A' && cstr[n] <= 'F' ) val = val*16 + cstr[n] - 'A' + 10; else break; } if( c != 0 ) { // Give warning about invalid code point // TODO: Need code position for warning asCString msg; msg.Format(TXT_INVALID_UNICODE_FORMAT_EXPECTED_d, expect2 ? 4 : 8); Warning(msg, node); continue; } } else { if( cstr[n] == '"' ) val = '"'; else if( cstr[n] == '\'' ) val = '\''; else if( cstr[n] == 'n' ) val = '\n'; else if( cstr[n] == 'r' ) val = '\r'; else if( cstr[n] == 't' ) val = '\t'; else if( cstr[n] == '0' ) val = '\0'; else if( cstr[n] == '\\' ) val = '\\'; else { // Invalid escape sequence Warning(TXT_INVALID_ESCAPE_SEQUENCE, node); continue; } } } else { if( engine->ep.scanner == 1 && (cstr[n] & 0x80) ) { unsigned int len; val = asStringDecodeUTF8(&cstr[n], &len); if( val == 0xFFFFFFFF ) { // Incorrect UTF8 encoding. Use only the first byte // TODO: Need code position for warning Warning(TXT_INVALID_UNICODE_SEQUENCE_IN_SRC, node); val = (unsigned char)cstr[n]; } else n += len-1; } else val = (unsigned char)cstr[n]; } // Add the character to the final string char encodedValue[5]; int len; if( engine->ep.scanner == 1 && engine->ep.stringEncoding == 0 ) { // Convert to UTF8 encoded len = asStringEncodeUTF8(val, encodedValue); } else if( engine->ep.stringEncoding == 1 ) { // Convert to 16bit wide character string (even if the script is scanned as ASCII) len = asStringEncodeUTF16(val, encodedValue); } else { // Do not convert ASCII characters encodedValue[0] = (asBYTE)val; len = 1; } if( len < 0 ) { // Give warning about invalid code point // TODO: Need code position for warning Warning(TXT_INVALID_UNICODE_VALUE, node); } else { // Add the encoded value to the final string str.Concatenate(encodedValue, len); if( charLiteral == -1 ) charLiteral = val; } } cstr.Assign(str.AddressOf(), str.GetLength()); return charLiteral; } void asCCompiler::ProcessHeredocStringConstant(asCString &str, asCScriptNode *node) { // Remove first line if it only contains whitespace bool isMultiline = false; int start; for( start = 0; start < (int)str.GetLength(); start++ ) { if( str[start] == '\n' ) { isMultiline = true; // Remove the linebreak as well start++; break; } if( str[start] != ' ' && str[start] != '\t' && str[start] != '\r' ) { // Don't remove anything start = 0; break; } } // Remove the line after the last line break if it only contains whitespaces int end; for( end = (int)str.GetLength() - 1; end >= 0; end-- ) { if( str[end] == '\n' ) { // Don't remove the last line break end++; break; } if( str[end] != ' ' && str[end] != '\t' && str[end] != '\r' ) { // Don't remove anything end = (int)str.GetLength(); break; } } if( end < 0 ) end = 0; asCString tmp; if (end > start || engine->ep.heredocTrimMode != 2 ) { // if heredocTrimMode == 0 the string shouldn't be trimmed // if heredocTrimMode == 1 the string should only be trimmed if it is multiline // if heredocTrimMode == 2 the string should always be trimmed if (engine->ep.heredocTrimMode == 2 || (isMultiline && engine->ep.heredocTrimMode == 1)) tmp.Assign(&str[start], end - start); else tmp = str; } ProcessStringConstant(tmp, node, false); str = tmp; } int asCCompiler::CompileConversion(asCScriptNode *node, asCExprContext *ctx) { asCExprContext expr(engine); asCDataType to; bool anyErrors = false; EImplicitConv convType; if( node->nodeType == snConstructCall || node->nodeType == snFunctionCall ) { convType = asIC_EXPLICIT_VAL_CAST; // Verify that there is only one argument if( node->lastChild->firstChild == 0 || node->lastChild->firstChild != node->lastChild->lastChild ) { Error(TXT_ONLY_ONE_ARGUMENT_IN_CAST, node->lastChild); expr.type.SetDummy(); anyErrors = true; } else if (node->lastChild->firstChild && node->lastChild->firstChild->nodeType == snNamedArgument) { Error(TXT_INVALID_USE_OF_NAMED_ARGS, node->lastChild); expr.type.SetDummy(); anyErrors = true; } else { // Compile the expression int r = CompileAssignment(node->lastChild->firstChild, &expr); if( r < 0 ) anyErrors = true; } // Determine the requested type to = builder->CreateDataTypeFromNode(node->firstChild, script, outFunc->nameSpace); to.MakeReadOnly(true); // Default to const asASSERT(to.IsPrimitive()); } else { convType = asIC_EXPLICIT_REF_CAST; // Compile the expression int r = CompileAssignment(node->lastChild, &expr); if( r < 0 ) anyErrors = true; // Determine the requested type to = builder->CreateDataTypeFromNode(node->firstChild, script, outFunc->nameSpace); // If the type support object handles, then use it if( to.SupportHandles() ) { to.MakeHandle(true); if( expr.type.dataType.IsObjectConst() ) to.MakeHandleToConst(true); } else if( !to.IsObjectHandle() ) { // The cast operator can only be used for reference casts Error(TXT_ILLEGAL_TARGET_TYPE_FOR_REF_CAST, node->firstChild); anyErrors = true; } } // Do not allow casting to non shared type if we're compiling a shared method if( outFunc->IsShared() && to.GetTypeInfo() && !to.GetTypeInfo()->IsShared() ) { asCString msg; msg.Format(TXT_SHARED_CANNOT_USE_NON_SHARED_TYPE_s, to.GetTypeInfo()->name.AddressOf()); Error(msg, node); anyErrors = true; } if( anyErrors ) { // Assume that the error can be fixed and allow the compilation to continue ctx->type.Set(to); return -1; } ProcessPropertyGetAccessor(&expr, node); // Don't allow any operators on expressions that take address of class method if( expr.IsClassMethod() ) { Error(TXT_INVALID_OP_ON_METHOD, node); return -1; } // We don't want a reference for conversion casts if( convType == asIC_EXPLICIT_VAL_CAST && expr.type.dataType.IsReference() ) { if( expr.type.dataType.IsObject() ) Dereference(&expr, true); else ConvertToVariable(&expr); } ImplicitConversion(&expr, to, node, convType); IsVariableInitialized(&expr.type, node); // If no type conversion is really tried ignore it if( to == expr.type.dataType ) { // This will keep information about constant type MergeExprBytecode(ctx, &expr); ctx->type = expr.type; return 0; } if( to.IsEqualExceptRefAndConst(expr.type.dataType) && to.IsPrimitive() ) { MergeExprBytecode(ctx, &expr); ctx->type = expr.type; ctx->type.dataType.MakeReadOnly(true); return 0; } // The implicit conversion already does most of the conversions permitted, // here we'll only treat those conversions that require an explicit cast. bool conversionOK = false; if( !expr.type.isConstant && expr.type.dataType != asCDataType::CreatePrimitive(ttVoid, false) ) { if( !expr.type.dataType.IsObject() ) ConvertToTempVariable(&expr); if( to.IsObjectHandle() && expr.type.dataType.IsObjectHandle() && !(!to.IsHandleToConst() && expr.type.dataType.IsHandleToConst()) ) { conversionOK = CompileRefCast(&expr, to, true, node); MergeExprBytecode(ctx, &expr); ctx->type = expr.type; } } if( conversionOK ) return 0; // Conversion not available ctx->type.SetDummy(); asCString strTo, strFrom; strTo = to.Format(outFunc->nameSpace); strFrom = expr.type.dataType.Format(outFunc->nameSpace); asCString msg; msg.Format(TXT_NO_CONVERSION_s_TO_s, strFrom.AddressOf(), strTo.AddressOf()); Error(msg, node); return -1; } void asCCompiler::AfterFunctionCall(int funcID, asCArray &args, asCExprContext *ctx, bool deferAll) { // deferAll is set to true if for example the function returns a reference, since in // this case the function might be returning a reference to one of the arguments. asCScriptFunction *descr = builder->GetFunctionDescription(funcID); // Parameters that are sent by reference should be assigned // to the evaluated expression if it is an lvalue // Evaluate the arguments from last to first int n = (int)descr->parameterTypes.GetLength() - 1; for( ; n >= 0; n-- ) { // All &out arguments must be deferred, except if the argument is clean, in which case the actual reference was passed in to the function // If deferAll is set all objects passed by reference or handle must be deferred if( (descr->parameterTypes[n].IsReference() && (descr->inOutFlags[n] & asTM_OUTREF) && !args[n]->isCleanArg) || (descr->parameterTypes[n].IsObject() && deferAll && (descr->parameterTypes[n].IsReference() || descr->parameterTypes[n].IsObjectHandle())) ) { asASSERT( !(descr->parameterTypes[n].IsReference() && (descr->inOutFlags[n] == asTM_OUTREF) && !args[n]->isCleanArg) || args[n]->origExpr ); // For &inout, only store the argument if it is for a temporary variable if( engine->ep.allowUnsafeReferences || descr->inOutFlags[n] != asTM_INOUTREF || args[n]->type.isTemporary ) { // Store the argument for later processing asSDeferredParam outParam; outParam.argNode = args[n]->exprNode; outParam.argType = args[n]->type; outParam.argInOutFlags = descr->inOutFlags[n]; outParam.origExpr = args[n]->origExpr; ctx->deferredParams.PushLast(outParam); } } else { // Release the temporary variable now ReleaseTemporaryVariable(args[n]->type, &ctx->bc); } // Move the argument's deferred expressions over to the final expression for( asUINT m = 0; m < args[n]->deferredParams.GetLength(); m++ ) { ctx->deferredParams.PushLast(args[n]->deferredParams[m]); args[n]->deferredParams[m].origExpr = 0; } args[n]->deferredParams.SetLength(0); } } void asCCompiler::ProcessDeferredParams(asCExprContext *ctx) { if( isProcessingDeferredParams ) return; isProcessingDeferredParams = true; for( asUINT n = 0; n < ctx->deferredParams.GetLength(); n++ ) { asSDeferredParam outParam = ctx->deferredParams[n]; if( outParam.argInOutFlags < asTM_OUTREF ) // &in, or not reference { // Just release the variable ReleaseTemporaryVariable(outParam.argType, &ctx->bc); } else if( outParam.argInOutFlags == asTM_OUTREF ) { asCExprContext *expr = outParam.origExpr; outParam.origExpr = 0; if( outParam.argType.dataType.IsObjectHandle() ) { // Implicitly convert the value to a handle if( expr->type.dataType.IsObjectHandle() ) expr->type.isExplicitHandle = true; } // Verify that the expression result in a lvalue, or a property accessor if( IsLValue(expr->type) || expr->property_get || expr->property_set ) { asCExprContext rctx(engine); rctx.type = outParam.argType; if( rctx.type.dataType.IsPrimitive() ) rctx.type.dataType.MakeReference(false); else { rctx.bc.InstrSHORT(asBC_PSF, outParam.argType.stackOffset); rctx.type.dataType.MakeReference(IsVariableOnHeap(outParam.argType.stackOffset)); if( expr->type.isExplicitHandle ) rctx.type.isExplicitHandle = true; } asCExprContext o(engine); DoAssignment(&o, expr, &rctx, outParam.argNode, outParam.argNode, ttAssignment, outParam.argNode); if( !o.type.dataType.IsPrimitive() ) o.bc.Instr(asBC_PopPtr); // The assignment may itself have resulted in a new temporary variable, e.g. if // the opAssign returns a non-reference. We must release this temporary variable // since it won't be used ReleaseTemporaryVariable(o.type, &o.bc); MergeExprBytecode(ctx, &o); } else { // We must still evaluate the expression MergeExprBytecode(ctx, expr); if( !expr->IsVoidExpression() && (!expr->type.isConstant || expr->type.IsNullConstant()) ) ctx->bc.Instr(asBC_PopPtr); // Give an error, except if the argument is void, null or 0 which indicate the argument is explicitly to be ignored if( !expr->IsVoidExpression() && !expr->type.IsNullConstant() && !(expr->type.isConstant && expr->type.GetConstantData() == 0) ) Error(TXT_ARG_NOT_LVALUE, outParam.argNode); ReleaseTemporaryVariable(outParam.argType, &ctx->bc); } ReleaseTemporaryVariable(expr->type, &ctx->bc); // Delete the original expression context asDELETE(expr, asCExprContext); } else // &inout { if( outParam.argType.isTemporary ) ReleaseTemporaryVariable(outParam.argType, &ctx->bc); else if( !outParam.argType.isVariable ) { if( outParam.argType.dataType.IsObject() && ((outParam.argType.dataType.GetBehaviour()->addref && outParam.argType.dataType.GetBehaviour()->release) || (outParam.argType.dataType.GetTypeInfo()->flags & asOBJ_NOCOUNT)) ) { // Release the object handle that was taken to guarantee the reference ReleaseTemporaryVariable(outParam.argType, &ctx->bc); } } } } ctx->deferredParams.SetLength(0); isProcessingDeferredParams = false; } int asCCompiler::CompileConstructCall(asCScriptNode *node, asCExprContext *ctx) { // The first node is a datatype node asCString name; asCExprValue tempObj; bool onHeap = true; asCArray funcs; bool error = false; // It is possible that the name is really a constructor asCDataType dt; dt = builder->CreateDataTypeFromNode(node->firstChild, script, outFunc->nameSpace); if( dt.IsPrimitive() ) { // This is a cast to a primitive type return CompileConversion(node, ctx); } if( dt.GetTypeInfo() && (dt.GetTypeInfo()->flags & asOBJ_IMPLICIT_HANDLE) ) { // Types declared as implicit handle must not attempt to construct a handle dt.MakeHandle(false); } // Don't accept syntax like object@(expr) if( dt.IsObjectHandle() ) { asCString str; str.Format(TXT_CANT_CONSTRUCT_s_USE_REF_CAST, dt.Format(outFunc->nameSpace).AddressOf()); Error(str, node); ctx->type.SetDummy(); return -1; } // Make sure the desired type can actually be instantiated // Delegates are allowed to be created through construct calls, // even though they cannot be instantiated as variables if( !dt.CanBeInstantiated() && !dt.IsFuncdef() ) { asCString str; if( dt.IsAbstractClass() ) str.Format(TXT_ABSTRACT_CLASS_s_CANNOT_BE_INSTANTIATED, dt.Format(outFunc->nameSpace).AddressOf()); else if( dt.IsInterface() ) str.Format(TXT_INTERFACE_s_CANNOT_BE_INSTANTIATED, dt.Format(outFunc->nameSpace).AddressOf()); else // TODO: Improve error message to explain why str.Format(TXT_DATA_TYPE_CANT_BE_s, dt.Format(outFunc->nameSpace).AddressOf()); Error(str, node); ctx->type.SetDummy(); return -1; } // Do not allow constructing non-shared types in shared functions if( outFunc->IsShared() && dt.GetTypeInfo() && !dt.GetTypeInfo()->IsShared() ) { asCString msg; msg.Format(TXT_SHARED_CANNOT_USE_NON_SHARED_TYPE_s, dt.GetTypeInfo()->name.AddressOf()); Error(msg, node); return -1; } // Compile the arguments asCArray args; asCArray namedArgs; asCArray temporaryVariables; if( CompileArgumentList(node->lastChild, args, namedArgs) >= 0 ) { // Check for a value cast behaviour if( args.GetLength() == 1 && args[0]->type.dataType.GetTypeInfo() ) { asCExprContext conv(engine); conv.type = args[0]->type; asUINT cost = ImplicitConversion(&conv, dt, node->lastChild, asIC_EXPLICIT_VAL_CAST, false); // Don't use this if the cost is 0 because it would mean that nothing // is done and the script wants a new value to be constructed if( conv.type.dataType.IsEqualExceptRef(dt) && cost > 0 ) { // Make sure the result is a reference, just as if to a local variable dt.MakeReference(true); // Make sure any property accessor is already evaluated ProcessPropertyGetAccessor(args[0], args[0]->exprNode); ImplicitConversion(args[0], dt, node->lastChild, asIC_EXPLICIT_VAL_CAST); ctx->bc.AddCode(&args[0]->bc); ctx->type = args[0]->type; asDELETE(args[0], asCExprContext); return 0; } } // Check for possible constructor/factory name = dt.Format(outFunc->nameSpace); asSTypeBehaviour *beh = dt.GetBehaviour(); if( !(dt.GetTypeInfo()->flags & asOBJ_REF) && !dt.IsFuncdef() ) { funcs = beh->constructors; // Value types and script types are allocated through the constructor tempObj.dataType = dt; tempObj.stackOffset = (short)AllocateVariable(dt, true); tempObj.dataType.MakeReference(true); tempObj.isTemporary = true; tempObj.isVariable = true; onHeap = IsVariableOnHeap(tempObj.stackOffset); // Push the address of the object on the stack if( onHeap ) ctx->bc.InstrSHORT(asBC_VAR, tempObj.stackOffset); } else if( beh ) funcs = beh->factories; // Special case: Allow calling func(void) with a void expression. if( args.GetLength() == 1 && args[0]->type.dataType == asCDataType::CreatePrimitive(ttVoid, false) ) { // Evaluate the expression before the function call MergeExprBytecode(ctx, args[0]); asDELETE(args[0], asCExprContext); args.SetLength(0); } // Special case: If this is an object constructor and there are no arguments use the default constructor. // If none has been registered, just allocate the variable and push it on the stack. if( args.GetLength() == 0 ) { beh = tempObj.dataType.GetBehaviour(); if( beh && beh->construct == 0 && !(dt.GetTypeInfo()->flags & asOBJ_REF) ) { // Call the default constructor ctx->type = tempObj; if( onHeap ) { asASSERT(ctx->bc.GetLastInstr() == asBC_VAR); ctx->bc.RemoveLastInstr(); } CallDefaultConstructor(tempObj.dataType, tempObj.stackOffset, IsVariableOnHeap(tempObj.stackOffset), &ctx->bc, node); // Push the reference on the stack ctx->bc.InstrSHORT(asBC_PSF, tempObj.stackOffset); return 0; } } // Special case: If this is a construction of a delegate and the expression names an object method if( dt.IsFuncdef() && args.GetLength() == 1 && args[0]->methodName != "" ) { // TODO: delegate: It is possible that the argument returns a function pointer already, in which // case no object delegate will be created, but instead a delegate for a function pointer // In theory a simple cast would be good in this case, but this is a construct call so it // is expected that a new object is created. dt.MakeHandle(true); ctx->type.Set(dt); // The delegate must be able to hold on to a reference to the object if( !args[0]->type.dataType.SupportHandles() ) { Error(TXT_CANNOT_CREATE_DELEGATE_FOR_NOREF_TYPES, node); error = true; } else { // Filter the available object methods to find the one that matches the func def asCObjectType *type = CastToObjectType(args[0]->type.dataType.GetTypeInfo()); asCScriptFunction *bestMethod = 0; for( asUINT n = 0; n < type->methods.GetLength(); n++ ) { asCScriptFunction *func = engine->scriptFunctions[type->methods[n]]; if( func->name != args[0]->methodName ) continue; // If the expression is for a const object, then only const methods should be accepted if( args[0]->type.dataType.IsReadOnly() && !func->IsReadOnly() ) continue; if( func->IsSignatureExceptNameAndObjectTypeEqual(CastToFuncdefType(dt.GetTypeInfo())->funcdef) ) { bestMethod = func; // If the expression is non-const the non-const overloaded method has priority if( args[0]->type.dataType.IsReadOnly() == func->IsReadOnly() ) break; } } if( bestMethod ) { // The object pointer is already on the stack MergeExprBytecode(ctx, args[0]); // Push the function pointer as an additional argument ctx->bc.InstrPTR(asBC_FuncPtr, bestMethod); // Call the factory function for the delegate asCArray delegateFuncs; builder->GetFunctionDescriptions(DELEGATE_FACTORY, delegateFuncs, engine->nameSpaces[0]); asASSERT(delegateFuncs.GetLength() == 1 ); ctx->bc.Call(asBC_CALLSYS , delegateFuncs[0], 2*AS_PTR_SIZE); // Store the returned delegate in a temporary variable int returnOffset = AllocateVariable(dt, true, false); dt.MakeReference(true); ctx->type.SetVariable(dt, returnOffset, true); ctx->bc.InstrSHORT(asBC_STOREOBJ, (short)returnOffset); // Push a reference to the temporary variable on the stack ctx->bc.InstrSHORT(asBC_PSF, (short)returnOffset); // Clean up arguments ReleaseTemporaryVariable(args[0]->type, &ctx->bc); } else { asCString msg; msg.Format(TXT_NO_MATCHING_SIGNATURES_TO_s, CastToFuncdefType(dt.GetTypeInfo())->funcdef->GetDeclaration()); Error(msg.AddressOf(), node); error = true; } } // Clean-up arg asDELETE(args[0], asCExprContext); return error ? -1 : 0; } MatchFunctions(funcs, args, node, name.AddressOf(), &namedArgs, 0, false); if( funcs.GetLength() != 1 ) { // The error was reported by MatchFunctions() error = true; // Dummy value ctx->type.SetDummy(); } else { // TODO: Clean up: Merge this with MakeFunctionCall // Add the default values for arguments not explicitly supplied int r = CompileDefaultAndNamedArgs(node, args, funcs[0], CastToObjectType(dt.GetTypeInfo()), &namedArgs); if( r == asSUCCESS ) { asCByteCode objBC(engine); PrepareFunctionCall(funcs[0], &ctx->bc, args); MoveArgsToStack(funcs[0], &ctx->bc, args, false); if( !(dt.GetTypeInfo()->flags & asOBJ_REF) ) { // If the object is allocated on the stack, then call the constructor as a normal function if( onHeap ) { int offset = 0; asCScriptFunction *descr = builder->GetFunctionDescription(funcs[0]); for( asUINT n = 0; n < args.GetLength(); n++ ) offset += descr->parameterTypes[n].GetSizeOnStackDWords(); ctx->bc.InstrWORD(asBC_GETREF, (asWORD)offset); } else ctx->bc.InstrSHORT(asBC_PSF, tempObj.stackOffset); PerformFunctionCall(funcs[0], ctx, onHeap, &args, CastToObjectType(tempObj.dataType.GetTypeInfo())); // Add tag that the object has been initialized ctx->bc.ObjInfo(tempObj.stackOffset, asOBJ_INIT); // The constructor doesn't return anything, // so we have to manually inform the type of // the return value ctx->type = tempObj; if( !onHeap ) ctx->type.dataType.MakeReference(false); // Push the address of the object on the stack again ctx->bc.InstrSHORT(asBC_PSF, tempObj.stackOffset); } else { // Call the factory to create the reference type PerformFunctionCall(funcs[0], ctx, false, &args); } } else error = true; } } else { // Failed to compile the argument list, set the result to the dummy type ctx->type.SetDummy(); error = true; } // Cleanup for( asUINT n = 0; n < args.GetLength(); n++ ) if( args[n] ) { asDELETE(args[n], asCExprContext); } for( asUINT n = 0; n < namedArgs.GetLength(); n++ ) if( namedArgs[n].ctx ) { asDELETE(namedArgs[n].ctx, asCExprContext); } return error ? -1 : 0; } int asCCompiler::CompileFunctionCall(asCScriptNode *node, asCExprContext *ctx, asCObjectType *objectType, bool objIsConst, const asCString &scope) { asCExprValue tempObj; asCArray funcs; int localVar = -1; bool initializeMembers = false; asCExprContext funcExpr(engine); asCScriptNode *nm = node->lastChild->prev; asCString name(&script->code[nm->tokenPos], nm->tokenLength); // First check for a local variable as it would take precedence // Must not allow function names, nor global variables to be returned in this instance // If objectType is set then this is a post op expression and we shouldn't look for local variables if( objectType == 0 ) { localVar = CompileVariableAccess(name, scope, &funcExpr, node, true, true, true); if( localVar >= 0 && !(funcExpr.type.dataType.IsFuncdef() || funcExpr.type.dataType.IsObject()) && funcExpr.methodName == "" ) { // The variable is not a function or object with opCall asCString msg; msg.Format(TXT_NOT_A_FUNC_s_IS_TYPE_s, name.AddressOf(), funcExpr.type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(msg, node); return -1; } // If the name matches a method name, then reset the indicator that nothing was found if( funcExpr.methodName != "" ) localVar = -1; } if( localVar < 0 ) { // If this is an expression post op, or if a class method is // being compiled, then we should look for matching class methods if( objectType || (outFunc && outFunc->objectType && scope != "::") ) { // If we're compiling a constructor and the name of the function is super then // the constructor of the base class is being called. // super cannot be prefixed with a scope operator if( scope == "" && m_isConstructor && name == SUPER_TOKEN ) { // If the class is not derived from anyone else, calling super should give an error if( outFunc && outFunc->objectType->derivedFrom ) funcs = outFunc->objectType->derivedFrom->beh.constructors; // Must not allow calling base class' constructor multiple times if( continueLabels.GetLength() > 0 ) { // If a continue label is set we are in a loop Error(TXT_CANNOT_CALL_CONSTRUCTOR_IN_LOOPS, node); } else if( breakLabels.GetLength() > 0 ) { // TODO: inheritance: Should eventually allow constructors in switch statements // If a break label is set we are either in a loop or a switch statements Error(TXT_CANNOT_CALL_CONSTRUCTOR_IN_SWITCH, node); } else if( m_isConstructorCalled ) { Error(TXT_CANNOT_CALL_CONSTRUCTOR_TWICE, node); } m_isConstructorCalled = true; // We need to initialize the class members, but only after all the deferred arguments have been completed initializeMembers = true; } else { // The scope can be used to specify the base class builder->GetObjectMethodDescriptions(name.AddressOf(), objectType ? objectType : outFunc->objectType, funcs, objIsConst, scope, node, script); } // It is still possible that there is a class member of a function type or a type with opCall methods if( funcs.GetLength() == 0 ) { int r = CompileVariableAccess(name, scope, &funcExpr, node, true, true, true, objectType); if( r >= 0 && !(funcExpr.type.dataType.IsFuncdef() || funcExpr.type.dataType.IsObject()) && funcExpr.methodName == "" ) { // The variable is not a function asCString msg; msg.Format(TXT_NOT_A_FUNC_s_IS_TYPE_s, name.AddressOf(), funcExpr.type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(msg, node); return -1; } // If the name is an access property, make sure the original value isn't // dereferenced when calling the access property as part a dot post operator if( objectType && (funcExpr.property_get || funcExpr.property_set) && !ctx->type.dataType.IsReference() ) funcExpr.property_ref = false; } // If a class method is being called implicitly, then add the this pointer for the call if( funcs.GetLength() && !objectType ) { objectType = outFunc->objectType; asCDataType dt = asCDataType::CreateType(objectType, false); // The object pointer is located at stack position 0 ctx->bc.InstrSHORT(asBC_PSF, 0); ctx->type.SetVariable(dt, 0, false); ctx->type.dataType.MakeReference(true); Dereference(ctx, true); } } // If it is not a class method or member function pointer, // then look for global functions or global function pointers, // unless this is an expression post op, incase only member // functions are expected if( objectType == 0 && funcs.GetLength() == 0 && (!funcExpr.type.dataType.IsFuncdef() || funcExpr.type.dataType.IsObject()) ) { // The scope is used to define the namespace asSNameSpace *ns = DetermineNameSpace(scope); if( ns ) { // Search recursively in parent namespaces while( ns && funcs.GetLength() == 0 && !funcExpr.type.dataType.IsFuncdef() ) { builder->GetFunctionDescriptions(name.AddressOf(), funcs, ns); if( funcs.GetLength() == 0 ) { int r = CompileVariableAccess(name, scope, &funcExpr, node, true, true); if( r >= 0 && !(funcExpr.type.dataType.IsFuncdef() || funcExpr.type.dataType.IsObject()) && funcExpr.methodName == "" ) { // The variable is not a function asCString msg; msg.Format(TXT_NOT_A_FUNC_s_IS_TYPE_s, name.AddressOf(), funcExpr.type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(msg, node); return -1; } } ns = engine->GetParentNameSpace(ns); } } else { asCString msg; msg.Format(TXT_NAMESPACE_s_DOESNT_EXIST, scope.AddressOf()); Error(msg, node); return -1; } } } if( funcs.GetLength() == 0 ) { if( funcExpr.type.dataType.IsFuncdef() ) { funcs.PushLast(CastToFuncdefType(funcExpr.type.dataType.GetTypeInfo())->funcdef->id); } else if( funcExpr.type.dataType.IsObject() ) { // Keep information about temporary variables as deferred expression so it can be properly cleaned up after the call if( ctx->type.isTemporary ) { asASSERT( objectType ); asSDeferredParam deferred; deferred.origExpr = 0; deferred.argInOutFlags = asTM_INREF; deferred.argNode = 0; deferred.argType.SetVariable(ctx->type.dataType, ctx->type.stackOffset, true); ctx->deferredParams.PushLast(deferred); } if( funcExpr.property_get == 0 ) Dereference(ctx, true); // Add the bytecode for accessing the object on which opCall will be called MergeExprBytecodeAndType(ctx, &funcExpr); ProcessPropertyGetAccessor(ctx, node); Dereference(ctx, true); objectType = CastToObjectType(funcExpr.type.dataType.GetTypeInfo()); // Get the opCall methods from the object type if( funcExpr.type.dataType.IsObjectHandle() ) objIsConst = funcExpr.type.dataType.IsHandleToConst(); else objIsConst = funcExpr.type.dataType.IsReadOnly(); builder->GetObjectMethodDescriptions("opCall", CastToObjectType(funcExpr.type.dataType.GetTypeInfo()), funcs, objIsConst); } } // If at this point no functions have been identified, then this may be a construct call if (funcs.GetLength() == 0) { bool isValid = false; asCDataType dt = builder->CreateDataTypeFromNode(node->firstChild, script, outFunc->nameSpace, false, 0, false, &isValid); if (isValid) return CompileConstructCall(node, ctx); } // Compile the arguments asCArray args; asCArray namedArgs; bool isOK = true; if( CompileArgumentList(node->lastChild, args, namedArgs) >= 0 ) { // Special case: Allow calling func(void) with an expression that evaluates to no datatype, but isn't exactly 'void' if( args.GetLength() == 1 && args[0]->type.IsVoid() && !args[0]->IsVoidExpression() ) { // Evaluate the expression before the function call MergeExprBytecode(ctx, args[0]); asDELETE(args[0], asCExprContext); args.SetLength(0); } MatchFunctions(funcs, args, node, name.AddressOf(), &namedArgs, objectType, objIsConst, false, true, scope); if( funcs.GetLength() != 1 ) { // The error was reported by MatchFunctions() // Dummy value ctx->type.SetDummy(); isOK = false; } else { // Add the default values for arguments not explicitly supplied int r = CompileDefaultAndNamedArgs(node, args, funcs[0], objectType, &namedArgs); // TODO: funcdef: Do we have to make sure the handle is stored in a temporary variable, or // is it enough to make sure it is in a local variable? // For function pointer we must guarantee that the function is safe, i.e. // by first storing the function pointer in a local variable (if it isn't already in one) if( r == asSUCCESS ) { asCScriptFunction *func = builder->GetFunctionDescription(funcs[0]); if( func->funcType == asFUNC_FUNCDEF ) { if( objectType && funcExpr.property_get <= 0 ) { // Dereference the object pointer to access the member Dereference(ctx, true); } if( funcExpr.property_get > 0 ) { ProcessPropertyGetAccessor(&funcExpr, node); Dereference(&funcExpr, true); } else { Dereference(&funcExpr, true); ConvertToVariable(&funcExpr); } // The actual function should be called as if a global function objectType = 0; // The function call will be made directly from the local variable so the function pointer shouldn't be on the stack funcExpr.bc.Instr(asBC_PopPtr); asCExprValue tmp = ctx->type; MergeExprBytecodeAndType(ctx, &funcExpr); ReleaseTemporaryVariable(tmp, &ctx->bc); } MakeFunctionCall(ctx, funcs[0], objectType, args, node, false, 0, funcExpr.type.stackOffset); } else isOK = false; } } else { // Failed to compile the argument list, set the dummy type and continue compilation ctx->type.SetDummy(); isOK = false; } // Cleanup for( asUINT n = 0; n < args.GetLength(); n++ ) if( args[n] ) { asDELETE(args[n], asCExprContext); } for( asUINT n = 0; n < namedArgs.GetLength(); n++ ) if( namedArgs[n].ctx ) { asDELETE(namedArgs[n].ctx, asCExprContext); } if( initializeMembers ) { asASSERT( m_isConstructor ); // Need to initialize members here, as they may use the properties of the base class // If there are multiple paths that call super(), then there will also be multiple // locations with initializations of the members. It is not possible to consolidate // these in one place, as the expressions for the initialization are evaluated where // they are compiled, which means that they may access different variables depending // on the scope where super() is called. // Members that don't have an explicit initialization expression will be initialized // beginning of the constructor as they are guaranteed not to use at the any // members of the base class. CompileMemberInitialization(&ctx->bc, false); } return isOK ? 0 : -1; } asSNameSpace *asCCompiler::DetermineNameSpace(const asCString &scope) { asSNameSpace *ns; if( scope == "" ) { // When compiling default argument expression the correct namespace is stored in the outFunc even for objects if( outFunc->nameSpace->name != "" || isCompilingDefaultArg ) ns = outFunc->nameSpace; else if( outFunc->objectType && outFunc->objectType->nameSpace->name != "" ) ns = outFunc->objectType->nameSpace; else ns = engine->nameSpaces[0]; } else if( scope == "::" ) ns = engine->nameSpaces[0]; else ns = engine->FindNameSpace(scope.AddressOf()); return ns; } int asCCompiler::CompileExpressionPreOp(asCScriptNode *node, asCExprContext *ctx) { int op = node->tokenType; // Don't allow any prefix operators except handle on expressions that take address of class method if( ctx->IsClassMethod() && op != ttHandle ) { Error(TXT_INVALID_OP_ON_METHOD, node); return -1; } // Don't allow any operators on void expressions if( ctx->IsVoidExpression() ) { Error(TXT_VOID_CANT_BE_OPERAND, node); return -1; } IsVariableInitialized(&ctx->type, node); if( op == ttHandle ) { if( ctx->methodName != "" ) { // Don't allow taking the handle of a handle if( ctx->type.isExplicitHandle ) { Error(TXT_OBJECT_HANDLE_NOT_SUPPORTED, node); return -1; } } else { // Don't allow taking handle of a handle, i.e. @@ if( ctx->type.isExplicitHandle ) { Error(TXT_OBJECT_HANDLE_NOT_SUPPORTED, node); return -1; } // @null is allowed even though it is implicit if( !ctx->type.IsNullConstant() ) { // Verify that the type allow its handle to be taken if( !ctx->type.dataType.SupportHandles() && !ctx->type.dataType.IsObjectHandle() ) { Error(TXT_OBJECT_HANDLE_NOT_SUPPORTED, node); return -1; } // Objects that are not local variables are not references // Objects allocated on the stack are also not marked as references if( !ctx->type.dataType.IsReference() && !((ctx->type.dataType.IsObject() || ctx->type.dataType.IsFuncdef()) && !ctx->type.isVariable) && !(ctx->type.isVariable && !IsVariableOnHeap(ctx->type.stackOffset)) ) { Error(TXT_NOT_VALID_REFERENCE, node); return -1; } // Convert the expression to a handle if( !ctx->type.dataType.IsObjectHandle() && !(ctx->type.dataType.GetTypeInfo()->flags & asOBJ_ASHANDLE) ) { asCDataType to = ctx->type.dataType; to.MakeHandle(true); to.MakeReference(true); to.MakeHandleToConst(ctx->type.dataType.IsReadOnly()); ImplicitConversion(ctx, to, node, asIC_IMPLICIT_CONV, true, false); asASSERT( ctx->type.dataType.IsObjectHandle() ); } else if( ctx->type.dataType.GetTypeInfo()->flags & asOBJ_ASHANDLE ) { // For the ASHANDLE type we'll simply set the expression as a handle ctx->type.dataType.MakeHandle(true); } } } // Mark the expression as an explicit handle to avoid implicit conversions to non-handle expressions ctx->type.isExplicitHandle = true; } else if( (op == ttMinus || op == ttPlus || op == ttBitNot || op == ttInc || op == ttDec) && ctx->type.dataType.IsObject() ) { // Look for the appropriate method // There is no overloadable operator for unary plus const char *opName = 0; switch( op ) { case ttMinus: opName = "opNeg"; break; case ttBitNot: opName = "opCom"; break; case ttInc: opName = "opPreInc"; break; case ttDec: opName = "opPreDec"; break; } if( opName ) { // TODO: Should convert this to something similar to CompileOverloadedDualOperator2 ProcessPropertyGetAccessor(ctx, node); // TODO: If the value isn't const, then first try to find the non const method, and if not found try to find the const method // Find the correct method bool isConst = ctx->type.dataType.IsObjectConst(); asCArray funcs; asCObjectType *ot = CastToObjectType(ctx->type.dataType.GetTypeInfo()); for( asUINT n = 0; n < ot->methods.GetLength(); n++ ) { asCScriptFunction *func = engine->scriptFunctions[ot->methods[n]]; if( func->name == opName && func->parameterTypes.GetLength() == 0 && (!isConst || func->IsReadOnly()) ) { funcs.PushLast(func->id); } } // Did we find the method? if( funcs.GetLength() == 1 ) { asCArray args; MakeFunctionCall(ctx, funcs[0], CastToObjectType(ctx->type.dataType.GetTypeInfo()), args, node); return 0; } else if( funcs.GetLength() == 0 ) { asCString str; str = asCString(opName) + "()"; if( isConst ) str += " const"; str.Format(TXT_FUNCTION_s_NOT_FOUND, str.AddressOf()); Error(str, node); ctx->type.SetDummy(); return -1; } else if( funcs.GetLength() > 1 ) { Error(TXT_MORE_THAN_ONE_MATCHING_OP, node); PrintMatchingFuncs(funcs, node); ctx->type.SetDummy(); return -1; } } else if( op == ttPlus ) { Error(TXT_ILLEGAL_OPERATION, node); ctx->type.SetDummy(); return -1; } } else if( op == ttPlus || op == ttMinus ) { // This is only for primitives. Objects are treated in the above block // Make sure the type is a math type if( !(ctx->type.dataType.IsIntegerType() || ctx->type.dataType.IsUnsignedType() || ctx->type.dataType.IsFloatType() || ctx->type.dataType.IsDoubleType() ) ) { Error(TXT_ILLEGAL_OPERATION, node); return -1; } ProcessPropertyGetAccessor(ctx, node); asCDataType to = ctx->type.dataType; if( ctx->type.dataType.IsUnsignedType() ) { if( ctx->type.dataType.GetSizeInMemoryBytes() == 1 ) to = asCDataType::CreatePrimitive(ttInt8, false); else if( ctx->type.dataType.GetSizeInMemoryBytes() == 2 ) to = asCDataType::CreatePrimitive(ttInt16, false); else if( ctx->type.dataType.GetSizeInMemoryBytes() == 4 ) to = asCDataType::CreatePrimitive(ttInt, false); else if( ctx->type.dataType.GetSizeInMemoryBytes() == 8 ) to = asCDataType::CreatePrimitive(ttInt64, false); else { Error(TXT_INVALID_TYPE, node); return -1; } } if( ctx->type.dataType.IsReference() ) ConvertToVariable(ctx); // Use an explicit conversion in case of constants to avoid unnecessary warning about change of sign ImplicitConversion(ctx, to, node, ctx->type.isConstant ? asIC_EXPLICIT_VAL_CAST : asIC_IMPLICIT_CONV); if( !ctx->type.isConstant ) { ConvertToTempVariable(ctx); asASSERT(!ctx->type.isLValue); if( op == ttMinus ) { if( ctx->type.dataType.IsIntegerType() && ctx->type.dataType.GetSizeInMemoryDWords() == 1 ) ctx->bc.InstrSHORT(asBC_NEGi, ctx->type.stackOffset); else if( ctx->type.dataType.IsIntegerType() && ctx->type.dataType.GetSizeInMemoryDWords() == 2 ) ctx->bc.InstrSHORT(asBC_NEGi64, ctx->type.stackOffset); else if( ctx->type.dataType.IsFloatType() ) ctx->bc.InstrSHORT(asBC_NEGf, ctx->type.stackOffset); else if( ctx->type.dataType.IsDoubleType() ) ctx->bc.InstrSHORT(asBC_NEGd, ctx->type.stackOffset); else { Error(TXT_ILLEGAL_OPERATION, node); return -1; } return 0; } } else { if( op == ttMinus ) { if (ctx->type.dataType.IsIntegerType()) { if (ctx->type.dataType.GetSizeInMemoryBytes() == 4) ctx->type.SetConstantDW(-(int)ctx->type.GetConstantDW()); else if (ctx->type.dataType.GetSizeInMemoryBytes() == 2) ctx->type.SetConstantW(-(asINT16)ctx->type.GetConstantW()); else if (ctx->type.dataType.GetSizeInMemoryBytes() == 1) ctx->type.SetConstantB(-(asINT8)ctx->type.GetConstantB()); else if (ctx->type.dataType.GetSizeInMemoryBytes() == 8) ctx->type.SetConstantQW(-(asINT64)ctx->type.GetConstantQW()); } else if( ctx->type.dataType.IsFloatType() ) ctx->type.SetConstantF(-ctx->type.GetConstantF()); else if( ctx->type.dataType.IsDoubleType() ) ctx->type.SetConstantD(-ctx->type.GetConstantD()); else { Error(TXT_ILLEGAL_OPERATION, node); return -1; } return 0; } } } else if( op == ttNot ) { // Allow value types to be converted to bool using 'bool opImplConv()' if( ctx->type.dataType.GetTypeInfo() && (ctx->type.dataType.GetTypeInfo()->GetFlags() & asOBJ_VALUE) ) ImplicitConversion(ctx, asCDataType::CreatePrimitive(ttBool, false), node, asIC_IMPLICIT_CONV); if( ctx->type.dataType.IsEqualExceptRefAndConst(asCDataType::CreatePrimitive(ttBool, true)) ) { if( ctx->type.isConstant ) { #if AS_SIZEOF_BOOL == 1 ctx->type.SetConstantB(ctx->type.GetConstantB() == 0 ? VALUE_OF_BOOLEAN_TRUE : 0); #else ctx->type.SetConstantDW(ctx->type.GetConstantDW() == 0 ? VALUE_OF_BOOLEAN_TRUE : 0); #endif return 0; } ProcessPropertyGetAccessor(ctx, node); ConvertToTempVariable(ctx); asASSERT(!ctx->type.isLValue); ctx->bc.InstrSHORT(asBC_NOT, ctx->type.stackOffset); } else { Error(TXT_ILLEGAL_OPERATION, node); return -1; } } else if( op == ttBitNot ) { ProcessPropertyGetAccessor(ctx, node); asCDataType to = ctx->type.dataType; if( ctx->type.dataType.IsIntegerType() ) { if( ctx->type.dataType.GetSizeInMemoryBytes() == 1 ) to = asCDataType::CreatePrimitive(ttUInt8, false); else if( ctx->type.dataType.GetSizeInMemoryBytes() == 2 ) to = asCDataType::CreatePrimitive(ttUInt16, false); else if( ctx->type.dataType.GetSizeInMemoryBytes() == 4 ) to = asCDataType::CreatePrimitive(ttUInt, false); else if( ctx->type.dataType.GetSizeInMemoryBytes() == 8 ) to = asCDataType::CreatePrimitive(ttUInt64, false); else { Error(TXT_INVALID_TYPE, node); return -1; } } if( ctx->type.dataType.IsReference() ) ConvertToVariable(ctx); ImplicitConversion(ctx, to, node, asIC_IMPLICIT_CONV); if( ctx->type.dataType.IsUnsignedType() ) { if( ctx->type.isConstant ) { if( ctx->type.dataType.GetSizeInMemoryBytes() == 1 ) ctx->type.SetConstantB(~ctx->type.GetConstantB()); else if (ctx->type.dataType.GetSizeInMemoryBytes() == 2) ctx->type.SetConstantW(~ctx->type.GetConstantW()); else if (ctx->type.dataType.GetSizeInMemoryBytes() == 4) ctx->type.SetConstantDW(~ctx->type.GetConstantDW()); else ctx->type.SetConstantQW(~ctx->type.GetConstantQW()); return 0; } ConvertToTempVariable(ctx); asASSERT(!ctx->type.isLValue); if( ctx->type.dataType.GetSizeInMemoryDWords() == 1 ) ctx->bc.InstrSHORT(asBC_BNOT, ctx->type.stackOffset); else ctx->bc.InstrSHORT(asBC_BNOT64, ctx->type.stackOffset); } else { Error(TXT_ILLEGAL_OPERATION, node); return -1; } } else if( op == ttInc || op == ttDec ) { // Need a reference to the primitive that will be updated // The result of this expression is the same reference as before // Make sure the reference isn't a temporary variable if( ctx->type.isTemporary ) { Error(TXT_REF_IS_TEMP, node); return -1; } if( ctx->type.dataType.IsReadOnly() ) { Error(TXT_REF_IS_READ_ONLY, node); return -1; } if( ctx->property_get || ctx->property_set ) { Error(TXT_INVALID_REF_PROP_ACCESS, node); return -1; } if( !ctx->type.isLValue ) { Error(TXT_NOT_LVALUE, node); return -1; } if( ctx->type.isVariable && !ctx->type.dataType.IsReference() ) ConvertToReference(ctx); else if( !ctx->type.dataType.IsReference() ) { Error(TXT_NOT_VALID_REFERENCE, node); return -1; } if( ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttInt64, false)) || ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttUInt64, false)) ) { if( op == ttInc ) ctx->bc.Instr(asBC_INCi64); else ctx->bc.Instr(asBC_DECi64); } else if( ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttInt, false)) || ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttUInt, false)) ) { if( op == ttInc ) ctx->bc.Instr(asBC_INCi); else ctx->bc.Instr(asBC_DECi); } else if( ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttInt16, false)) || ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttUInt16, false)) ) { if( op == ttInc ) ctx->bc.Instr(asBC_INCi16); else ctx->bc.Instr(asBC_DECi16); } else if( ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttInt8, false)) || ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttUInt8, false)) ) { if( op == ttInc ) ctx->bc.Instr(asBC_INCi8); else ctx->bc.Instr(asBC_DECi8); } else if( ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttFloat, false)) ) { if( op == ttInc ) ctx->bc.Instr(asBC_INCf); else ctx->bc.Instr(asBC_DECf); } else if( ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttDouble, false)) ) { if( op == ttInc ) ctx->bc.Instr(asBC_INCd); else ctx->bc.Instr(asBC_DECd); } else { Error(TXT_ILLEGAL_OPERATION, node); return -1; } } else { // Unknown operator asASSERT(false); return -1; } return 0; } void asCCompiler::ConvertToReference(asCExprContext *ctx) { if( ctx->type.isVariable && !ctx->type.dataType.IsReference() ) { ctx->bc.InstrSHORT(asBC_LDV, ctx->type.stackOffset); ctx->type.dataType.MakeReference(true); ctx->type.SetVariable(ctx->type.dataType, ctx->type.stackOffset, ctx->type.isTemporary); } } int asCCompiler::FindPropertyAccessor(const asCString &name, asCExprContext *ctx, asCScriptNode *node, asSNameSpace *ns, bool isThisAccess) { return FindPropertyAccessor(name, ctx, 0, node, ns, isThisAccess); } int asCCompiler::FindPropertyAccessor(const asCString &name, asCExprContext *ctx, asCExprContext *arg, asCScriptNode *node, asSNameSpace *ns, bool isThisAccess) { if( engine->ep.propertyAccessorMode == 0 ) { // Property accessors have been disabled by the application return 0; } int getId = 0, setId = 0; asCString getName = "get_" + name; asCString setName = "set_" + name; asCArray multipleGetFuncs, multipleSetFuncs; if( ctx->type.dataType.IsObject() ) { asASSERT( ns == 0 ); // Don't look for property accessors in script classes if the script // property accessors have been disabled by the application if( !(ctx->type.dataType.GetTypeInfo()->flags & asOBJ_SCRIPT_OBJECT) || engine->ep.propertyAccessorMode == 2 ) { // Check if the object has any methods with the corresponding accessor name(s) asCObjectType *ot = CastToObjectType(ctx->type.dataType.GetTypeInfo()); for( asUINT n = 0; n < ot->methods.GetLength(); n++ ) { asCScriptFunction *f = engine->scriptFunctions[ot->methods[n]]; // TODO: The type of the parameter should match the argument (unless the arg is a dummy) if( f->name == getName && (int)f->parameterTypes.GetLength() == (arg?1:0) ) { if( getId == 0 ) getId = ot->methods[n]; else { if( multipleGetFuncs.GetLength() == 0 ) multipleGetFuncs.PushLast(getId); multipleGetFuncs.PushLast(ot->methods[n]); } } // TODO: getset: If the parameter is a reference, it must not be an out reference. Should we allow inout ref? if( f->name == setName && (int)f->parameterTypes.GetLength() == (arg?2:1) ) { if( setId == 0 ) setId = ot->methods[n]; else { if( multipleSetFuncs.GetLength() == 0 ) multipleSetFuncs.PushLast(setId); multipleSetFuncs.PushLast(ot->methods[n]); } } } } } else { asASSERT( ns != 0 ); // Look for appropriate global functions. asCArray funcs; asUINT n; builder->GetFunctionDescriptions(getName.AddressOf(), funcs, ns); for( n = 0; n < funcs.GetLength(); n++ ) { asCScriptFunction *f = builder->GetFunctionDescription(funcs[n]); // TODO: The type of the parameter should match the argument (unless the arg is a dummy) if( (int)f->parameterTypes.GetLength() == (arg?1:0) ) { if( getId == 0 ) getId = funcs[n]; else { if( multipleGetFuncs.GetLength() == 0 ) multipleGetFuncs.PushLast(getId); multipleGetFuncs.PushLast(funcs[n]); } } } funcs.SetLength(0); builder->GetFunctionDescriptions(setName.AddressOf(), funcs, ns); for( n = 0; n < funcs.GetLength(); n++ ) { asCScriptFunction *f = builder->GetFunctionDescription(funcs[n]); // TODO: getset: If the parameter is a reference, it must not be an out reference. Should we allow inout ref? if( (int)f->parameterTypes.GetLength() == (arg?2:1) ) { if( setId == 0 ) setId = funcs[n]; else { if( multipleSetFuncs.GetLength() == 0 ) multipleSetFuncs.PushLast(getId); multipleSetFuncs.PushLast(funcs[n]); } } } } bool isConst = ctx->type.dataType.IsObjectConst(); // Check for multiple matches if( multipleGetFuncs.GetLength() > 0 ) { // Filter the list by constness FilterConst(multipleGetFuncs, !isConst); if( multipleGetFuncs.GetLength() > 1 ) { asCString str; str.Format(TXT_MULTIPLE_PROP_GET_ACCESSOR_FOR_s, name.AddressOf()); Error(str, node); PrintMatchingFuncs(multipleGetFuncs, node); return -1; } else { // The id may have changed getId = multipleGetFuncs[0]; } } if( multipleSetFuncs.GetLength() > 0 ) { // Filter the list by constness FilterConst(multipleSetFuncs, !isConst); if( multipleSetFuncs.GetLength() > 1 ) { asCString str; str.Format(TXT_MULTIPLE_PROP_SET_ACCESSOR_FOR_s, name.AddressOf()); Error(str, node); PrintMatchingFuncs(multipleSetFuncs, node); return -1; } else { // The id may have changed setId = multipleSetFuncs[0]; } } // Check for type compatibility between get and set accessor if( getId && setId ) { asCScriptFunction *getFunc = builder->GetFunctionDescription(getId); asCScriptFunction *setFunc = builder->GetFunctionDescription(setId); // It is permitted for a getter to return a handle and the setter to take a reference int idx = (arg?1:0); if( !getFunc->returnType.IsEqualExceptRefAndConst(setFunc->parameterTypes[idx]) && !((getFunc->returnType.IsObjectHandle() && !setFunc->parameterTypes[idx].IsObjectHandle()) && (getFunc->returnType.GetTypeInfo() == setFunc->parameterTypes[idx].GetTypeInfo())) ) { asCString str; str.Format(TXT_GET_SET_ACCESSOR_TYPE_MISMATCH_FOR_s, name.AddressOf()); Error(str, node); asCArray funcs; funcs.PushLast(getId); funcs.PushLast(setId); PrintMatchingFuncs(funcs, node); return -1; } } // Check if we are within one of the accessors int realGetId = getId; int realSetId = setId; if( outFunc->objectType && isThisAccess ) { // The property accessors would be virtual functions, so we need to find the real implementation asCScriptFunction *getFunc = getId ? builder->GetFunctionDescription(getId) : 0; if( getFunc && getFunc->funcType == asFUNC_VIRTUAL && outFunc->objectType->DerivesFrom(getFunc->objectType) ) realGetId = outFunc->objectType->virtualFunctionTable[getFunc->vfTableIdx]->id; asCScriptFunction *setFunc = setId ? builder->GetFunctionDescription(setId) : 0; if( setFunc && setFunc->funcType == asFUNC_VIRTUAL && outFunc->objectType->DerivesFrom(setFunc->objectType) ) realSetId = outFunc->objectType->virtualFunctionTable[setFunc->vfTableIdx]->id; } // Avoid recursive call, by not treating this as a property accessor call. // This will also allow having the real property with the same name as the accessors. if( (isThisAccess || outFunc->objectType == 0) && ((realGetId && realGetId == outFunc->id) || (realSetId && realSetId == outFunc->id)) ) { getId = 0; setId = 0; } // Check if the application has disabled script written property accessors if( engine->ep.propertyAccessorMode == 1 ) { if( getId && builder->GetFunctionDescription(getId)->funcType != asFUNC_SYSTEM ) getId = 0; if( setId && builder->GetFunctionDescription(setId)->funcType != asFUNC_SYSTEM ) setId = 0; } if( getId || setId ) { // Property accessors were found, but we don't know which is to be used yet, so // we just prepare the bytecode for the method call, and then store the function ids // so that the right one can be used when we get there. ctx->property_get = getId; ctx->property_set = setId; bool isHandleSafe = ctx->type.isHandleSafe; if( ctx->type.dataType.IsObject() ) { // If the object is read-only then we need to remember that if( (!ctx->type.dataType.IsObjectHandle() && ctx->type.dataType.IsReadOnly()) || (ctx->type.dataType.IsObjectHandle() && ctx->type.dataType.IsHandleToConst()) ) ctx->property_const = true; else ctx->property_const = false; // If the object is a handle then we need to remember that ctx->property_handle = ctx->type.dataType.IsObjectHandle(); ctx->property_ref = ctx->type.dataType.IsReference(); } // The setter's parameter type is used as the property type, // unless only the getter is available asCDataType dt; if( setId ) dt = builder->GetFunctionDescription(setId)->parameterTypes[(arg?1:0)]; else dt = builder->GetFunctionDescription(getId)->returnType; // Just change the type, the context must still maintain information // about previous variable offset and the indicator of temporary variable. int offset = ctx->type.stackOffset; bool isTemp = ctx->type.isTemporary; ctx->type.Set(dt); ctx->type.stackOffset = (short)offset; ctx->type.isTemporary = isTemp; ctx->exprNode = node; // Remember if the object is safe, so the invocation of the property // accessor doesn't needlessly make a safe copy of the handle ctx->type.isHandleSafe = isHandleSafe; // Store the argument for later use if( arg ) { ctx->property_arg = asNEW(asCExprContext)(engine); if( ctx->property_arg == 0 ) { // Out of memory return -1; } MergeExprBytecodeAndType(ctx->property_arg, arg); } return 1; } // No accessor was found return 0; } int asCCompiler::ProcessPropertySetAccessor(asCExprContext *ctx, asCExprContext *arg, asCScriptNode *node) { // TODO: A lot of this code is similar to ProcessPropertyGetAccessor. Can we unify them? if( !ctx->property_set ) { Error(TXT_PROPERTY_HAS_NO_SET_ACCESSOR, node); return -1; } asCScriptFunction *func = builder->GetFunctionDescription(ctx->property_set); // Make sure the arg match the property asCArray funcs; funcs.PushLast(ctx->property_set); asCArray args; if( ctx->property_arg ) args.PushLast(ctx->property_arg); args.PushLast(arg); MatchFunctions(funcs, args, node, func->GetName(), 0, func->objectType, ctx->property_const); if( funcs.GetLength() == 0 ) { // MatchFunctions already reported the error if( ctx->property_arg ) { asDELETE(ctx->property_arg, asCExprContext); ctx->property_arg = 0; } return -1; } if( func->objectType ) { // Setup the context with the original type so the method call gets built correctly ctx->type.dataType = asCDataType::CreateType(func->objectType, ctx->property_const); if( ctx->property_handle ) ctx->type.dataType.MakeHandle(true); if( ctx->property_ref ) ctx->type.dataType.MakeReference(true); // Don't allow the call if the object is read-only and the property accessor is not const if( ctx->property_const && !func->IsReadOnly() ) { Error(TXT_NON_CONST_METHOD_ON_CONST_OBJ, node); asCArray funcCandidates; funcCandidates.PushLast(ctx->property_set); PrintMatchingFuncs(funcCandidates, node); } } // Call the accessor MakeFunctionCall(ctx, ctx->property_set, func->objectType, args, node); ctx->property_get = 0; ctx->property_set = 0; if( ctx->property_arg ) { asDELETE(ctx->property_arg, asCExprContext); ctx->property_arg = 0; } return 0; } int asCCompiler::ProcessPropertyGetSetAccessor(asCExprContext *ctx, asCExprContext *lctx, asCExprContext *rctx, eTokenType op, asCScriptNode *errNode) { // TODO: Perhaps it might be interesting to allow the definition of compound setters for better // performance, e.g. set_add_prop, set_mul_prop, etc. With these it would also be possible // to support value types, since it would be a single call // Compound assignment for indexed property accessors is not supported yet if( lctx->property_arg != 0 ) { // Process the property to free the memory ProcessPropertySetAccessor(lctx, rctx, errNode); Error(TXT_COMPOUND_ASGN_WITH_IDX_PROP, errNode); return -1; } // Compound assignments require both get and set accessors if( lctx->property_set == 0 || lctx->property_get == 0 ) { // Process the property to free the memory ProcessPropertySetAccessor(lctx, rctx, errNode); Error(TXT_COMPOUND_ASGN_REQUIRE_GET_SET, errNode); return -1; } // Property accessors on value types (or scoped references types) are not supported since // it is not possible to guarantee that the object will stay alive between the two calls asCScriptFunction *func = engine->scriptFunctions[lctx->property_set]; if( func->objectType && (func->objectType->flags & (asOBJ_VALUE | asOBJ_SCOPED)) ) { // Process the property to free the memory ProcessPropertySetAccessor(lctx, rctx, errNode); Error(TXT_COMPOUND_ASGN_ON_VALUE_TYPE, errNode); return -1; } // Translate the compound assignment to the corresponding dual operator switch( op ) { case ttAddAssign: op = ttPlus; break; case ttSubAssign: op = ttMinus; break; case ttMulAssign: op = ttStar; break; case ttDivAssign: op = ttSlash; break; case ttModAssign: op = ttPercent; break; case ttPowAssign: op = ttStarStar; break; case ttAndAssign: op = ttAmp; break; case ttOrAssign: op = ttBitOr; break; case ttXorAssign: op = ttBitXor; break; case ttShiftLeftAssign: op = ttBitShiftLeft; break; case ttShiftRightAAssign: op = ttBitShiftRightArith; break; case ttShiftRightLAssign: op = ttBitShiftRight; break; default: op = ttUnrecognizedToken; break; } if( op == ttUnrecognizedToken ) { // Shouldn't happen asASSERT(false); // Process the property to free the memory ProcessPropertySetAccessor(lctx, rctx, errNode); return -1; } asCExprContext before(engine); if( func->objectType && (func->objectType->flags & (asOBJ_REF|asOBJ_SCOPED)) == asOBJ_REF ) { // Keep a reference to the object in a local variable before.bc.AddCode(&lctx->bc); asUINT len = reservedVariables.GetLength(); rctx->bc.GetVarsUsed(reservedVariables); before.bc.GetVarsUsed(reservedVariables); asCDataType dt = asCDataType::CreateObjectHandle(func->objectType, false); int offset = AllocateVariable(dt, true); reservedVariables.SetLength(len); before.type.SetVariable(dt, offset, true); if( lctx->property_ref ) before.bc.Instr(asBC_RDSPtr); before.bc.InstrSHORT(asBC_PSF, (short)offset); before.bc.InstrPTR(asBC_REFCPY, func->objectType); before.bc.Instr(asBC_PopPtr); if( lctx->type.isTemporary ) { // Add the release of the temporary variable as a deferred expression asSDeferredParam deferred; deferred.origExpr = 0; deferred.argInOutFlags = asTM_INREF; deferred.argNode = 0; deferred.argType.SetVariable(ctx->type.dataType, lctx->type.stackOffset, true); before.deferredParams.PushLast(deferred); } // Update the left expression to use the local variable lctx->bc.InstrSHORT(asBC_PSF, (short)offset); lctx->type.stackOffset = (short)offset; lctx->property_ref = true; // Don't release the temporary variable too early lctx->type.isTemporary = false; ctx->bc.AddCode(&before.bc); } // Keep the original information on the property asCExprContext llctx(engine); llctx.type = lctx->type; llctx.property_arg = lctx->property_arg; llctx.property_const = lctx->property_const; llctx.property_get = lctx->property_get; llctx.property_handle = lctx->property_handle; llctx.property_ref = lctx->property_ref; llctx.property_set = lctx->property_set; // Compile the dual operator using the get accessor CompileOperator(errNode, lctx, rctx, ctx, op, false); // If we made a local variable to hold the reference it must be reused if( before.type.stackOffset ) llctx.bc.InstrSHORT(asBC_PSF, before.type.stackOffset); // Compile the assignment using the set accessor ProcessPropertySetAccessor(&llctx, ctx, errNode); MergeExprBytecodeAndType(ctx, &llctx); if( before.type.stackOffset ) ReleaseTemporaryVariable(before.type.stackOffset, &ctx->bc); asASSERT( ctx->deferredParams.GetLength() == 0 ); ctx->deferredParams = before.deferredParams; ProcessDeferredParams(ctx); return 0; } void asCCompiler::ProcessPropertyGetAccessor(asCExprContext *ctx, asCScriptNode *node) { // If no property accessor has been prepared then don't do anything if( !ctx->property_get && !ctx->property_set ) return; if( !ctx->property_get ) { // Raise error on missing accessor Error(TXT_PROPERTY_HAS_NO_GET_ACCESSOR, node); ctx->type.SetDummy(); return; } asCExprValue objType = ctx->type; asCScriptFunction *func = builder->GetFunctionDescription(ctx->property_get); // Make sure the arg match the property asCArray funcs; funcs.PushLast(ctx->property_get); asCArray args; if( ctx->property_arg ) args.PushLast(ctx->property_arg); MatchFunctions(funcs, args, node, func->GetName(), 0, func->objectType, ctx->property_const); if( funcs.GetLength() == 0 ) { // MatchFunctions already reported the error if( ctx->property_arg ) { asDELETE(ctx->property_arg, asCExprContext); ctx->property_arg = 0; } ctx->type.SetDummy(); return; } if( func->objectType ) { // Setup the context with the original type so the method call gets built correctly ctx->type.dataType = asCDataType::CreateType(func->objectType, ctx->property_const); if( ctx->property_handle ) ctx->type.dataType.MakeHandle(true); if( ctx->property_ref ) ctx->type.dataType.MakeReference(true); // Don't allow the call if the object is read-only and the property accessor is not const if( ctx->property_const && !func->IsReadOnly() ) { Error(TXT_NON_CONST_METHOD_ON_CONST_OBJ, node); asCArray funcCandidates; funcCandidates.PushLast(ctx->property_get); PrintMatchingFuncs(funcCandidates, node); } } // The explicit handle flag must be remembered bool isExplicitHandle = ctx->type.isExplicitHandle; // Call the accessor MakeFunctionCall(ctx, ctx->property_get, func->objectType, args, node); if( isExplicitHandle ) ctx->type.isExplicitHandle = true; // Clear the property get/set ids ctx->property_get = 0; ctx->property_set = 0; if( ctx->property_arg ) { asDELETE(ctx->property_arg, asCExprContext); ctx->property_arg = 0; } } int asCCompiler::CompileExpressionPostOp(asCScriptNode *node, asCExprContext *ctx) { // Don't allow any postfix operators on expressions that take address of class method if( ctx->IsClassMethod() ) { Error(TXT_INVALID_OP_ON_METHOD, node); return -1; } // Don't allow any operators on void expressions if( ctx->IsVoidExpression() ) { Error(TXT_VOID_CANT_BE_OPERAND, node); return -1; } // Check if the variable is initialized (if it indeed is a variable) IsVariableInitialized(&ctx->type, node); int op = node->tokenType; if( (op == ttInc || op == ttDec) && ctx->type.dataType.IsObject() ) { const char *opName = 0; switch( op ) { case ttInc: opName = "opPostInc"; break; case ttDec: opName = "opPostDec"; break; } if( opName ) { // TODO: Should convert this to something similar to CompileOverloadedDualOperator2 ProcessPropertyGetAccessor(ctx, node); // TODO: If the value isn't const, then first try to find the non const method, and if not found try to find the const method // Find the correct method bool isConst = ctx->type.dataType.IsObjectConst(); asCArray funcs; asCObjectType *ot = CastToObjectType(ctx->type.dataType.GetTypeInfo()); for( asUINT n = 0; n < ot->methods.GetLength(); n++ ) { asCScriptFunction *func = engine->scriptFunctions[ot->methods[n]]; if( func->name == opName && func->parameterTypes.GetLength() == 0 && (!isConst || func->IsReadOnly()) ) { funcs.PushLast(func->id); } } // Did we find the method? if( funcs.GetLength() == 1 ) { asCArray args; MakeFunctionCall(ctx, funcs[0], CastToObjectType(ctx->type.dataType.GetTypeInfo()), args, node); return 0; } else if( funcs.GetLength() == 0 ) { asCString str; str = asCString(opName) + "()"; if( isConst ) str += " const"; str.Format(TXT_FUNCTION_s_NOT_FOUND, str.AddressOf()); Error(str, node); ctx->type.SetDummy(); return -1; } else if( funcs.GetLength() > 1 ) { Error(TXT_MORE_THAN_ONE_MATCHING_OP, node); PrintMatchingFuncs(funcs, node); ctx->type.SetDummy(); return -1; } } } else if( op == ttInc || op == ttDec ) { // Make sure the reference isn't a temporary variable if( ctx->type.isTemporary ) { Error(TXT_REF_IS_TEMP, node); return -1; } if( ctx->type.dataType.IsReadOnly() ) { Error(TXT_REF_IS_READ_ONLY, node); return -1; } if( ctx->property_get || ctx->property_set ) { Error(TXT_INVALID_REF_PROP_ACCESS, node); return -1; } if( !ctx->type.isLValue ) { Error(TXT_NOT_LVALUE, node); return -1; } if( ctx->type.isVariable && !ctx->type.dataType.IsReference() ) ConvertToReference(ctx); else if( !ctx->type.dataType.IsReference() ) { Error(TXT_NOT_VALID_REFERENCE, node); return -1; } // Copy the value to a temp before changing it ConvertToTempVariable(ctx); asASSERT(!ctx->type.isLValue); // Increment the value pointed to by the reference still in the register asEBCInstr iInc = asBC_INCi, iDec = asBC_DECi; if( ctx->type.dataType.IsDoubleType() ) { iInc = asBC_INCd; iDec = asBC_DECd; } else if( ctx->type.dataType.IsFloatType() ) { iInc = asBC_INCf; iDec = asBC_DECf; } else if( ctx->type.dataType.IsIntegerType() || ctx->type.dataType.IsUnsignedType() ) { if( ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttInt16, false)) || ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttUInt16, false)) ) { iInc = asBC_INCi16; iDec = asBC_DECi16; } else if( ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttInt8, false)) || ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttUInt8, false)) ) { iInc = asBC_INCi8; iDec = asBC_DECi8; } else if( ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttInt64, false)) || ctx->type.dataType.IsEqualExceptRef(asCDataType::CreatePrimitive(ttUInt64, false)) ) { iInc = asBC_INCi64; iDec = asBC_DECi64; } } else { Error(TXT_ILLEGAL_OPERATION, node); return -1; } if( op == ttInc ) ctx->bc.Instr(iInc); else ctx->bc.Instr(iDec); } else if( op == ttDot ) { if( node->firstChild->nodeType == snIdentifier ) { ProcessPropertyGetAccessor(ctx, node); // Get the property name asCString name(&script->code[node->firstChild->tokenPos], node->firstChild->tokenLength); if( ctx->type.dataType.IsObject() ) { // We need to look for get/set property accessors. // If found, the context stores information on the get/set accessors // until it is known which is to be used. int r = 0; if( node->next && node->next->tokenType == ttOpenBracket ) { // The property accessor should take an index arg asCExprContext dummyArg(engine); r = FindPropertyAccessor(name, ctx, &dummyArg, node, 0); } if( r == 0 ) r = FindPropertyAccessor(name, ctx, node, 0); if( r != 0 ) return r; if( !ctx->type.dataType.IsPrimitive() ) Dereference(ctx, true); if( ctx->type.dataType.IsObjectHandle() ) { // Convert the handle to a normal object asCDataType dt = ctx->type.dataType; dt.MakeHandle(false); ImplicitConversion(ctx, dt, node, asIC_IMPLICIT_CONV); // The handle may not have been an lvalue, but the dereferenced object is ctx->type.isLValue = true; } bool isConst = ctx->type.dataType.IsObjectConst(); asCObjectProperty *prop = builder->GetObjectProperty(ctx->type.dataType, name.AddressOf()); if( prop ) { // Is the property access allowed? if( (prop->isPrivate || prop->isProtected) && (!outFunc || outFunc->objectType != ctx->type.dataType.GetTypeInfo()) ) { asCString msg; if( prop->isPrivate ) msg.Format(TXT_PRIVATE_PROP_ACCESS_s, name.AddressOf()); else msg.Format(TXT_PROTECTED_PROP_ACCESS_s, name.AddressOf()); Error(msg, node); } // Adjust the pointer for composite member // This must always be done even if the offset is 0 because the asCWriter needs the meta data in ADDSi to identify the composite property if( prop->compositeOffset || prop->isCompositeIndirect ) ctx->bc.InstrSHORT_DW(asBC_ADDSi, (short)prop->compositeOffset, engine->GetTypeIdFromDataType(asCDataType::CreateType(ctx->type.dataType.GetTypeInfo(), false))); if (prop->isCompositeIndirect) ctx->bc.Instr(asBC_RDSPtr); // Put the offset on the stack // This must always be done even if the offset is 0 so the type info is stored ctx->bc.InstrSHORT_DW(asBC_ADDSi, (short)prop->byteOffset, engine->GetTypeIdFromDataType(asCDataType::CreateType(ctx->type.dataType.GetTypeInfo(), false))); if( prop->type.IsReference() ) ctx->bc.Instr(asBC_RDSPtr); // Reference to primitive must be stored in the temp register if( prop->type.IsPrimitive() ) { ctx->bc.Instr(asBC_PopRPtr); } // Keep information about temporary variables as deferred expression if( ctx->type.isTemporary ) { // Add the release of this reference, as a deferred expression asSDeferredParam deferred; deferred.origExpr = 0; deferred.argInOutFlags = asTM_INREF; deferred.argNode = 0; deferred.argType.SetVariable(ctx->type.dataType, ctx->type.stackOffset, true); ctx->deferredParams.PushLast(deferred); } // Set the new type and make sure it is not treated as a variable anymore ctx->type.dataType = prop->type; ctx->type.dataType.MakeReference(true); ctx->type.isVariable = false; ctx->type.isTemporary = false; if( (ctx->type.dataType.IsObject() || ctx->type.dataType.IsFuncdef()) && !ctx->type.dataType.IsObjectHandle() ) { // Objects that are members are not references ctx->type.dataType.MakeReference(false); // The object is safe (life time guaranteed) if the parent object is also safe } else if (ctx->type.dataType.IsObjectHandle()) { // A object accessed through a handle cannot be considered safe, // as it can be cleared at any time ctx->type.isHandleSafe = false; } ctx->type.dataType.MakeReadOnly(isConst ? true : prop->type.IsReadOnly()); } else { // If the name is not a property, the compiler must check if the name matches // a method, which can be used for constructing delegates asIScriptFunction *func = 0; asCObjectType *ot = CastToObjectType(ctx->type.dataType.GetTypeInfo()); for( asUINT n = 0; n < ot->methods.GetLength(); n++ ) { if( engine->scriptFunctions[ot->methods[n]]->name == name ) { func = engine->scriptFunctions[ot->methods[n]]; break; } } if( func ) { // An object method was found. Keep the name of the method in the expression, but // don't actually modify the bytecode at this point since it is not yet known what // the method will be used for, or even what overloaded method should be used. ctx->methodName = name; } else { asCString str; str.Format(TXT_s_NOT_MEMBER_OF_s, name.AddressOf(), ctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, node); return -1; } } } else { asCString str; str.Format(TXT_s_NOT_MEMBER_OF_s, name.AddressOf(), ctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, node); return -1; } } else { // Make sure it is an object we are accessing if( !ctx->type.dataType.IsObject() ) { asCString str; str.Format(TXT_ILLEGAL_OPERATION_ON_s, ctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, node); return -1; } // Process the get property accessor ProcessPropertyGetAccessor(ctx, node); // Compile function call int r = CompileFunctionCall(node->firstChild, ctx, CastToObjectType(ctx->type.dataType.GetTypeInfo()), ctx->type.dataType.IsObjectConst()); if( r < 0 ) return r; } } else if( op == ttOpenBracket ) { // If the property access takes an index arg and the argument hasn't been evaluated yet, // then we should use that instead of processing it now. If the argument has already been // evaluated, then we should process the property accessor as a get access now as the new // index operator is on the result of that accessor. asCString propertyName; asSNameSpace *ns = 0; if( ((ctx->property_get && builder->GetFunctionDescription(ctx->property_get)->GetParamCount() == 1) || (ctx->property_set && builder->GetFunctionDescription(ctx->property_set)->GetParamCount() == 2)) && (ctx->property_arg && ctx->property_arg->type.dataType.GetTokenType() == ttUnrecognizedToken) ) { // Determine the name of the property accessor asCScriptFunction *func = 0; if( ctx->property_get ) func = builder->GetFunctionDescription(ctx->property_get); else func = builder->GetFunctionDescription(ctx->property_set); propertyName = func->GetName(); propertyName = propertyName.SubString(4); // Set the original type of the expression so we can re-evaluate the property accessor if( func->objectType ) { ctx->type.dataType = asCDataType::CreateType(func->objectType, ctx->property_const); if( ctx->property_handle ) ctx->type.dataType.MakeHandle(true); if( ctx->property_ref ) ctx->type.dataType.MakeReference(true); } else { // Store the namespace where the function is declared // so the same function can be found later ctx->type.SetDummy(); ns = func->nameSpace; } ctx->property_get = ctx->property_set = 0; if( ctx->property_arg ) { asDELETE(ctx->property_arg, asCExprContext); ctx->property_arg = 0; } } else { if( !ctx->type.dataType.IsObject() ) { asCString str; str.Format(TXT_OBJECT_DOESNT_SUPPORT_INDEX_OP, ctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, node); return -1; } ProcessPropertyGetAccessor(ctx, node); } // Compile the expression bool isOK = true; asCArray args; asCArray namedArgs; asASSERT( node->firstChild->nodeType == snArgList ); if( CompileArgumentList(node->firstChild, args, namedArgs) >= 0 ) { // Check for the existence of the opIndex method bool lookForProperty = true; if( propertyName == "" ) { bool isConst = ctx->type.dataType.IsObjectConst(); asCObjectType *objectType = CastToObjectType(ctx->type.dataType.GetTypeInfo()); asCArray funcs; builder->GetObjectMethodDescriptions("opIndex", objectType, funcs, isConst); if( funcs.GetLength() > 0 ) { // Since there are opIndex methods, the compiler should not look for get/set_opIndex accessors lookForProperty = false; // Determine which of opIndex methods that match MatchFunctions(funcs, args, node, "opIndex", 0, objectType, isConst); if( funcs.GetLength() != 1 ) { // The error has already been reported by MatchFunctions isOK = false; } else { // Add the default values for arguments not explicitly supplied int r = CompileDefaultAndNamedArgs(node, args, funcs[0], objectType); if( r == 0 ) MakeFunctionCall(ctx, funcs[0], objectType, args, node, false, 0, ctx->type.stackOffset); else isOK = false; } } } if( lookForProperty && isOK ) { if( args.GetLength() != 1 ) { // TODO: opIndex: Implement support for multiple index arguments in set_opIndex too Error(TXT_PROP_ACCESS_WITH_INDEX_ONE_ARG, node); isOK = false; } else { Dereference(ctx, true); asCExprContext lctx(engine); MergeExprBytecodeAndType(&lctx, ctx); // Check for accessors methods for the opIndex, either as get/set_opIndex or as get/set with the property name int r = FindPropertyAccessor(propertyName == "" ? "opIndex" : propertyName.AddressOf(), &lctx, args[0], node, ns); if (r == 0) { asCString str; str.Format(TXT_OBJECT_DOESNT_SUPPORT_INDEX_OP, ctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, node); isOK = false; } else if (r < 0) isOK = false; if (isOK) MergeExprBytecodeAndType(ctx, &lctx); } } } else isOK = false; // Cleanup for( asUINT n = 0; n < args.GetLength(); n++ ) if( args[n] ) { asDELETE(args[n], asCExprContext); } if( !isOK ) return -1; } else if( op == ttOpenParanthesis ) { // TODO: Most of this is already done by CompileFunctionCall(). Can we share the code? // Make sure the expression is a funcdef or an object that may have opCall methods if( !ctx->type.dataType.GetTypeInfo() || (!ctx->type.dataType.IsFuncdef() && !ctx->type.dataType.IsObject()) ) { Error(TXT_EXPR_DOESNT_EVAL_TO_FUNC, node); return -1; } // Compile arguments asCArray args; asCArray namedArgs; if( CompileArgumentList(node->lastChild, args, namedArgs) >= 0 ) { // Match arguments with the funcdef asCArray funcs; if( ctx->type.dataType.IsFuncdef() ) { funcs.PushLast(CastToFuncdefType(ctx->type.dataType.GetTypeInfo())->funcdef->id); MatchFunctions(funcs, args, node, ctx->type.dataType.GetTypeInfo()->name.AddressOf(), &namedArgs); } else { bool isConst = ctx->type.dataType.IsObjectConst(); builder->GetObjectMethodDescriptions("opCall", CastToObjectType(ctx->type.dataType.GetTypeInfo()), funcs, isConst); MatchFunctions(funcs, args, node, "opCall", &namedArgs, CastToObjectType(ctx->type.dataType.GetTypeInfo()), isConst); } if( funcs.GetLength() != 1 ) { // The error was reported by MatchFunctions() // Dummy value ctx->type.SetDummy(); } else { // Add the default values for arguments not explicitly supplied int r = CompileDefaultAndNamedArgs(node, args, funcs[0], CastToObjectType(ctx->type.dataType.GetTypeInfo()), &namedArgs); // TODO: funcdef: Do we have to make sure the handle is stored in a temporary variable, or // is it enough to make sure it is in a local variable? // For function pointer we must guarantee that the function is safe, i.e. // by first storing the function pointer in a local variable (if it isn't already in one) if( r == asSUCCESS ) { Dereference(ctx, true); if( ctx->type.dataType.IsFuncdef() ) { if( !ctx->type.isVariable ) ConvertToVariable(ctx); // Remove the reference from the stack as the asBC_CALLPTR instruction takes the variable as argument ctx->bc.Instr(asBC_PopPtr); } MakeFunctionCall(ctx, funcs[0], ctx->type.dataType.IsFuncdef() ? 0 : CastToObjectType(ctx->type.dataType.GetTypeInfo()), args, node, false, 0, ctx->type.stackOffset); } } } else ctx->type.SetDummy(); // Cleanup for( asUINT n = 0; n < args.GetLength(); n++ ) if( args[n] ) { asDELETE(args[n], asCExprContext); } for( asUINT n = 0; n < namedArgs.GetLength(); n++ ) if( namedArgs[n].ctx ) { asDELETE(namedArgs[n].ctx, asCExprContext); } } return 0; } int asCCompiler::GetPrecedence(asCScriptNode *op) { // x ** y // x * y, x / y, x % y // x + y, x - y // x <= y, x < y, x >= y, x > y // x = =y, x != y, x xor y, x is y, x !is y // x and y // x or y // The following are not used in this function, // but should have lower precedence than the above // x ? y : z // x = y // The expression term have the highest precedence if( op->nodeType == snExprTerm ) return 1; // Evaluate operators by token int tokenType = op->tokenType; if( tokenType == ttStarStar ) return 0; if( tokenType == ttStar || tokenType == ttSlash || tokenType == ttPercent ) return -1; if( tokenType == ttPlus || tokenType == ttMinus ) return -2; if( tokenType == ttBitShiftLeft || tokenType == ttBitShiftRight || tokenType == ttBitShiftRightArith ) return -3; if( tokenType == ttAmp ) return -4; if( tokenType == ttBitXor ) return -5; if( tokenType == ttBitOr ) return -6; if( tokenType == ttLessThanOrEqual || tokenType == ttLessThan || tokenType == ttGreaterThanOrEqual || tokenType == ttGreaterThan ) return -7; if( tokenType == ttEqual || tokenType == ttNotEqual || tokenType == ttXor || tokenType == ttIs || tokenType == ttNotIs ) return -8; if( tokenType == ttAnd ) return -9; if( tokenType == ttOr ) return -10; // Unknown operator asASSERT(false); return 0; } asUINT asCCompiler::MatchArgument(asCArray &funcs, asCArray &matches, const asCExprContext *argExpr, int paramNum, bool allowObjectConstruct) { matches.SetLength(0); for( asUINT n = 0; n < funcs.GetLength(); n++ ) { asCScriptFunction *desc = builder->GetFunctionDescription(funcs[n]); // Does the function have arguments enough? if( (int)desc->parameterTypes.GetLength() <= paramNum ) continue; int cost = MatchArgument(desc, argExpr, paramNum, allowObjectConstruct); if( cost != -1 ) matches.PushLast(asSOverloadCandidate(funcs[n], asUINT(cost))); } return (asUINT)matches.GetLength(); } int asCCompiler::MatchArgument(asCScriptFunction *desc, const asCExprContext *argExpr, int paramNum, bool allowObjectConstruct) { // void expressions can match any out parameter, but nothing else if( argExpr->IsVoidExpression() ) { if( desc->inOutFlags[paramNum] == asTM_OUTREF ) return 0; return -1; } // Anonymous init lists can only match parameters that can be initialized with a list if (argExpr->IsAnonymousInitList()) { if ((desc->parameterTypes[paramNum].IsReference() && desc->inOutFlags[paramNum] != asTM_INREF) || desc->parameterTypes[paramNum].GetTypeInfo() == 0 || desc->parameterTypes[paramNum].GetBehaviour()->listFactory == 0) { return -1; } return 0; } // Can we make the match by implicit conversion? asCExprContext ti(engine); ti.type = argExpr->type; ti.methodName = argExpr->methodName; ti.enumValue = argExpr->enumValue; ti.exprNode = argExpr->exprNode; if( argExpr->type.dataType.IsPrimitive() ) ti.type.dataType.MakeReference(false); // Don't allow the implicit conversion to make a copy in case the argument is expecting a reference to the true value if (desc->parameterTypes[paramNum].IsReference() && desc->inOutFlags[paramNum] == asTM_INOUTREF) allowObjectConstruct = false; int cost = ImplicitConversion(&ti, desc->parameterTypes[paramNum], 0, asIC_IMPLICIT_CONV, false, allowObjectConstruct); // If the function parameter is an inout-reference then it must not be possible to call the // function with an incorrect argument type, even though the type can normally be converted. if( desc->parameterTypes[paramNum].IsReference() && desc->inOutFlags[paramNum] == asTM_INOUTREF && desc->parameterTypes[paramNum].GetTokenType() != ttQuestion ) { // Observe, that the below checks are only necessary for when unsafe references have been // enabled by the application. Without this the &inout reference form wouldn't be allowed // for these value types. // Don't allow a primitive to be converted to a reference of another primitive type if( desc->parameterTypes[paramNum].IsPrimitive() && desc->parameterTypes[paramNum].GetTokenType() != argExpr->type.dataType.GetTokenType() ) { asASSERT( engine->ep.allowUnsafeReferences ); return -1; } // Don't allow an enum to be converted to a reference of another enum type if( desc->parameterTypes[paramNum].IsEnumType() && desc->parameterTypes[paramNum].GetTypeInfo() != argExpr->type.dataType.GetTypeInfo() ) { asASSERT( engine->ep.allowUnsafeReferences ); return -1; } // Don't allow a non-handle expression to be converted to a reference to a handle if( desc->parameterTypes[paramNum].IsObjectHandle() && !argExpr->type.dataType.IsObjectHandle() ) { asASSERT( engine->ep.allowUnsafeReferences ); return -1; } // Don't allow a value type to be converted if( (desc->parameterTypes[paramNum].GetTypeInfo() && (desc->parameterTypes[paramNum].GetTypeInfo()->GetFlags() & asOBJ_VALUE)) && (desc->parameterTypes[paramNum].GetTypeInfo() != argExpr->type.dataType.GetTypeInfo()) ) { asASSERT( engine->ep.allowUnsafeReferences ); return -1; } } // How well does the argument match the function parameter? if( desc->parameterTypes[paramNum].IsEqualExceptRef(ti.type.dataType) ) return cost; // No match is available return -1; } void asCCompiler::PrepareArgument2(asCExprContext *ctx, asCExprContext *arg, asCDataType *paramType, bool isFunction, int refType, bool isMakingCopy) { // Reference parameters whose value won't be used don't evaluate the expression // Clean arguments (i.e. default value) will be passed in directly as there is nothing to protect if( paramType->IsReference() && !(refType & asTM_INREF) && !arg->isCleanArg ) { // Store the original bytecode so that it can be reused when processing the deferred output parameter asCExprContext *orig = asNEW(asCExprContext)(engine); if( orig == 0 ) { // Out of memory return; } MergeExprBytecodeAndType(orig, arg); arg->origExpr = orig; } PrepareArgument(paramType, arg, arg->exprNode, isFunction, refType, isMakingCopy); // arg still holds the original expression for output parameters ctx->bc.AddCode(&arg->bc); } bool asCCompiler::CompileOverloadedDualOperator(asCScriptNode *node, asCExprContext *lctx, asCExprContext *rctx, bool leftToRight, asCExprContext *ctx, bool isHandle, eTokenType token) { DetermineSingleFunc(lctx, node); DetermineSingleFunc(rctx, node); ctx->exprNode = node; // What type of operator is it? if( token == ttUnrecognizedToken ) token = node->tokenType; if( token == ttUnrecognizedToken ) { // This happens when the compiler is inferring an assignment // operation from another action, for example in preparing a value // as a function argument token = ttAssignment; } // boolean operators are not overloadable if( token == ttAnd || token == ttOr || token == ttXor ) return false; // Dual operators can also be implemented as class methods if( token == ttEqual || token == ttNotEqual ) { // TODO: Should evaluate which of the two have the best match. If both have equal match, the first version should be used // Find the matching opEquals method int r = CompileOverloadedDualOperator2(node, "opEquals", lctx, rctx, leftToRight, ctx, true, asCDataType::CreatePrimitive(ttBool, false)); if( r == 0 ) { // Try again by switching the order of the operands r = CompileOverloadedDualOperator2(node, "opEquals", rctx, lctx, !leftToRight, ctx, true, asCDataType::CreatePrimitive(ttBool, false)); } if( r == 1 ) { if( token == ttNotEqual ) ctx->bc.InstrSHORT(asBC_NOT, ctx->type.stackOffset); // Success, don't continue return true; } else if( r < 0 ) { // Compiler error, don't continue ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttBool, true), true); return true; } } if( token == ttEqual || token == ttNotEqual || token == ttLessThan || token == ttLessThanOrEqual || token == ttGreaterThan || token == ttGreaterThanOrEqual ) { bool swappedOrder = false; // TODO: Should evaluate which of the two have the best match. If both have equal match, the first version should be used // Find the matching opCmp method int r = CompileOverloadedDualOperator2(node, "opCmp", lctx, rctx, leftToRight, ctx, true, asCDataType::CreatePrimitive(ttInt, false)); if( r == 0 ) { // Try again by switching the order of the operands swappedOrder = true; r = CompileOverloadedDualOperator2(node, "opCmp", rctx, lctx, !leftToRight, ctx, true, asCDataType::CreatePrimitive(ttInt, false)); } if( r == 1 ) { ReleaseTemporaryVariable(ctx->type, &ctx->bc); int a = AllocateVariable(asCDataType::CreatePrimitive(ttBool, false), true); ctx->bc.InstrW_DW(asBC_CMPIi, ctx->type.stackOffset, 0); if( token == ttEqual ) ctx->bc.Instr(asBC_TZ); else if( token == ttNotEqual ) ctx->bc.Instr(asBC_TNZ); else if( (token == ttLessThan && !swappedOrder) || (token == ttGreaterThan && swappedOrder) ) ctx->bc.Instr(asBC_TS); else if( (token == ttLessThanOrEqual && !swappedOrder) || (token == ttGreaterThanOrEqual && swappedOrder) ) ctx->bc.Instr(asBC_TNP); else if( (token == ttGreaterThan && !swappedOrder) || (token == ttLessThan && swappedOrder) ) ctx->bc.Instr(asBC_TP); else if( (token == ttGreaterThanOrEqual && !swappedOrder) || (token == ttLessThanOrEqual && swappedOrder) ) ctx->bc.Instr(asBC_TNS); ctx->bc.InstrSHORT(asBC_CpyRtoV4, (short)a); ctx->type.SetVariable(asCDataType::CreatePrimitive(ttBool, false), a, true); // Success, don't continue return true; } else if( r < 0 ) { // Compiler error, don't continue #if AS_SIZEOF_BOOL == 1 ctx->type.SetConstantB(asCDataType::CreatePrimitive(ttBool, true), true); #else ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttBool, true), true); #endif return true; } } // The rest of the operators are not commutative, and doesn't require specific return type const char *op = 0, *op_r = 0; switch( int(token) ) // convert to int to avoid warning in gnuc that not all values are tested { case ttPlus: op = "opAdd"; op_r = "opAdd_r"; break; case ttMinus: op = "opSub"; op_r = "opSub_r"; break; case ttStar: op = "opMul"; op_r = "opMul_r"; break; case ttSlash: op = "opDiv"; op_r = "opDiv_r"; break; case ttPercent: op = "opMod"; op_r = "opMod_r"; break; case ttStarStar: op = "opPow"; op_r = "opPow_r"; break; case ttBitOr: op = "opOr"; op_r = "opOr_r"; break; case ttAmp: op = "opAnd"; op_r = "opAnd_r"; break; case ttBitXor: op = "opXor"; op_r = "opXor_r"; break; case ttBitShiftLeft: op = "opShl"; op_r = "opShl_r"; break; case ttBitShiftRight: op = "opShr"; op_r = "opShr_r"; break; case ttBitShiftRightArith: op = "opUShr"; op_r = "opUShr_r"; break; } // TODO: Might be interesting to support a concatenation operator, e.g. ~ if( op && op_r ) { // TODO: Should evaluate which of the two have the best match. If both have equal match, the first version should be used // Find the matching operator method int r = CompileOverloadedDualOperator2(node, op, lctx, rctx, leftToRight, ctx); if( r == 0 ) { // Try again by switching the order of the operands, and using the reversed operator r = CompileOverloadedDualOperator2(node, op_r, rctx, lctx, !leftToRight, ctx); } if( r == 1 ) { // Success, don't continue return true; } else if( r < 0 ) { // Compiler error, don't continue ctx->type.SetDummy(); return true; } } // Assignment operators op = 0; if( isHandle ) { // Only asOBJ_ASHANDLE types can get here asASSERT( lctx->type.dataType.GetTypeInfo() && (lctx->type.dataType.GetTypeInfo()->flags & asOBJ_ASHANDLE) ); asASSERT( token == ttAssignment ); if( token == ttAssignment ) op = "opHndlAssign"; } else { switch( int(token) ) // convert to int to avoid warning in gnuc that not all values are tested { case ttAssignment: op = "opAssign"; break; case ttAddAssign: op = "opAddAssign"; break; case ttSubAssign: op = "opSubAssign"; break; case ttMulAssign: op = "opMulAssign"; break; case ttDivAssign: op = "opDivAssign"; break; case ttModAssign: op = "opModAssign"; break; case ttPowAssign: op = "opPowAssign"; break; case ttOrAssign: op = "opOrAssign"; break; case ttAndAssign: op = "opAndAssign"; break; case ttXorAssign: op = "opXorAssign"; break; case ttShiftLeftAssign: op = "opShlAssign"; break; case ttShiftRightLAssign: op = "opShrAssign"; break; case ttShiftRightAAssign: op = "opUShrAssign"; break; } } if( op ) { if( builder->engine->ep.disallowValueAssignForRefType && lctx->type.dataType.GetTypeInfo() && (lctx->type.dataType.GetTypeInfo()->flags & asOBJ_REF) && !(lctx->type.dataType.GetTypeInfo()->flags & asOBJ_SCOPED) ) { if( token == ttAssignment ) Error(TXT_DISALLOW_ASSIGN_ON_REF_TYPE, node); else Error(TXT_DISALLOW_COMPOUND_ASSIGN_ON_REF_TYPE, node); // Set a dummy output ctx->type.Set(lctx->type.dataType); return true; } // TODO: Shouldn't accept const lvalue with the assignment operators // Find the matching operator method int r = CompileOverloadedDualOperator2(node, op, lctx, rctx, false, ctx); if( r == 1 ) { // Success, don't continue return true; } else if( r < 0 ) { // Compiler error, don't continue ctx->type.SetDummy(); return true; } } // No suitable operator was found return false; } // Returns negative on compile error // zero on no matching operator // one on matching operator int asCCompiler::CompileOverloadedDualOperator2(asCScriptNode *node, const char *methodName, asCExprContext *lctx, asCExprContext *rctx, bool leftToRight, asCExprContext *ctx, bool specificReturn, const asCDataType &returnType) { // Find the matching method if( lctx->type.dataType.IsObject() && (!lctx->type.isExplicitHandle || lctx->type.dataType.GetTypeInfo()->flags & asOBJ_ASHANDLE) ) { asUINT n; // Is the left value a const? bool isConst = lctx->type.dataType.IsObjectConst(); asCArray funcs; asCObjectType *ot = CastToObjectType(lctx->type.dataType.GetTypeInfo()); for( n = 0; n < ot->methods.GetLength(); n++ ) { asCScriptFunction *func = engine->scriptFunctions[ot->methods[n]]; asASSERT( func ); if( func && func->name == methodName && (!specificReturn || func->returnType == returnType) && func->parameterTypes.GetLength() == 1 && (!isConst || func->IsReadOnly()) ) { // Make sure the method is accessible by the module if( builder->module->accessMask & func->accessMask ) { funcs.PushLast(func->id); } } } // Which is the best matching function? asCArray tempFuncs; MatchArgument(funcs, tempFuncs, rctx, 0); // Find the lowest cost operator(s) asCArray ops; asUINT bestCost = asUINT(-1); for( n = 0; n < tempFuncs.GetLength(); ++n ) { asUINT cost = tempFuncs[n].cost; if( cost < bestCost ) { ops.SetLength(0); bestCost = cost; } if( cost == bestCost ) ops.PushLast(tempFuncs[n].funcId); } // If the object is not const, then we need to prioritize non-const methods if( !isConst ) FilterConst(ops); // Did we find an operator? if( ops.GetLength() == 1 ) { // Reserve the variables used in the right expression so the new temporary // variable allocated for the left operand isn't accidentally overwritten. int l = int(reservedVariables.GetLength()); rctx->bc.GetVarsUsed(reservedVariables); // Process the lctx expression as get accessor ProcessPropertyGetAccessor(lctx, node); reservedVariables.SetLength(l); asCExprContext tmpCtx(engine); if (leftToRight) { // Make sure lctx is in fact a variable. If it is a reference there is no // guarantee that the reference will stay alive throughout the evaluation of rctx if (!lctx->type.isVariable) { // Reserve the variables used in the right expression so the new temporary // variable allocated for the left operand isn't accidentally overwritten. l = int(reservedVariables.GetLength()); rctx->bc.GetVarsUsed(reservedVariables); if (lctx->type.dataType.SupportHandles()) lctx->type.dataType.MakeHandle(true); PrepareTemporaryVariable(node, lctx); reservedVariables.SetLength(l); } // Move the bytecode for the left operand to a temporary context // so we can later make sure this is computed first tmpCtx.bc.AddCode(&lctx->bc); tmpCtx.bc.Instr(asBC_PopPtr); // Add bytecode to push the object pointer computed in the left operand on the stack as the this pointer // This will be placed after rctx by MakeFunctionCall below lctx->bc.InstrWORD(asBC_PSF, lctx->type.stackOffset); // Implicitly dereference handle parameters sent by reference sVariable *v = variables->GetVariableByOffset(lctx->type.stackOffset); if (v && v->type.IsReference() && (!v->type.IsObject() || v->type.IsObjectHandle())) lctx->bc.Instr(asBC_RDSPtr); } else { // Make sure the rvalue doesn't have deferred temporary variables that are also used in the lvalue, // since that would cause the VM to overwrite the variable while executing the bytecode for the lvalue. asCArray usedVars; lctx->bc.GetVarsUsed(usedVars); asUINT oldReservedVars = reservedVariables.GetLength(); for (n = 0; n < rctx->deferredParams.GetLength(); n++) { if (rctx->deferredParams[n].argType.isTemporary && usedVars.Exists(rctx->deferredParams[n].argType.stackOffset)) { if (reservedVariables.GetLength() == oldReservedVars) reservedVariables.Concatenate(usedVars); // Allocate a new variable for the deferred argument int offset = AllocateVariableNotIn(rctx->deferredParams[n].argType.dataType, true, false, rctx); int oldVar = rctx->deferredParams[n].argType.stackOffset; rctx->deferredParams[n].argType.stackOffset = short(offset); rctx->bc.ExchangeVar(oldVar, offset); ReleaseTemporaryVariable(oldVar, 0); } } reservedVariables.SetLength(oldReservedVars); } // Merge the bytecode so that it forms lvalue.methodName(rvalue) asCArray args; args.PushLast(rctx); MergeExprBytecode(ctx, lctx); ctx->type = lctx->type; MakeFunctionCall(ctx, ops[0], CastToObjectType(ctx->type.dataType.GetTypeInfo()), args, node); // Rearrange the bytecode so the left argument is computed first if (leftToRight) { tmpCtx.bc.AddCode(&ctx->bc); ctx->bc.AddCode(&tmpCtx.bc); } // Found matching operator return 1; } else if( ops.GetLength() > 1 ) { Error(TXT_MORE_THAN_ONE_MATCHING_OP, node); PrintMatchingFuncs(ops, node); ctx->type.SetDummy(); // Compiler error return -1; } } // No matching operator return 0; } void asCCompiler::MakeFunctionCall(asCExprContext *ctx, int funcId, asCObjectType *objectType, asCArray &args, asCScriptNode *node, bool useVariable, int stackOffset, int funcPtrVar) { if( objectType ) Dereference(ctx, true); // Store the expression node for error reporting if( ctx->exprNode == 0 ) ctx->exprNode = node; asCByteCode objBC(engine); objBC.AddCode(&ctx->bc); PrepareFunctionCall(funcId, &ctx->bc, args); // Verify if any of the args variable offsets are used in the other code. // If they are exchange the offset for a new one asUINT n; for( n = 0; n < args.GetLength(); n++ ) { if( args[n]->type.isTemporary && objBC.IsVarUsed(args[n]->type.stackOffset) ) { // Release the current temporary variable ReleaseTemporaryVariable(args[n]->type, 0); asCDataType dt = args[n]->type.dataType; dt.MakeReference(false); int l = int(reservedVariables.GetLength()); objBC.GetVarsUsed(reservedVariables); ctx->bc.GetVarsUsed(reservedVariables); int newOffset = AllocateVariable(dt, true, IsVariableOnHeap(args[n]->type.stackOffset)); reservedVariables.SetLength(l); asASSERT( IsVariableOnHeap(args[n]->type.stackOffset) == IsVariableOnHeap(newOffset) ); ctx->bc.ExchangeVar(args[n]->type.stackOffset, newOffset); args[n]->type.stackOffset = (short)newOffset; args[n]->type.isTemporary = true; args[n]->type.isVariable = true; } } // If the function will return a value type on the stack, then we must allocate space // for that here and push the address on the stack as a hidden argument to the function asCScriptFunction *func = builder->GetFunctionDescription(funcId); if( func->DoesReturnOnStack() ) { asASSERT(!useVariable); useVariable = true; stackOffset = AllocateVariable(func->returnType, true); ctx->bc.InstrSHORT(asBC_PSF, short(stackOffset)); } ctx->bc.AddCode(&objBC); MoveArgsToStack(funcId, &ctx->bc, args, objectType ? true : false); PerformFunctionCall(funcId, ctx, false, &args, 0, useVariable, stackOffset, funcPtrVar); } int asCCompiler::CompileOperator(asCScriptNode *node, asCExprContext *lctx, asCExprContext *rctx, asCExprContext *ctx, eTokenType op, bool leftToRight) { // Don't allow any operators on expressions that take address of class method, but allow it on global functions if( (lctx->IsClassMethod()) || (rctx->IsClassMethod()) ) { Error(TXT_INVALID_OP_ON_METHOD, node); return -1; } // Don't allow any operators on void expressions if( lctx->IsVoidExpression() || rctx->IsVoidExpression() ) { Error(TXT_VOID_CANT_BE_OPERAND, node); return -1; } if( op == ttUnrecognizedToken ) op = node->tokenType; IsVariableInitialized(&lctx->type, node); IsVariableInitialized(&rctx->type, node); if( lctx->type.isExplicitHandle || rctx->type.isExplicitHandle || lctx->type.IsNullConstant() || rctx->type.IsNullConstant() || op == ttIs || op == ttNotIs ) { CompileOperatorOnHandles(node, lctx, rctx, ctx, op); return 0; } else { // Compile an overloaded operator for the two operands if( CompileOverloadedDualOperator(node, lctx, rctx, leftToRight, ctx, false, op) ) return 0; // If both operands are objects, then we shouldn't continue if( lctx->type.dataType.IsObject() && rctx->type.dataType.IsObject() ) { asCString str; str.Format(TXT_NO_MATCHING_OP_FOUND_FOR_TYPES_s_AND_s, lctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), rctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, node); ctx->type.SetDummy(); return -1; } // Process the property get accessors (if any) ProcessPropertyGetAccessor(lctx, node); ProcessPropertyGetAccessor(rctx, node); // Make sure we have two variables or constants if( lctx->type.dataType.IsReference() ) ConvertToVariableNotIn(lctx, rctx); if( rctx->type.dataType.IsReference() ) ConvertToVariableNotIn(rctx, lctx); // Make sure lctx doesn't end up with a variable used in rctx if( lctx->type.isTemporary && rctx->bc.IsVarUsed(lctx->type.stackOffset) ) { int offset = AllocateVariableNotIn(lctx->type.dataType, true, false, rctx); rctx->bc.ExchangeVar(lctx->type.stackOffset, offset); ReleaseTemporaryVariable(offset, 0); } // Math operators // + - * / % ** += -= *= /= %= **= if( op == ttPlus || op == ttAddAssign || op == ttMinus || op == ttSubAssign || op == ttStar || op == ttMulAssign || op == ttSlash || op == ttDivAssign || op == ttPercent || op == ttModAssign || op == ttStarStar || op == ttPowAssign ) { CompileMathOperator(node, lctx, rctx, ctx, op); return 0; } // Bitwise operators // << >> >>> & | ^ <<= >>= >>>= &= |= ^= if( op == ttAmp || op == ttAndAssign || op == ttBitOr || op == ttOrAssign || op == ttBitXor || op == ttXorAssign || op == ttBitShiftLeft || op == ttShiftLeftAssign || op == ttBitShiftRight || op == ttShiftRightLAssign || op == ttBitShiftRightArith || op == ttShiftRightAAssign ) { CompileBitwiseOperator(node, lctx, rctx, ctx, op); return 0; } // Comparison operators // == != < > <= >= if( op == ttEqual || op == ttNotEqual || op == ttLessThan || op == ttLessThanOrEqual || op == ttGreaterThan || op == ttGreaterThanOrEqual ) { CompileComparisonOperator(node, lctx, rctx, ctx, op); return 0; } // Boolean operators // && || ^^ if( op == ttAnd || op == ttOr || op == ttXor ) { CompileBooleanOperator(node, lctx, rctx, ctx, op); return 0; } } asASSERT(false); return -1; } void asCCompiler::ConvertToTempVariableNotIn(asCExprContext *ctx, asCExprContext *exclude) { int l = int(reservedVariables.GetLength()); if( exclude ) exclude->bc.GetVarsUsed(reservedVariables); ConvertToTempVariable(ctx); reservedVariables.SetLength(l); } void asCCompiler::ConvertToTempVariable(asCExprContext *ctx) { // This is only used for primitive types and null handles asASSERT( ctx->type.dataType.IsPrimitive() || ctx->type.dataType.IsNullHandle() ); ConvertToVariable(ctx); if( !ctx->type.isTemporary ) { if( ctx->type.dataType.IsPrimitive() ) { // Copy the variable to a temporary variable int offset = AllocateVariable(ctx->type.dataType, true); if( ctx->type.dataType.GetSizeInMemoryDWords() == 1 ) ctx->bc.InstrW_W(asBC_CpyVtoV4, offset, ctx->type.stackOffset); else ctx->bc.InstrW_W(asBC_CpyVtoV8, offset, ctx->type.stackOffset); ctx->type.SetVariable(ctx->type.dataType, offset, true); } else { // We should never get here asASSERT(false); } } } void asCCompiler::ConvertToVariable(asCExprContext *ctx) { // We should never get here while the context is still an unprocessed property accessor asASSERT(ctx->property_get == 0 && ctx->property_set == 0); int offset; if( !ctx->type.isVariable && (ctx->type.dataType.IsObjectHandle() || (ctx->type.dataType.IsObject() && ctx->type.dataType.SupportHandles())) ) { offset = AllocateVariable(ctx->type.dataType, true); if( ctx->type.IsNullConstant() ) { if( ctx->bc.GetLastInstr() == asBC_PshNull ) ctx->bc.Instr(asBC_PopPtr); // Pop the null constant pushed onto the stack ctx->bc.InstrSHORT(asBC_ClrVPtr, (short)offset); } else { Dereference(ctx, true); // Copy the object handle to a variable ctx->bc.InstrSHORT(asBC_PSF, (short)offset); if( ctx->type.dataType.IsFuncdef() ) ctx->bc.InstrPTR(asBC_REFCPY, &engine->functionBehaviours); else ctx->bc.InstrPTR(asBC_REFCPY, ctx->type.dataType.GetTypeInfo()); ctx->bc.Instr(asBC_PopPtr); } // As this is an object the reference must be placed on the stack ctx->bc.InstrSHORT(asBC_PSF, (short)offset); ReleaseTemporaryVariable(ctx->type, &ctx->bc); ctx->type.SetVariable(ctx->type.dataType, offset, true); ctx->type.dataType.MakeHandle(true); ctx->type.dataType.MakeReference(true); } else if( (!ctx->type.isVariable || ctx->type.dataType.IsReference()) && ctx->type.dataType.IsPrimitive() ) { if( ctx->type.isConstant ) { offset = AllocateVariable(ctx->type.dataType, true); if( ctx->type.dataType.GetSizeInMemoryBytes() == 1 ) ctx->bc.InstrSHORT_B(asBC_SetV1, (short)offset, ctx->type.GetConstantB()); else if( ctx->type.dataType.GetSizeInMemoryBytes() == 2 ) ctx->bc.InstrSHORT_W(asBC_SetV2, (short)offset, ctx->type.GetConstantW()); else if( ctx->type.dataType.GetSizeInMemoryBytes() == 4 ) ctx->bc.InstrSHORT_DW(asBC_SetV4, (short)offset, ctx->type.GetConstantDW()); else ctx->bc.InstrSHORT_QW(asBC_SetV8, (short)offset, ctx->type.GetConstantQW()); ctx->type.SetVariable(ctx->type.dataType, offset, true); return; } else { asASSERT(ctx->type.dataType.IsPrimitive()); asASSERT(ctx->type.dataType.IsReference()); ctx->type.dataType.MakeReference(false); offset = AllocateVariable(ctx->type.dataType, true); // Read the value from the address in the register directly into the variable if( ctx->type.dataType.GetSizeInMemoryBytes() == 1 ) ctx->bc.InstrSHORT(asBC_RDR1, (short)offset); else if( ctx->type.dataType.GetSizeInMemoryBytes() == 2 ) ctx->bc.InstrSHORT(asBC_RDR2, (short)offset); else if( ctx->type.dataType.GetSizeInMemoryDWords() == 1 ) ctx->bc.InstrSHORT(asBC_RDR4, (short)offset); else ctx->bc.InstrSHORT(asBC_RDR8, (short)offset); } ReleaseTemporaryVariable(ctx->type, &ctx->bc); ctx->type.SetVariable(ctx->type.dataType, offset, true); } } void asCCompiler::ConvertToVariableNotIn(asCExprContext *ctx, asCExprContext *exclude) { int l = int(reservedVariables.GetLength()); if( exclude ) exclude->bc.GetVarsUsed(reservedVariables); ConvertToVariable(ctx); reservedVariables.SetLength(l); } void asCCompiler::ImplicitConvObjectToBestMathType(asCExprContext *ctx, asCScriptNode *node) { asCArray funcs; asCObjectType *ot = CastToObjectType(ctx->type.dataType.GetTypeInfo()); if( ot ) { for( unsigned int n = 0; n < ot->methods.GetLength(); n++ ) { // Consider only implicit casts asCScriptFunction *func = engine->scriptFunctions[ot->methods[n]]; if( func->name == "opImplConv" && func->returnType.IsPrimitive() && func->parameterTypes.GetLength() == 0 ) funcs.PushLast(ot->methods[n]); } // Use the one with the highest precision const eTokenType match[10] = {ttDouble, ttFloat, ttInt64, ttUInt64, ttInt, ttUInt, ttInt16, ttUInt16, ttInt8, ttUInt8}; while( funcs.GetLength() > 1 ) { eTokenType returnType = builder->GetFunctionDescription(funcs[0])->returnType.GetTokenType(); int value1 = 11, value2 = 11; for( asUINT i = 0; i < 10; i++ ) { if( returnType == match[i] ) { value1 = i; break; } } for( asUINT n = 1; n < funcs.GetLength(); n++ ) { returnType = builder->GetFunctionDescription(funcs[n])->returnType.GetTokenType(); for( asUINT i = 0; i < 10; i++ ) { if( returnType == match[i] ) { value2 = i; break; } } if( value2 >= value1 ) { // Remove this and continue searching funcs.RemoveIndexUnordered(n--); } else { // Remove the first, and start over funcs.RemoveIndexUnordered(0); break; } } } // Do the conversion if( funcs.GetLength() ) ImplicitConvObjectToPrimitive(ctx, builder->GetFunctionDescription(funcs[0])->returnType, node, asIC_IMPLICIT_CONV); } } void asCCompiler::CompileMathOperator(asCScriptNode *node, asCExprContext *lctx, asCExprContext *rctx, asCExprContext *ctx, eTokenType op) { // TODO: If a constant is only using 32bits, then a 32bit operation is preferred // TODO: clean up: This initial part is identical to CompileComparisonOperator. Make a common function out of it // If either operand is a non-primitive then use the primitive type if( !lctx->type.dataType.IsPrimitive() ) { int l = int(reservedVariables.GetLength()); rctx->bc.GetVarsUsed(reservedVariables); ImplicitConvObjectToBestMathType(lctx, node); reservedVariables.SetLength(l); } if( !rctx->type.dataType.IsPrimitive() ) { int l = int(reservedVariables.GetLength()); lctx->bc.GetVarsUsed(reservedVariables); ImplicitConvObjectToBestMathType(rctx, node); reservedVariables.SetLength(l); } // Both types must now be primitives. Implicitly convert them so they match asCDataType to; if( lctx->type.dataType.IsDoubleType() || rctx->type.dataType.IsDoubleType() ) to.SetTokenType(ttDouble); else if( lctx->type.dataType.IsFloatType() || rctx->type.dataType.IsFloatType() ) to.SetTokenType(ttFloat); else if( lctx->type.dataType.GetSizeInMemoryDWords() == 2 || rctx->type.dataType.GetSizeInMemoryDWords() == 2 ) { // Convert to int64 if both are signed or if one is non-constant and signed if( (lctx->type.dataType.IsIntegerType() && !lctx->type.isConstant) || (rctx->type.dataType.IsIntegerType() && !rctx->type.isConstant) ) to.SetTokenType(ttInt64); else if( lctx->type.dataType.IsUnsignedType() || rctx->type.dataType.IsUnsignedType() ) to.SetTokenType(ttUInt64); else to.SetTokenType(ttInt64); } else { // Convert to int32 if both are signed or if one is non-constant and signed if( (lctx->type.dataType.IsIntegerType() && !lctx->type.isConstant) || (rctx->type.dataType.IsIntegerType() && !rctx->type.isConstant) ) to.SetTokenType(ttInt); else if( lctx->type.dataType.IsUnsignedType() || rctx->type.dataType.IsUnsignedType() ) to.SetTokenType(ttUInt); else to.SetTokenType(ttInt); } // If doing an operation with double constant and float variable, the constant should be converted to float if( (lctx->type.isConstant && lctx->type.dataType.IsDoubleType() && !rctx->type.isConstant && rctx->type.dataType.IsFloatType()) || (rctx->type.isConstant && rctx->type.dataType.IsDoubleType() && !lctx->type.isConstant && lctx->type.dataType.IsFloatType()) ) to.SetTokenType(ttFloat); if( op == ttUnrecognizedToken ) op = node->tokenType; // If integer division is disabled, convert to floating-point if( engine->ep.disableIntegerDivision && (op == ttSlash || op == ttDivAssign) && (to.IsIntegerType() || to.IsUnsignedType()) ) { // Use double to avoid losing precision when dividing with 32bit ints // For 64bit ints there is unfortunately no greater type so with those // there is still a risk of loosing precision to.SetTokenType(ttDouble); } // Do the actual conversion int l = int(reservedVariables.GetLength()); rctx->bc.GetVarsUsed(reservedVariables); lctx->bc.GetVarsUsed(reservedVariables); if( lctx->type.dataType.IsReference() ) ConvertToVariable(lctx); if( rctx->type.dataType.IsReference() ) ConvertToVariable(rctx); if( to.IsPrimitive() ) { // ttStarStar allows an integer, right-hand operand and a double // left-hand operand. if( (op == ttStarStar || op == ttPowAssign) && lctx->type.dataType.IsDoubleType() && (rctx->type.dataType.IsIntegerType() || rctx->type.dataType.IsUnsignedType()) ) { to.SetTokenType(ttInt); ImplicitConversion(rctx, to, node, asIC_IMPLICIT_CONV, true); to.SetTokenType(ttDouble); } else { ImplicitConversion(lctx, to, node, asIC_IMPLICIT_CONV, true); ImplicitConversion(rctx, to, node, asIC_IMPLICIT_CONV, true); } } reservedVariables.SetLength(l); // Verify that the conversion was successful if( !lctx->type.dataType.IsIntegerType() && !lctx->type.dataType.IsUnsignedType() && !lctx->type.dataType.IsFloatType() && !lctx->type.dataType.IsDoubleType() ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_MATH_TYPE, lctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, node); ctx->type.SetDummy(); return; } if( !rctx->type.dataType.IsIntegerType() && !rctx->type.dataType.IsUnsignedType() && !rctx->type.dataType.IsFloatType() && !rctx->type.dataType.IsDoubleType() ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_MATH_TYPE, rctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, node); ctx->type.SetDummy(); return; } bool isConstant = lctx->type.isConstant && rctx->type.isConstant; // Verify if we are dividing with a constant zero if( rctx->type.isConstant && (op == ttSlash || op == ttDivAssign || op == ttPercent || op == ttModAssign) && ((rctx->type.dataType.GetSizeInMemoryBytes() == 4 && rctx->type.GetConstantDW() == 0) || (rctx->type.dataType.GetSizeInMemoryBytes() == 8 && rctx->type.GetConstantQW() == 0) || (rctx->type.dataType.GetSizeInMemoryBytes() == 1 && rctx->type.GetConstantB() == 0) || (rctx->type.dataType.GetSizeInMemoryBytes() == 2 && rctx->type.GetConstantW() == 0)) ) { Error(TXT_DIVIDE_BY_ZERO, node); } if( !isConstant ) { ConvertToVariableNotIn(lctx, rctx); ConvertToVariableNotIn(rctx, lctx); ReleaseTemporaryVariable(lctx->type, &lctx->bc); ReleaseTemporaryVariable(rctx->type, &rctx->bc); if( op == ttAddAssign || op == ttSubAssign || op == ttMulAssign || op == ttDivAssign || op == ttModAssign || op == ttPowAssign ) { // Merge the operands in the different order so that they are evaluated correctly MergeExprBytecode(ctx, rctx); MergeExprBytecode(ctx, lctx); // We must not process the deferred parameters yet, as // it may overwrite the lvalue kept in the register } else { MergeExprBytecode(ctx, lctx); MergeExprBytecode(ctx, rctx); ProcessDeferredParams(ctx); } asEBCInstr instruction = asBC_ADDi; if( lctx->type.dataType.IsIntegerType() || lctx->type.dataType.IsUnsignedType() ) { if( lctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { if( op == ttPlus || op == ttAddAssign ) instruction = asBC_ADDi; else if( op == ttMinus || op == ttSubAssign ) instruction = asBC_SUBi; else if( op == ttStar || op == ttMulAssign ) instruction = asBC_MULi; else if( op == ttSlash || op == ttDivAssign ) { if( lctx->type.dataType.IsIntegerType() ) instruction = asBC_DIVi; else instruction = asBC_DIVu; } else if( op == ttPercent || op == ttModAssign ) { if( lctx->type.dataType.IsIntegerType() ) instruction = asBC_MODi; else instruction = asBC_MODu; } else if( op == ttStarStar || op == ttPowAssign ) { if( lctx->type.dataType.IsIntegerType() ) instruction = asBC_POWi; else instruction = asBC_POWu; } } else { if( op == ttPlus || op == ttAddAssign ) instruction = asBC_ADDi64; else if( op == ttMinus || op == ttSubAssign ) instruction = asBC_SUBi64; else if( op == ttStar || op == ttMulAssign ) instruction = asBC_MULi64; else if( op == ttSlash || op == ttDivAssign ) { if( lctx->type.dataType.IsIntegerType() ) instruction = asBC_DIVi64; else instruction = asBC_DIVu64; } else if( op == ttPercent || op == ttModAssign ) { if( lctx->type.dataType.IsIntegerType() ) instruction = asBC_MODi64; else instruction = asBC_MODu64; } else if( op == ttStarStar || op == ttPowAssign ) { if( lctx->type.dataType.IsIntegerType() ) instruction = asBC_POWi64; else instruction = asBC_POWu64; } } } else if( lctx->type.dataType.IsFloatType() ) { if( op == ttPlus || op == ttAddAssign ) instruction = asBC_ADDf; else if( op == ttMinus || op == ttSubAssign ) instruction = asBC_SUBf; else if( op == ttStar || op == ttMulAssign ) instruction = asBC_MULf; else if( op == ttSlash || op == ttDivAssign ) instruction = asBC_DIVf; else if( op == ttPercent || op == ttModAssign ) instruction = asBC_MODf; else if( op == ttStarStar || op == ttPowAssign ) instruction = asBC_POWf; } else if( lctx->type.dataType.IsDoubleType() ) { if( rctx->type.dataType.IsIntegerType() ) { asASSERT(rctx->type.dataType.GetSizeInMemoryDWords() == 1); if( op == ttStarStar || op == ttPowAssign ) instruction = asBC_POWdi; else asASSERT(false); // Should not be possible } else { if( op == ttPlus || op == ttAddAssign ) instruction = asBC_ADDd; else if( op == ttMinus || op == ttSubAssign ) instruction = asBC_SUBd; else if( op == ttStar || op == ttMulAssign ) instruction = asBC_MULd; else if( op == ttSlash || op == ttDivAssign ) instruction = asBC_DIVd; else if( op == ttPercent || op == ttModAssign ) instruction = asBC_MODd; else if( op == ttStarStar || op == ttPowAssign ) instruction = asBC_POWd; } } else { // Shouldn't be possible asASSERT(false); } // Do the operation int a = AllocateVariable(lctx->type.dataType, true); int b = lctx->type.stackOffset; int c = rctx->type.stackOffset; ctx->bc.InstrW_W_W(instruction, a, b, c); ctx->type.SetVariable(lctx->type.dataType, a, true); } else { // Both values are constants if( lctx->type.dataType.IsIntegerType() || lctx->type.dataType.IsUnsignedType() ) { if( lctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { int v = 0; if( op == ttPlus ) v = int(lctx->type.GetConstantDW()) + int(rctx->type.GetConstantDW()); else if( op == ttMinus ) v = int(lctx->type.GetConstantDW()) - int(rctx->type.GetConstantDW()); else if( op == ttStar ) v = int(lctx->type.GetConstantDW()) * int(rctx->type.GetConstantDW()); else if( op == ttSlash ) { // TODO: Should probably report an error, rather than silently convert the value to 0 if( rctx->type.GetConstantDW() == 0 || (int(rctx->type.GetConstantDW()) == -1 && lctx->type.GetConstantDW() == 0x80000000) ) v = 0; else if( lctx->type.dataType.IsIntegerType() ) v = int(lctx->type.GetConstantDW()) / int(rctx->type.GetConstantDW()); else v = lctx->type.GetConstantDW() / rctx->type.GetConstantDW(); } else if( op == ttPercent ) { // TODO: Should probably report an error, rather than silently convert the value to 0 if( rctx->type.GetConstantDW() == 0 || (int(rctx->type.GetConstantDW()) == -1 && lctx->type.GetConstantDW() == 0x80000000) ) v = 0; else if( lctx->type.dataType.IsIntegerType() ) v = int(lctx->type.GetConstantDW()) % int(rctx->type.GetConstantDW()); else v = lctx->type.GetConstantDW() % rctx->type.GetConstantDW(); } else if( op == ttStarStar ) { bool isOverflow; if( lctx->type.dataType.IsIntegerType() ) v = as_powi(int(lctx->type.GetConstantDW()), int(rctx->type.GetConstantDW()), isOverflow); else v = as_powu(lctx->type.GetConstantDW(), rctx->type.GetConstantDW(), isOverflow); if( isOverflow ) Error(TXT_POW_OVERFLOW, node); } ctx->type.SetConstantDW(lctx->type.dataType, v); // If the right value is greater than the left value in a minus operation, then we need to convert the type to int if( lctx->type.dataType.GetTokenType() == ttUInt && op == ttMinus && lctx->type.GetConstantDW() < rctx->type.GetConstantDW()) ctx->type.dataType.SetTokenType(ttInt); } else { asQWORD v = 0; if( op == ttPlus ) v = asINT64(lctx->type.GetConstantQW()) + asINT64(rctx->type.GetConstantQW()); else if( op == ttMinus ) v = asINT64(lctx->type.GetConstantQW()) - asINT64(rctx->type.GetConstantQW()); else if( op == ttStar ) v = asINT64(lctx->type.GetConstantQW()) * asINT64(rctx->type.GetConstantQW()); else if( op == ttSlash ) { // TODO: Should probably report an error, rather than silently convert the value to 0 if( rctx->type.GetConstantQW() == 0 || (rctx->type.GetConstantQW() == asQWORD(-1) && lctx->type.GetConstantQW() == (asQWORD(1)<<63)) ) v = 0; else if( lctx->type.dataType.IsIntegerType() ) v = asINT64(lctx->type.GetConstantQW()) / asINT64(rctx->type.GetConstantQW()); else v = lctx->type.GetConstantQW() / rctx->type.GetConstantQW(); } else if( op == ttPercent ) { // TODO: Should probably report an error, rather than silently convert the value to 0 if( rctx->type.GetConstantQW() == 0 || (rctx->type.GetConstantQW() == asQWORD(-1) && lctx->type.GetConstantQW() == (asQWORD(1)<<63)) ) v = 0; else if( lctx->type.dataType.IsIntegerType() ) v = asINT64(lctx->type.GetConstantQW()) % asINT64(rctx->type.GetConstantQW()); else v = lctx->type.GetConstantQW() % rctx->type.GetConstantQW(); } else if( op == ttStarStar ) { bool isOverflow; if( lctx->type.dataType.IsIntegerType() ) v = as_powi64(asINT64(lctx->type.GetConstantQW()), asINT64(rctx->type.GetConstantQW()), isOverflow); else v = as_powu64(lctx->type.GetConstantQW(), rctx->type.GetConstantQW(), isOverflow); if( isOverflow ) Error(TXT_POW_OVERFLOW, node); } ctx->type.SetConstantQW(lctx->type.dataType, v); // If the right value is greater than the left value in a minus operation, then we need to convert the type to int if( lctx->type.dataType.GetTokenType() == ttUInt64 && op == ttMinus && lctx->type.GetConstantQW() < rctx->type.GetConstantQW()) ctx->type.dataType.SetTokenType(ttInt64); } } else if( lctx->type.dataType.IsFloatType() ) { float v = 0.0f; if( op == ttPlus ) v = lctx->type.GetConstantF() + rctx->type.GetConstantF(); else if( op == ttMinus ) v = lctx->type.GetConstantF() - rctx->type.GetConstantF(); else if( op == ttStar ) v = lctx->type.GetConstantF() * rctx->type.GetConstantF(); else if( op == ttSlash ) { if( rctx->type.GetConstantF() == 0 ) v = 0; else v = lctx->type.GetConstantF() / rctx->type.GetConstantF(); } else if( op == ttPercent ) { if( rctx->type.GetConstantF() == 0 ) v = 0; else v = fmodf(lctx->type.GetConstantF(), rctx->type.GetConstantF()); } else if( op == ttStarStar ) { v = powf(lctx->type.GetConstantF(), rctx->type.GetConstantF()); if( v == HUGE_VAL ) Error(TXT_POW_OVERFLOW, node); } ctx->type.SetConstantF(lctx->type.dataType, v); } else if( lctx->type.dataType.IsDoubleType() ) { double v = 0.0; if( rctx->type.dataType.IsIntegerType() ) { asASSERT(rctx->type.dataType.GetSizeInMemoryDWords() == 1); if( op == ttStarStar || op == ttPowAssign ) { v = pow(lctx->type.GetConstantD(), int(rctx->type.GetConstantDW())); if( v == HUGE_VAL ) Error(TXT_POW_OVERFLOW, node); } else asASSERT(false); // Should not be possible } else { if( op == ttPlus ) v = lctx->type.GetConstantD() + rctx->type.GetConstantD(); else if( op == ttMinus ) v = lctx->type.GetConstantD() - rctx->type.GetConstantD(); else if( op == ttStar ) v = lctx->type.GetConstantD() * rctx->type.GetConstantD(); else if( op == ttSlash ) { if( rctx->type.GetConstantD() == 0 ) v = 0; else v = lctx->type.GetConstantD() / rctx->type.GetConstantD(); } else if( op == ttPercent ) { if( rctx->type.GetConstantD() == 0 ) v = 0; else v = fmod(lctx->type.GetConstantD(), rctx->type.GetConstantD()); } else if( op == ttStarStar ) { v = pow(lctx->type.GetConstantD(), rctx->type.GetConstantD()); if( v == HUGE_VAL ) Error(TXT_POW_OVERFLOW, node); } } ctx->type.SetConstantD(lctx->type.dataType, v); } else { // Shouldn't be possible asASSERT(false); } } } void asCCompiler::CompileBitwiseOperator(asCScriptNode *node, asCExprContext *lctx, asCExprContext *rctx, asCExprContext *ctx, eTokenType op) { // TODO: If a constant is only using 32bits, then a 32bit operation is preferred if( op == ttUnrecognizedToken ) op = node->tokenType; if( op == ttAmp || op == ttAndAssign || op == ttBitOr || op == ttOrAssign || op == ttBitXor || op == ttXorAssign ) { // Convert left hand operand to integer if it's not already one asCDataType to; if( lctx->type.dataType.GetSizeInMemoryDWords() == 2 || rctx->type.dataType.GetSizeInMemoryDWords() == 2 ) to.SetTokenType(ttInt64); else to.SetTokenType(ttInt); // Do the actual conversion (keep sign/unsigned if possible) int l = int(reservedVariables.GetLength()); rctx->bc.GetVarsUsed(reservedVariables); if( lctx->type.dataType.IsUnsignedType() ) to.SetTokenType( to.GetSizeOnStackDWords() == 1 ? ttUInt : ttUInt64 ); else to.SetTokenType( to.GetSizeOnStackDWords() == 1 ? ttInt : ttInt64 ); ImplicitConversion(lctx, to, node, asIC_IMPLICIT_CONV, true); reservedVariables.SetLength(l); // Verify that the conversion was successful if( lctx->type.dataType != to ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_s, lctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), to.Format(outFunc->nameSpace).AddressOf()); Error(str, node); } // Convert right hand operand to same size as left hand l = int(reservedVariables.GetLength()); lctx->bc.GetVarsUsed(reservedVariables); if( rctx->type.dataType.IsUnsignedType() ) to.SetTokenType( to.GetSizeOnStackDWords() == 1 ? ttUInt : ttUInt64 ); else to.SetTokenType( to.GetSizeOnStackDWords() == 1 ? ttInt : ttInt64 ); ImplicitConversion(rctx, to, node, asIC_IMPLICIT_CONV, true); reservedVariables.SetLength(l); if( rctx->type.dataType != to ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_s, rctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), lctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, node); } bool isConstant = lctx->type.isConstant && rctx->type.isConstant; if( !isConstant ) { ConvertToVariableNotIn(lctx, rctx); ConvertToVariableNotIn(rctx, lctx); ReleaseTemporaryVariable(lctx->type, &lctx->bc); ReleaseTemporaryVariable(rctx->type, &rctx->bc); if( op == ttAndAssign || op == ttOrAssign || op == ttXorAssign ) { // Compound assignments execute the right hand value first MergeExprBytecode(ctx, rctx); MergeExprBytecode(ctx, lctx); } else { MergeExprBytecode(ctx, lctx); MergeExprBytecode(ctx, rctx); } ProcessDeferredParams(ctx); asEBCInstr instruction = asBC_BAND; if( lctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { if( op == ttAmp || op == ttAndAssign ) instruction = asBC_BAND; else if( op == ttBitOr || op == ttOrAssign ) instruction = asBC_BOR; else if( op == ttBitXor || op == ttXorAssign ) instruction = asBC_BXOR; } else { if( op == ttAmp || op == ttAndAssign ) instruction = asBC_BAND64; else if( op == ttBitOr || op == ttOrAssign ) instruction = asBC_BOR64; else if( op == ttBitXor || op == ttXorAssign ) instruction = asBC_BXOR64; } // Do the operation int a = AllocateVariable(lctx->type.dataType, true); int b = lctx->type.stackOffset; int c = rctx->type.stackOffset; ctx->bc.InstrW_W_W(instruction, a, b, c); ctx->type.SetVariable(lctx->type.dataType, a, true); } else { if( lctx->type.dataType.GetSizeInMemoryDWords() == 2 ) { asQWORD v = 0; if( op == ttAmp ) v = lctx->type.GetConstantQW() & rctx->type.GetConstantQW(); else if( op == ttBitOr ) v = lctx->type.GetConstantQW() | rctx->type.GetConstantQW(); else if( op == ttBitXor ) v = lctx->type.GetConstantQW() ^ rctx->type.GetConstantQW(); // Remember the result ctx->type.SetConstantQW(lctx->type.dataType, v); } else { asDWORD v = 0; if( op == ttAmp ) v = lctx->type.GetConstantDW() & rctx->type.GetConstantDW(); else if( op == ttBitOr ) v = lctx->type.GetConstantDW() | rctx->type.GetConstantDW(); else if( op == ttBitXor ) v = lctx->type.GetConstantDW() ^ rctx->type.GetConstantDW(); // Remember the result ctx->type.SetConstantDW(lctx->type.dataType, v); } } } else if( op == ttBitShiftLeft || op == ttShiftLeftAssign || op == ttBitShiftRight || op == ttShiftRightLAssign || op == ttBitShiftRightArith || op == ttShiftRightAAssign ) { // Don't permit object to primitive conversion, since we don't know which integer type is the correct one if( lctx->type.dataType.IsObject() ) { asCString str; str.Format(TXT_ILLEGAL_OPERATION_ON_s, lctx->type.dataType.Format(outFunc->nameSpace).AddressOf()); Error(str, node); // Set an integer value and allow the compiler to continue ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttInt, true), 0); return; } // Convert left hand operand to integer if it's not already one asCDataType to = lctx->type.dataType; if( lctx->type.dataType.IsUnsignedType() && lctx->type.dataType.GetSizeInMemoryBytes() < 4 ) { // Upgrade to 32bit to = asCDataType::CreatePrimitive(ttUInt, false); } else if( !lctx->type.dataType.IsUnsignedType() ) { if (lctx->type.dataType.GetSizeInMemoryDWords() == 2) to = asCDataType::CreatePrimitive(ttInt64, false); else to = asCDataType::CreatePrimitive(ttInt, false); } // Do the actual conversion int l = int(reservedVariables.GetLength()); rctx->bc.GetVarsUsed(reservedVariables); ImplicitConversion(lctx, to, node, asIC_IMPLICIT_CONV, true); reservedVariables.SetLength(l); // Verify that the conversion was successful if( lctx->type.dataType != to ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_s, lctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), to.Format(outFunc->nameSpace).AddressOf()); Error(str, node); } // Right operand must be 32bit uint l = int(reservedVariables.GetLength()); lctx->bc.GetVarsUsed(reservedVariables); ImplicitConversion(rctx, asCDataType::CreatePrimitive(ttUInt, true), node, asIC_IMPLICIT_CONV, true); reservedVariables.SetLength(l); if( !rctx->type.dataType.IsUnsignedType() ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_s, rctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), "uint"); Error(str, node); } bool isConstant = lctx->type.isConstant && rctx->type.isConstant; if( !isConstant ) { ConvertToVariableNotIn(lctx, rctx); ConvertToVariableNotIn(rctx, lctx); ReleaseTemporaryVariable(lctx->type, &lctx->bc); ReleaseTemporaryVariable(rctx->type, &rctx->bc); if( op == ttShiftLeftAssign || op == ttShiftRightLAssign || op == ttShiftRightAAssign ) { // Compound assignments execute the right hand value first MergeExprBytecode(ctx, rctx); MergeExprBytecode(ctx, lctx); } else { MergeExprBytecode(ctx, lctx); MergeExprBytecode(ctx, rctx); } ProcessDeferredParams(ctx); asEBCInstr instruction = asBC_BSLL; if( lctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { if( op == ttBitShiftLeft || op == ttShiftLeftAssign ) instruction = asBC_BSLL; else if( op == ttBitShiftRight || op == ttShiftRightLAssign ) instruction = asBC_BSRL; else if( op == ttBitShiftRightArith || op == ttShiftRightAAssign ) instruction = asBC_BSRA; } else { if( op == ttBitShiftLeft || op == ttShiftLeftAssign ) instruction = asBC_BSLL64; else if( op == ttBitShiftRight || op == ttShiftRightLAssign ) instruction = asBC_BSRL64; else if( op == ttBitShiftRightArith || op == ttShiftRightAAssign ) instruction = asBC_BSRA64; } // Do the operation int a = AllocateVariable(lctx->type.dataType, true); int b = lctx->type.stackOffset; int c = rctx->type.stackOffset; ctx->bc.InstrW_W_W(instruction, a, b, c); ctx->type.SetVariable(lctx->type.dataType, a, true); } else { if( lctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { asDWORD v = 0; if( op == ttBitShiftLeft ) v = lctx->type.GetConstantDW() << rctx->type.GetConstantDW(); else if( op == ttBitShiftRight ) v = lctx->type.GetConstantDW() >> rctx->type.GetConstantDW(); else if( op == ttBitShiftRightArith ) v = int(lctx->type.GetConstantDW()) >> rctx->type.GetConstantDW(); ctx->type.SetConstantDW(lctx->type.dataType, v); } else { asQWORD v = 0; if( op == ttBitShiftLeft ) v = lctx->type.GetConstantQW() << rctx->type.GetConstantDW(); else if( op == ttBitShiftRight ) v = lctx->type.GetConstantQW() >> rctx->type.GetConstantDW(); else if( op == ttBitShiftRightArith ) v = asINT64(lctx->type.GetConstantQW()) >> rctx->type.GetConstantDW(); ctx->type.SetConstantQW(lctx->type.dataType, v); } } } } void asCCompiler::CompileComparisonOperator(asCScriptNode *node, asCExprContext *lctx, asCExprContext *rctx, asCExprContext *ctx, eTokenType op) { // Both operands must be of the same type // If either operand is a non-primitive then first convert them to the best number type if( !lctx->type.dataType.IsPrimitive() ) { int l = int(reservedVariables.GetLength()); rctx->bc.GetVarsUsed(reservedVariables); ImplicitConvObjectToBestMathType(lctx, node); reservedVariables.SetLength(l); } if( !rctx->type.dataType.IsPrimitive() ) { int l = int(reservedVariables.GetLength()); lctx->bc.GetVarsUsed(reservedVariables); ImplicitConvObjectToBestMathType(rctx, node); reservedVariables.SetLength(l); } // Implicitly convert the operands to matching types asCDataType to; if( lctx->type.dataType.IsDoubleType() || rctx->type.dataType.IsDoubleType() ) to.SetTokenType(ttDouble); else if( lctx->type.dataType.IsFloatType() || rctx->type.dataType.IsFloatType() ) to.SetTokenType(ttFloat); else if( lctx->type.dataType.GetSizeInMemoryDWords() == 2 || rctx->type.dataType.GetSizeInMemoryDWords() == 2 ) { // Convert to int64 if both are signed or if one is non-constant and signed if( (lctx->type.dataType.IsIntegerType() && !lctx->type.isConstant) || (rctx->type.dataType.IsIntegerType() && !rctx->type.isConstant) ) to.SetTokenType(ttInt64); else if( lctx->type.dataType.IsUnsignedType() || rctx->type.dataType.IsUnsignedType() ) to.SetTokenType(ttUInt64); else to.SetTokenType(ttInt64); } else { // Convert to int32 if both are signed or if one is non-constant and signed if( (lctx->type.dataType.IsIntegerType() && !lctx->type.isConstant) || (rctx->type.dataType.IsIntegerType() && !rctx->type.isConstant) ) to.SetTokenType(ttInt); else if( lctx->type.dataType.IsUnsignedType() || rctx->type.dataType.IsUnsignedType() ) to.SetTokenType(ttUInt); else if( lctx->type.dataType.IsBooleanType() || rctx->type.dataType.IsBooleanType() ) to.SetTokenType(ttBool); else to.SetTokenType(ttInt); } // If doing an operation with double constant and float variable, the constant should be converted to float if( (lctx->type.isConstant && lctx->type.dataType.IsDoubleType() && !rctx->type.isConstant && rctx->type.dataType.IsFloatType()) || (rctx->type.isConstant && rctx->type.dataType.IsDoubleType() && !lctx->type.isConstant && lctx->type.dataType.IsFloatType()) ) to.SetTokenType(ttFloat); asASSERT( to.GetTokenType() != ttUnrecognizedToken ); // Do we have a mismatch between the sign of the operand? bool signMismatch = false; for( int n = 0; !signMismatch && n < 2; n++ ) { asCExprContext *opCtx = n ? rctx : lctx; if( opCtx->type.dataType.IsUnsignedType() != to.IsUnsignedType() ) { // We have a mismatch, unless the value is a literal constant and the conversion won't affect its value signMismatch = true; if( opCtx->type.isConstant ) { if( opCtx->type.dataType.GetTokenType() == ttUInt64 || opCtx->type.dataType.GetTokenType() == ttInt64 ) { if( !(opCtx->type.GetConstantQW() & (asQWORD(1)<<63)) ) signMismatch = false; } else if(opCtx->type.dataType.GetTokenType() == ttUInt || opCtx->type.dataType.GetTokenType() == ttInt || opCtx->type.dataType.IsEnumType() ) { if( !(opCtx->type.GetConstantDW() & (1<<31)) ) signMismatch = false; } else if (opCtx->type.dataType.GetTokenType() == ttUInt16 || opCtx->type.dataType.GetTokenType() == ttInt16) { if (!(opCtx->type.GetConstantW() & (1 << 15))) signMismatch = false; } else if (opCtx->type.dataType.GetTokenType() == ttUInt8 || opCtx->type.dataType.GetTokenType() == ttInt8) { if (!(opCtx->type.GetConstantB() & (1 << 7))) signMismatch = false; } // It's not necessary to check for floats or double, because if // it was then the types for the conversion will never be unsigned } } } // Check for signed/unsigned mismatch if( signMismatch ) Warning(TXT_SIGNED_UNSIGNED_MISMATCH, node); // Attempt to resolve ambiguous enumerations if( lctx->type.dataType.IsEnumType() && rctx->enumValue != "" ) ImplicitConversion(rctx, lctx->type.dataType, node, asIC_IMPLICIT_CONV); else if( rctx->type.dataType.IsEnumType() && lctx->enumValue != "" ) ImplicitConversion(lctx, rctx->type.dataType, node, asIC_IMPLICIT_CONV); // Do the actual conversion int l = int(reservedVariables.GetLength()); rctx->bc.GetVarsUsed(reservedVariables); if( lctx->type.dataType.IsReference() ) ConvertToVariable(lctx); if( rctx->type.dataType.IsReference() ) ConvertToVariable(rctx); ImplicitConversion(lctx, to, node, asIC_IMPLICIT_CONV); ImplicitConversion(rctx, to, node, asIC_IMPLICIT_CONV); reservedVariables.SetLength(l); // Verify that the conversion was successful bool ok = true; if( !lctx->type.dataType.IsEqualExceptConst(to) ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_s, lctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), to.Format(outFunc->nameSpace).AddressOf()); Error(str, node); ok = false; } if( !rctx->type.dataType.IsEqualExceptConst(to) ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_s, rctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), to.Format(outFunc->nameSpace).AddressOf()); Error(str, node); ok = false; } if( !ok ) { // It wasn't possible to get two valid operands, so we just return // a boolean result and let the compiler continue. #if AS_SIZEOF_BOOL == 1 ctx->type.SetConstantB(asCDataType::CreatePrimitive(ttBool, true), true); #else ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttBool, true), true); #endif return; } bool isConstant = lctx->type.isConstant && rctx->type.isConstant; if( op == ttUnrecognizedToken ) op = node->tokenType; if( !isConstant ) { if( to.IsBooleanType() ) { if( op == ttEqual || op == ttNotEqual ) { // Must convert to temporary variable, because we are changing the value before comparison ConvertToTempVariableNotIn(lctx, rctx); ConvertToTempVariableNotIn(rctx, lctx); ReleaseTemporaryVariable(lctx->type, &lctx->bc); ReleaseTemporaryVariable(rctx->type, &rctx->bc); // Make sure they are equal if not false lctx->bc.InstrWORD(asBC_NOT, lctx->type.stackOffset); rctx->bc.InstrWORD(asBC_NOT, rctx->type.stackOffset); MergeExprBytecode(ctx, lctx); MergeExprBytecode(ctx, rctx); ProcessDeferredParams(ctx); int a = AllocateVariable(asCDataType::CreatePrimitive(ttBool, true), true); int b = lctx->type.stackOffset; int c = rctx->type.stackOffset; if( op == ttEqual ) { ctx->bc.InstrW_W(asBC_CMPi,b,c); ctx->bc.Instr(asBC_TZ); ctx->bc.InstrSHORT(asBC_CpyRtoV4, (short)a); } else if( op == ttNotEqual ) { ctx->bc.InstrW_W(asBC_CMPi,b,c); ctx->bc.Instr(asBC_TNZ); ctx->bc.InstrSHORT(asBC_CpyRtoV4, (short)a); } ctx->type.SetVariable(asCDataType::CreatePrimitive(ttBool, true), a, true); } else { // TODO: Use TXT_ILLEGAL_OPERATION_ON Error(TXT_ILLEGAL_OPERATION, node); #if AS_SIZEOF_BOOL == 1 ctx->type.SetConstantB(asCDataType::CreatePrimitive(ttBool, true), 0); #else ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttBool, true), 0); #endif } } else { ConvertToVariableNotIn(lctx, rctx); ConvertToVariableNotIn(rctx, lctx); ReleaseTemporaryVariable(lctx->type, &lctx->bc); ReleaseTemporaryVariable(rctx->type, &rctx->bc); MergeExprBytecode(ctx, lctx); MergeExprBytecode(ctx, rctx); ProcessDeferredParams(ctx); asEBCInstr iCmp = asBC_CMPi, iT = asBC_TZ; if( lctx->type.dataType.IsIntegerType() && lctx->type.dataType.GetSizeInMemoryDWords() == 1 ) iCmp = asBC_CMPi; else if( lctx->type.dataType.IsUnsignedType() && lctx->type.dataType.GetSizeInMemoryDWords() == 1 ) iCmp = asBC_CMPu; else if( lctx->type.dataType.IsIntegerType() && lctx->type.dataType.GetSizeInMemoryDWords() == 2 ) iCmp = asBC_CMPi64; else if( lctx->type.dataType.IsUnsignedType() && lctx->type.dataType.GetSizeInMemoryDWords() == 2 ) iCmp = asBC_CMPu64; else if( lctx->type.dataType.IsFloatType() ) iCmp = asBC_CMPf; else if( lctx->type.dataType.IsDoubleType() ) iCmp = asBC_CMPd; else asASSERT(false); if( op == ttEqual ) iT = asBC_TZ; else if( op == ttNotEqual ) iT = asBC_TNZ; else if( op == ttLessThan ) iT = asBC_TS; else if( op == ttLessThanOrEqual ) iT = asBC_TNP; else if( op == ttGreaterThan ) iT = asBC_TP; else if( op == ttGreaterThanOrEqual ) iT = asBC_TNS; int a = AllocateVariable(asCDataType::CreatePrimitive(ttBool, true), true); int b = lctx->type.stackOffset; int c = rctx->type.stackOffset; ctx->bc.InstrW_W(iCmp, b, c); ctx->bc.Instr(iT); ctx->bc.InstrSHORT(asBC_CpyRtoV4, (short)a); ctx->type.SetVariable(asCDataType::CreatePrimitive(ttBool, true), a, true); } } else { if( to.IsBooleanType() ) { if( op == ttEqual || op == ttNotEqual ) { asDWORD lv, rv; #if AS_SIZEOF_BOOL == 1 lv = lctx->type.GetConstantB(); rv = rctx->type.GetConstantB(); #else lv = lctx->type.GetConstantDW(); rv = rctx->type.GetConstantDW(); #endif // Make sure they are equal if not false if (lv != 0) lv = VALUE_OF_BOOLEAN_TRUE; if (rv != 0) rv = VALUE_OF_BOOLEAN_TRUE; asDWORD v = 0; if (op == ttEqual) v = (lv == rv) ? VALUE_OF_BOOLEAN_TRUE : 0; else if (op == ttNotEqual) v = (lv != rv) ? VALUE_OF_BOOLEAN_TRUE : 0; #if AS_SIZEOF_BOOL == 1 ctx->type.SetConstantB(asCDataType::CreatePrimitive(ttBool, true), (asBYTE)v); #else ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttBool, true), v); #endif } else { // TODO: Use TXT_ILLEGAL_OPERATION_ON Error(TXT_ILLEGAL_OPERATION, node); } } else { int i = 0; if( lctx->type.dataType.IsIntegerType() && lctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { int v = int(lctx->type.GetConstantDW()) - int(rctx->type.GetConstantDW()); if( v < 0 ) i = -1; if( v > 0 ) i = 1; } else if( lctx->type.dataType.IsUnsignedType() && lctx->type.dataType.GetSizeInMemoryDWords() == 1 ) { asDWORD v1 = lctx->type.GetConstantDW(); asDWORD v2 = rctx->type.GetConstantDW(); if( v1 < v2 ) i = -1; if( v1 > v2 ) i = 1; } else if( lctx->type.dataType.IsIntegerType() && lctx->type.dataType.GetSizeInMemoryDWords() == 2 ) { asINT64 v = asINT64(lctx->type.GetConstantQW()) - asINT64(rctx->type.GetConstantQW()); if( v < 0 ) i = -1; if( v > 0 ) i = 1; } else if( lctx->type.dataType.IsUnsignedType() && lctx->type.dataType.GetSizeInMemoryDWords() == 2 ) { asQWORD v1 = lctx->type.GetConstantQW(); asQWORD v2 = rctx->type.GetConstantQW(); if( v1 < v2 ) i = -1; if( v1 > v2 ) i = 1; } else if( lctx->type.dataType.IsFloatType() ) { float v = lctx->type.GetConstantF() - rctx->type.GetConstantF(); if( v < 0 ) i = -1; if( v > 0 ) i = 1; } else if( lctx->type.dataType.IsDoubleType() ) { double v = lctx->type.GetConstantD() - rctx->type.GetConstantD(); if( v < 0 ) i = -1; if( v > 0 ) i = 1; } if( op == ttEqual ) i = (i == 0 ? VALUE_OF_BOOLEAN_TRUE : 0); else if( op == ttNotEqual ) i = (i != 0 ? VALUE_OF_BOOLEAN_TRUE : 0); else if( op == ttLessThan ) i = (i < 0 ? VALUE_OF_BOOLEAN_TRUE : 0); else if( op == ttLessThanOrEqual ) i = (i <= 0 ? VALUE_OF_BOOLEAN_TRUE : 0); else if( op == ttGreaterThan ) i = (i > 0 ? VALUE_OF_BOOLEAN_TRUE : 0); else if( op == ttGreaterThanOrEqual ) i = (i >= 0 ? VALUE_OF_BOOLEAN_TRUE : 0); #if AS_SIZEOF_BOOL == 1 ctx->type.SetConstantB(asCDataType::CreatePrimitive(ttBool, true), (asBYTE)i); #else ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttBool, true), i); #endif } } } void asCCompiler::PushVariableOnStack(asCExprContext *ctx, bool asReference) { // Put the result on the stack if( asReference ) { ctx->bc.InstrSHORT(asBC_PSF, ctx->type.stackOffset); ctx->type.dataType.MakeReference(true); } else { if( ctx->type.dataType.GetSizeInMemoryDWords() == 1 ) ctx->bc.InstrSHORT(asBC_PshV4, ctx->type.stackOffset); else ctx->bc.InstrSHORT(asBC_PshV8, ctx->type.stackOffset); } } void asCCompiler::CompileBooleanOperator(asCScriptNode *node, asCExprContext *lctx, asCExprContext *rctx, asCExprContext *ctx, eTokenType op) { // Both operands must be booleans asCDataType to; to.SetTokenType(ttBool); // Do the actual conversion int l = int(reservedVariables.GetLength()); rctx->bc.GetVarsUsed(reservedVariables); lctx->bc.GetVarsUsed(reservedVariables); // Allow value types to be converted to bool using 'bool opImplConv()' if( lctx->type.dataType.GetTypeInfo() && (lctx->type.dataType.GetTypeInfo()->GetFlags() & asOBJ_VALUE) ) ImplicitConversion(lctx, to, node, asIC_IMPLICIT_CONV); if( rctx->type.dataType.GetTypeInfo() && (rctx->type.dataType.GetTypeInfo()->GetFlags() & asOBJ_VALUE) ) ImplicitConversion(rctx, to, node, asIC_IMPLICIT_CONV); reservedVariables.SetLength(l); // Verify that the conversion was successful if( !lctx->type.dataType.IsBooleanType() ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_s, lctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), "bool"); Error(str, node); // Force the conversion to allow compilation to proceed lctx->type.SetConstantB(asCDataType::CreatePrimitive(ttBool, true), true); } if( !rctx->type.dataType.IsBooleanType() ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_s, rctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), "bool"); Error(str, node); // Force the conversion to allow compilation to proceed rctx->type.SetConstantB(asCDataType::CreatePrimitive(ttBool, true), true); } bool isConstant = lctx->type.isConstant && rctx->type.isConstant; ctx->type.Set(asCDataType::CreatePrimitive(ttBool, true)); // What kind of operator is it? if( op == ttUnrecognizedToken ) op = node->tokenType; if( op == ttXor ) { if( !isConstant ) { // Must convert to temporary variable, because we are changing the value before comparison ConvertToTempVariableNotIn(lctx, rctx); ConvertToTempVariableNotIn(rctx, lctx); ReleaseTemporaryVariable(lctx->type, &lctx->bc); ReleaseTemporaryVariable(rctx->type, &rctx->bc); // Make sure they are equal if not false lctx->bc.InstrWORD(asBC_NOT, lctx->type.stackOffset); rctx->bc.InstrWORD(asBC_NOT, rctx->type.stackOffset); MergeExprBytecode(ctx, lctx); MergeExprBytecode(ctx, rctx); ProcessDeferredParams(ctx); int a = AllocateVariable(ctx->type.dataType, true); int b = lctx->type.stackOffset; int c = rctx->type.stackOffset; ctx->bc.InstrW_W_W(asBC_BXOR,a,b,c); ctx->type.SetVariable(asCDataType::CreatePrimitive(ttBool, true), a, true); } else { // Make sure they are equal if not false #if AS_SIZEOF_BOOL == 1 if( lctx->type.GetConstantB() != 0 ) lctx->type.SetConstantB(VALUE_OF_BOOLEAN_TRUE); if( rctx->type.GetConstantB() != 0 ) rctx->type.SetConstantB(VALUE_OF_BOOLEAN_TRUE); asBYTE v = 0; v = lctx->type.GetConstantB() - rctx->type.GetConstantB(); if( v != 0 ) v = VALUE_OF_BOOLEAN_TRUE; else v = 0; ctx->type.isConstant = true; ctx->type.SetConstantB(v); #else if( lctx->type.GetConstantDW() != 0 ) lctx->type.SetConstantDW(VALUE_OF_BOOLEAN_TRUE); if( rctx->type.GetConstantDW() != 0 ) rctx->type.SetConstantDW(VALUE_OF_BOOLEAN_TRUE); asDWORD v = 0; v = lctx->type.GetConstantDW() - rctx->type.GetConstantDW(); if( v != 0 ) v = VALUE_OF_BOOLEAN_TRUE; else v = 0; ctx->type.isConstant = true; ctx->type.SetConstantDW(v); #endif } } else if( op == ttAnd || op == ttOr ) { if( !isConstant ) { // If or-operator and first value is 1 the second value shouldn't be calculated // if and-operator and first value is 0 the second value shouldn't be calculated ConvertToVariable(lctx); ReleaseTemporaryVariable(lctx->type, &lctx->bc); MergeExprBytecode(ctx, lctx); int offset = AllocateVariable(asCDataType::CreatePrimitive(ttBool, false), true); int label1 = nextLabel++; int label2 = nextLabel++; ctx->bc.InstrSHORT(asBC_CpyVtoR4, lctx->type.stackOffset); ctx->bc.Instr(asBC_ClrHi); if( op == ttAnd ) { ctx->bc.InstrDWORD(asBC_JNZ, label1); ctx->bc.InstrW_DW(asBC_SetV4, (asWORD)offset, 0); ctx->bc.InstrINT(asBC_JMP, label2); } else if( op == ttOr ) { ctx->bc.InstrDWORD(asBC_JZ, label1); #if AS_SIZEOF_BOOL == 1 ctx->bc.InstrSHORT_B(asBC_SetV1, (short)offset, VALUE_OF_BOOLEAN_TRUE); #else ctx->bc.InstrSHORT_DW(asBC_SetV4, (short)offset, VALUE_OF_BOOLEAN_TRUE); #endif ctx->bc.InstrINT(asBC_JMP, label2); } ctx->bc.Label((short)label1); ConvertToVariable(rctx); ReleaseTemporaryVariable(rctx->type, &rctx->bc); rctx->bc.InstrW_W(asBC_CpyVtoV4, offset, rctx->type.stackOffset); MergeExprBytecode(ctx, rctx); ctx->bc.Label((short)label2); ctx->type.SetVariable(asCDataType::CreatePrimitive(ttBool, false), offset, true); } else { #if AS_SIZEOF_BOOL == 1 asBYTE v = 0; if( op == ttAnd ) v = lctx->type.GetConstantB() && rctx->type.GetConstantB(); else if( op == ttOr ) v = lctx->type.GetConstantB() || rctx->type.GetConstantB(); // Remember the result ctx->type.isConstant = true; ctx->type.SetConstantB(v); #else asDWORD v = 0; if( op == ttAnd ) v = lctx->type.GetConstantDW() && rctx->type.GetConstantDW(); else if( op == ttOr ) v = lctx->type.GetConstantDW() || rctx->type.GetConstantDW(); // Remember the result ctx->type.isConstant = true; ctx->type.SetConstantDW(v); #endif } } } void asCCompiler::CompileOperatorOnHandles(asCScriptNode *node, asCExprContext *lctx, asCExprContext *rctx, asCExprContext *ctx, eTokenType opToken) { // Process the property accessor as get ProcessPropertyGetAccessor(lctx, node); ProcessPropertyGetAccessor(rctx, node); DetermineSingleFunc(lctx, node); DetermineSingleFunc(rctx, node); // Make sure lctx doesn't end up with a variable used in rctx if( lctx->type.isTemporary && rctx->bc.IsVarUsed(lctx->type.stackOffset) ) { asCArray vars; rctx->bc.GetVarsUsed(vars); int offset = AllocateVariable(lctx->type.dataType, true); rctx->bc.ExchangeVar(lctx->type.stackOffset, offset); ReleaseTemporaryVariable(offset, 0); } if( opToken == ttUnrecognizedToken ) opToken = node->tokenType; // Warn if not both operands are explicit handles or null handles if( (opToken == ttEqual || opToken == ttNotEqual) && ((!(lctx->type.isExplicitHandle || lctx->type.IsNullConstant()) && !(lctx->type.dataType.GetTypeInfo() && (lctx->type.dataType.GetTypeInfo()->flags & asOBJ_IMPLICIT_HANDLE))) || (!(rctx->type.isExplicitHandle || rctx->type.IsNullConstant()) && !(rctx->type.dataType.GetTypeInfo() && (rctx->type.dataType.GetTypeInfo()->flags & asOBJ_IMPLICIT_HANDLE)))) ) { Warning(TXT_HANDLE_COMPARISON, node); } // If one of the operands is a value type used as handle, we should look for the opEquals method if( ((lctx->type.dataType.GetTypeInfo() && (lctx->type.dataType.GetTypeInfo()->flags & asOBJ_ASHANDLE)) || (rctx->type.dataType.GetTypeInfo() && (rctx->type.dataType.GetTypeInfo()->flags & asOBJ_ASHANDLE))) && (opToken == ttEqual || opToken == ttIs || opToken == ttNotEqual || opToken == ttNotIs) ) { // TODO: Should evaluate which of the two have the best match. If both have equal match, the first version should be used // Find the matching opEquals method int r = CompileOverloadedDualOperator2(node, "opEquals", lctx, rctx, true, ctx, true, asCDataType::CreatePrimitive(ttBool, false)); if( r == 0 ) { // Try again by switching the order of the operands r = CompileOverloadedDualOperator2(node, "opEquals", rctx, lctx, false, ctx, true, asCDataType::CreatePrimitive(ttBool, false)); } if( r == 1 ) { if( opToken == ttNotEqual || opToken == ttNotIs ) ctx->bc.InstrSHORT(asBC_NOT, ctx->type.stackOffset); // Success, don't continue return; } else if( r == 0 ) { // Couldn't find opEquals method Error(TXT_NO_APPROPRIATE_OPEQUALS, node); } // Compiler error, don't continue ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttBool, true), true); return; } // Implicitly convert null to the other type asCDataType to; if( lctx->type.IsNullConstant() ) to = rctx->type.dataType; else if( rctx->type.IsNullConstant() ) to = lctx->type.dataType; else { // Find a common base type asCExprContext tmp(engine); tmp.type = rctx->type; ImplicitConversion(&tmp, lctx->type.dataType, 0, asIC_IMPLICIT_CONV, false); if( tmp.type.dataType.GetTypeInfo() == lctx->type.dataType.GetTypeInfo() ) to = lctx->type.dataType; else to = rctx->type.dataType; // Assume handle-to-const as it is not possible to convert handle-to-const to handle-to-non-const to.MakeHandleToConst(true); } // Need to pop the value if it is a null constant if( lctx->type.IsNullConstant() ) lctx->bc.Instr(asBC_PopPtr); if( rctx->type.IsNullConstant() ) rctx->bc.Instr(asBC_PopPtr); // Convert both sides to explicit handles to.MakeHandle(true); to.MakeReference(false); if( !to.IsObjectHandle() ) { // Compiler error, don't continue Error(TXT_OPERANDS_MUST_BE_HANDLES, node); #if AS_SIZEOF_BOOL == 1 ctx->type.SetConstantB(asCDataType::CreatePrimitive(ttBool, true), true); #else ctx->type.SetConstantDW(asCDataType::CreatePrimitive(ttBool, true), true); #endif return; } // Do the conversion ImplicitConversion(lctx, to, node, asIC_IMPLICIT_CONV); ImplicitConversion(rctx, to, node, asIC_IMPLICIT_CONV); // Both operands must be of the same type // Verify that the conversion was successful if( !lctx->type.dataType.IsEqualExceptConst(to) ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_s, lctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), to.Format(outFunc->nameSpace).AddressOf()); Error(str, node); } if( !rctx->type.dataType.IsEqualExceptConst(to) ) { asCString str; str.Format(TXT_NO_CONVERSION_s_TO_s, rctx->type.dataType.Format(outFunc->nameSpace).AddressOf(), to.Format(outFunc->nameSpace).AddressOf()); Error(str, node); } // Make sure it really is handles that are being compared if( !lctx->type.dataType.IsObjectHandle() ) { Error(TXT_OPERANDS_MUST_BE_HANDLES, node); } ctx->type.Set(asCDataType::CreatePrimitive(ttBool, true)); if( opToken == ttEqual || opToken == ttNotEqual || opToken == ttIs || opToken == ttNotIs ) { // Make sure handles received as parameters by reference are copied to a local variable before the // asBC_CmpPtr, so we don't end up comparing the reference to the handle instead of the handle itself if( lctx->type.isVariable && !lctx->type.isTemporary && lctx->type.stackOffset <= 0 ) lctx->type.isVariable = false; if( rctx->type.isVariable && !rctx->type.isTemporary && rctx->type.stackOffset <= 0 ) rctx->type.isVariable = false; // TODO: runtime optimize: don't do REFCPY if not necessary ConvertToVariableNotIn(lctx, rctx); ConvertToVariable(rctx); // Pop the pointers from the stack as they will not be used lctx->bc.Instr(asBC_PopPtr); rctx->bc.Instr(asBC_PopPtr); MergeExprBytecode(ctx, lctx); MergeExprBytecode(ctx, rctx); int a = AllocateVariable(ctx->type.dataType, true); int b = lctx->type.stackOffset; int c = rctx->type.stackOffset; ctx->bc.InstrW_W(asBC_CmpPtr, b, c); if( opToken == ttEqual || opToken == ttIs ) ctx->bc.Instr(asBC_TZ); else if( opToken == ttNotEqual || opToken == ttNotIs ) ctx->bc.Instr(asBC_TNZ); ctx->bc.InstrSHORT(asBC_CpyRtoV4, (short)a); ctx->type.SetVariable(asCDataType::CreatePrimitive(ttBool, true), a, true); ReleaseTemporaryVariable(lctx->type, &ctx->bc); ReleaseTemporaryVariable(rctx->type, &ctx->bc); ProcessDeferredParams(ctx); } else { // TODO: Use TXT_ILLEGAL_OPERATION_ON Error(TXT_ILLEGAL_OPERATION, node); } } void asCCompiler::PerformFunctionCall(int funcId, asCExprContext *ctx, bool isConstructor, asCArray *args, asCObjectType *objType, bool useVariable, int varOffset, int funcPtrVar) { asCScriptFunction *descr = builder->GetFunctionDescription(funcId); // A shared object may not call non-shared functions if( outFunc->IsShared() && !descr->IsShared() ) { asCString msg; msg.Format(TXT_SHARED_CANNOT_CALL_NON_SHARED_FUNC_s, descr->GetDeclarationStr().AddressOf()); Error(msg, ctx->exprNode); } // Check if the function is private or protected if( descr->IsPrivate() && descr->GetObjectType() != outFunc->GetObjectType() ) { asCString msg; msg.Format(TXT_PRIVATE_METHOD_CALL_s, descr->GetDeclarationStr().AddressOf()); Error(msg, ctx->exprNode); } else if( descr->IsProtected() && !(descr->GetObjectType() == outFunc->GetObjectType() || (outFunc->GetObjectType() && outFunc->GetObjectType()->DerivesFrom(descr->GetObjectType()))) ) { asCString msg; msg.Format(TXT_PROTECTED_METHOD_CALL_s, descr->GetDeclarationStr().AddressOf()); Error(msg, ctx->exprNode); } int argSize = descr->GetSpaceNeededForArguments(); // If we're calling a class method we must make sure the object is guaranteed to stay // alive throughout the call by holding on to a reference in a local variable. This must // be done for any methods that return references, and any calls on script objects. // Application registered objects are assumed to know to keep themselves alive even // if the method doesn't return a reference. if( !ctx->type.isHandleSafe && descr->objectType && (ctx->type.dataType.IsObjectHandle() || ctx->type.dataType.SupportHandles()) && (descr->returnType.IsReference() || (ctx->type.dataType.GetTypeInfo()->GetFlags() & asOBJ_SCRIPT_OBJECT)) && !(ctx->type.isVariable || ctx->type.isTemporary) && !(ctx->type.dataType.GetTypeInfo()->GetFlags() & asOBJ_SCOPED) && !(ctx->type.dataType.GetTypeInfo()->GetFlags() & asOBJ_ASHANDLE) ) { // TODO: runtime optimize: Avoid this for global variables, by storing a reference to the global variable once in a // local variable and then refer to the same for each call. An alias for the global variable // should be stored in the variable scope so that the compiler can find it. For loops and // scopes that will always be executed, i.e. non-if scopes the alias should be stored in the // higher scope to increase the probability of re-use. int tempRef = AllocateVariable(ctx->type.dataType, true); ctx->bc.InstrSHORT(asBC_PSF, (short)tempRef); ctx->bc.InstrPTR(asBC_REFCPY, ctx->type.dataType.GetTypeInfo()); // Add the release of this reference as a deferred expression asSDeferredParam deferred; deferred.origExpr = 0; deferred.argInOutFlags = asTM_INREF; deferred.argNode = 0; deferred.argType.SetVariable(ctx->type.dataType, tempRef, true); ctx->deferredParams.PushLast(deferred); // Forget the current type ctx->type.SetDummy(); } // Check if there is a need to add a hidden pointer for when the function returns an object by value if( descr->DoesReturnOnStack() && !useVariable ) { useVariable = true; varOffset = AllocateVariable(descr->returnType, true); // Push the pointer to the pre-allocated space for the return value ctx->bc.InstrSHORT(asBC_PSF, short(varOffset)); if( descr->objectType ) { // The object pointer is already on the stack, but should be the top // one, so we need to swap the pointers in order to get the correct ctx->bc.Instr(asBC_SwapPtr); } } if( isConstructor ) { // Sometimes the value types are allocated on the heap, // which is when this way of constructing them is used. asASSERT(useVariable == false); if( (objType->flags & asOBJ_TEMPLATE) ) { asASSERT( descr->funcType == asFUNC_SCRIPT ); // Find the id of the real constructor and not the generated stub asUINT id = 0; asDWORD *bc = descr->scriptData->byteCode.AddressOf(); while( bc ) { if( (*(asBYTE*)bc) == asBC_CALLSYS ) { id = asBC_INTARG(bc); break; } bc += asBCTypeSize[asBCInfo[*(asBYTE*)bc].type]; } asASSERT( id ); ctx->bc.InstrPTR(asBC_OBJTYPE, objType); ctx->bc.Alloc(asBC_ALLOC, objType, id, argSize + AS_PTR_SIZE + AS_PTR_SIZE); } else ctx->bc.Alloc(asBC_ALLOC, objType, descr->id, argSize+AS_PTR_SIZE); // The instruction has already moved the returned object to the variable ctx->type.Set(asCDataType::CreatePrimitive(ttVoid, false)); ctx->type.isLValue = false; // Clean up arguments if( args ) AfterFunctionCall(funcId, *args, ctx, false); ProcessDeferredParams(ctx); return; } else { if( descr->objectType ) argSize += AS_PTR_SIZE; // If the function returns an object by value the address of the location // where the value should be stored is passed as an argument too if( descr->DoesReturnOnStack() ) argSize += AS_PTR_SIZE; // TODO: runtime optimize: If it is known that a class method cannot be overridden the call // should be made with asBC_CALL as it is faster. Examples where this // is known is for example finalled methods where the class doesn't derive // from any other, or even non-finalled methods but where it is known // at compile time the true type of the object. The first should be // quite easy to determine, but the latter will be quite complex and possibly // not worth it. if( descr->funcType == asFUNC_IMPORTED ) ctx->bc.Call(asBC_CALLBND , descr->id, argSize); // TODO: Maybe we need two different byte codes else if( descr->funcType == asFUNC_INTERFACE || descr->funcType == asFUNC_VIRTUAL ) ctx->bc.Call(asBC_CALLINTF, descr->id, argSize); else if( descr->funcType == asFUNC_SCRIPT ) ctx->bc.Call(asBC_CALL , descr->id, argSize); else if( descr->funcType == asFUNC_SYSTEM ) { // Check if we can use the faster asBC_Thiscall1 instruction, i.e. one of // type &obj::func(int) // type &obj::func(uint) if( descr->GetObjectType() && descr->returnType.IsReference() && descr->parameterTypes.GetLength() == 1 && (descr->parameterTypes[0].IsIntegerType() || descr->parameterTypes[0].IsUnsignedType()) && descr->parameterTypes[0].GetSizeInMemoryBytes() == 4 && !descr->parameterTypes[0].IsReference() ) ctx->bc.Call(asBC_Thiscall1, descr->id, argSize); else ctx->bc.Call(asBC_CALLSYS , descr->id, argSize); } else if( descr->funcType == asFUNC_FUNCDEF ) ctx->bc.CallPtr(asBC_CallPtr, funcPtrVar, argSize); } if( (descr->returnType.IsObject() || descr->returnType.IsFuncdef()) && !descr->returnType.IsReference() ) { int returnOffset = 0; asCExprValue tmpExpr = ctx->type; if( descr->DoesReturnOnStack() ) { asASSERT( useVariable ); // The variable was allocated before the function was called returnOffset = varOffset; ctx->type.SetVariable(descr->returnType, returnOffset, true); // The variable was initialized by the function, so we need to mark it as initialized here ctx->bc.ObjInfo(varOffset, asOBJ_INIT); } else { if( useVariable ) { // Use the given variable returnOffset = varOffset; ctx->type.SetVariable(descr->returnType, returnOffset, false); } else { // Allocate a temporary variable for the returned object // The returned object will actually be allocated on the heap, so // we must force the allocation of the variable to do the same returnOffset = AllocateVariable(descr->returnType, true, !descr->returnType.IsObjectHandle()); ctx->type.SetVariable(descr->returnType, returnOffset, true); } // Move the pointer from the object register to the temporary variable ctx->bc.InstrSHORT(asBC_STOREOBJ, (short)returnOffset); } ReleaseTemporaryVariable(tmpExpr, &ctx->bc); ctx->type.dataType.MakeReference(IsVariableOnHeap(returnOffset)); ctx->type.isLValue = false; // It is a reference, but not an lvalue // Clean up arguments if( args ) AfterFunctionCall(funcId, *args, ctx, false); ProcessDeferredParams(ctx); ctx->bc.InstrSHORT(asBC_PSF, (short)returnOffset); } else if( descr->returnType.IsReference() ) { asASSERT(useVariable == false); // We cannot clean up the arguments yet, because the // reference might be pointing to one of them. if( args ) AfterFunctionCall(funcId, *args, ctx, true); // Do not process the output parameters yet, because it // might invalidate the returned reference // If the context holds a variable that needs cleanup // store it as a deferred parameter so it will be cleaned up // afterwards. if( ctx->type.isTemporary ) { asSDeferredParam defer; defer.argNode = 0; defer.argType = ctx->type; defer.argInOutFlags = asTM_INOUTREF; defer.origExpr = 0; ctx->deferredParams.PushLast(defer); } ctx->type.Set(descr->returnType); if( !descr->returnType.IsPrimitive() ) { ctx->bc.Instr(asBC_PshRPtr); if( descr->returnType.IsObject() && !descr->returnType.IsObjectHandle() ) { // We are getting the pointer to the object // not a pointer to a object variable ctx->type.dataType.MakeReference(false); } } // A returned reference can be used as lvalue ctx->type.isLValue = true; } else { asASSERT(useVariable == false); asCExprValue tmpExpr = ctx->type; if( descr->returnType.GetSizeInMemoryBytes() ) { // Allocate a temporary variable to hold the value, but make sure // the temporary variable isn't used in any of the deferred arguments int l = int(reservedVariables.GetLength()); for( asUINT n = 0; args && n < args->GetLength(); n++ ) { asCExprContext *expr = (*args)[n]->origExpr; if( expr ) expr->bc.GetVarsUsed(reservedVariables); } int offset = AllocateVariable(descr->returnType, true); reservedVariables.SetLength(l); ctx->type.SetVariable(descr->returnType, offset, true); // Move the value from the return register to the variable if( descr->returnType.GetSizeOnStackDWords() == 1 ) ctx->bc.InstrSHORT(asBC_CpyRtoV4, (short)offset); else if( descr->returnType.GetSizeOnStackDWords() == 2 ) ctx->bc.InstrSHORT(asBC_CpyRtoV8, (short)offset); } else ctx->type.Set(descr->returnType); ReleaseTemporaryVariable(tmpExpr, &ctx->bc); ctx->type.isLValue = false; // Clean up arguments if( args ) AfterFunctionCall(funcId, *args, ctx, false); ProcessDeferredParams(ctx); } } // This only merges the bytecode, but doesn't modify the type of the final context void asCCompiler::MergeExprBytecode(asCExprContext *before, asCExprContext *after) { before->bc.AddCode(&after->bc); for( asUINT n = 0; n < after->deferredParams.GetLength(); n++ ) { before->deferredParams.PushLast(after->deferredParams[n]); after->deferredParams[n].origExpr = 0; } after->deferredParams.SetLength(0); } // This merges both bytecode and the type of the final context void asCCompiler::MergeExprBytecodeAndType(asCExprContext *before, asCExprContext *after) { MergeExprBytecode(before, after); before->Merge(after); } void asCCompiler::FilterConst(asCArray &funcs, bool removeConst) { if( funcs.GetLength() == 0 ) return; // This is only done for object methods asCScriptFunction *desc = builder->GetFunctionDescription(funcs[0]); if( desc->objectType == 0 ) return; // Check if there are any non-const matches asUINT n; bool foundNonConst = false; for( n = 0; n < funcs.GetLength(); n++ ) { desc = builder->GetFunctionDescription(funcs[n]); if( desc->IsReadOnly() != removeConst ) { foundNonConst = true; break; } } if( foundNonConst ) { // Remove all const methods for( n = 0; n < funcs.GetLength(); n++ ) { desc = builder->GetFunctionDescription(funcs[n]); if( desc->IsReadOnly() == removeConst ) { if( n == funcs.GetLength() - 1 ) funcs.PopLast(); else funcs[n] = funcs.PopLast(); n--; } } } } ///////////////////////////////////////////////////////////////////////////////////////////////////////////////// asCExprValue::asCExprValue() { isTemporary = false; stackOffset = 0; isConstant = false; isVariable = false; isExplicitHandle = false; qwordValue = 0; isLValue = false; isRefToLocal = false; isHandleSafe = false; } void asCExprValue::Set(const asCDataType &dt) { dataType = dt; isTemporary = false; stackOffset = 0; isConstant = false; isVariable = false; isExplicitHandle = false; qwordValue = 0; isLValue = false; isRefToLocal = false; isHandleSafe = false; } void asCExprValue::SetVariable(const asCDataType &in_dt, int in_stackOffset, bool in_isTemporary) { Set(in_dt); this->isVariable = true; this->isTemporary = in_isTemporary; this->stackOffset = (short)in_stackOffset; } void asCExprValue::SetConstantQW(const asCDataType &dt, asQWORD value) { Set(dt); isConstant = true; SetConstantQW(value); } void asCExprValue::SetConstantDW(const asCDataType &dt, asDWORD value) { Set(dt); isConstant = true; SetConstantDW(value); } void asCExprValue::SetConstantB(const asCDataType &dt, asBYTE value) { Set(dt); isConstant = true; SetConstantB(value); } void asCExprValue::SetConstantW(const asCDataType &dt, asWORD value) { Set(dt); isConstant = true; SetConstantW(value); } void asCExprValue::SetConstantF(const asCDataType &dt, float value) { Set(dt); isConstant = true; SetConstantF(value); } void asCExprValue::SetConstantD(const asCDataType &dt, double value) { Set(dt); isConstant = true; SetConstantD(value); } void asCExprValue::SetConstantQW(asQWORD value) { asASSERT(dataType.GetSizeInMemoryBytes() == 8); qwordValue = value; } void asCExprValue::SetConstantDW(asDWORD value) { asASSERT(dataType.GetSizeInMemoryBytes() == 4); dwordValue = value; } void asCExprValue::SetConstantW(asWORD value) { asASSERT(dataType.GetSizeInMemoryBytes() == 2); wordValue = value; } void asCExprValue::SetConstantB(asBYTE value) { asASSERT(dataType.GetSizeInMemoryBytes() == 1); byteValue = value; } void asCExprValue::SetConstantF(float value) { asASSERT(dataType.GetSizeInMemoryBytes() == 4); floatValue = value; } void asCExprValue::SetConstantD(double value) { asASSERT(dataType.GetSizeInMemoryBytes() == 8); doubleValue = value; } asQWORD asCExprValue::GetConstantQW() { asASSERT(dataType.GetSizeInMemoryBytes() == 8); return qwordValue; } asDWORD asCExprValue::GetConstantDW() { asASSERT(dataType.GetSizeInMemoryBytes() == 4); return dwordValue; } asWORD asCExprValue::GetConstantW() { asASSERT(dataType.GetSizeInMemoryBytes() == 2); return wordValue; } asBYTE asCExprValue::GetConstantB() { asASSERT(dataType.GetSizeInMemoryBytes() == 1); return byteValue; } float asCExprValue::GetConstantF() { asASSERT(dataType.GetSizeInMemoryBytes() == 4); return floatValue; } double asCExprValue::GetConstantD() { asASSERT(dataType.GetSizeInMemoryBytes() == 8); return doubleValue; } void asCExprValue::SetConstantData(const asCDataType &dt, asQWORD qw) { Set(dt); isConstant = true; // This code is necessary to guarantee that the code // works on both big endian and little endian CPUs. if (dataType.GetSizeInMemoryBytes() == 1) byteValue = (asBYTE)qw; if (dataType.GetSizeInMemoryBytes() == 2) wordValue = (asWORD)qw; if (dataType.GetSizeInMemoryBytes() == 4) dwordValue = (asDWORD)qw; else qwordValue = qw; } asQWORD asCExprValue::GetConstantData() { asQWORD qw = 0; // This code is necessary to guarantee that the code // works on both big endian and little endian CPUs. if (dataType.GetSizeInMemoryBytes() == 1) qw = byteValue; if (dataType.GetSizeInMemoryBytes() == 2) qw = wordValue; if (dataType.GetSizeInMemoryBytes() == 4) qw = dwordValue; else qw = qwordValue; return qw; } void asCExprValue::SetUndefinedFuncHandle(asCScriptEngine *engine) { // This is used for when the expression evaluates to a // function, but it is not yet known exactly which. The // owner expression will hold the name of the function // to determine the exact function when the signature is // known. Set(asCDataType::CreateObjectHandle(&engine->functionBehaviours, true)); isConstant = true; isExplicitHandle = false; qwordValue = 1; // Set to a different value than 0 to differentiate from null constant isLValue = false; } bool asCExprValue::IsUndefinedFuncHandle() const { if (isConstant == false) return false; if (qwordValue == 0) return false; if (isLValue) return false; if (dataType.GetTypeInfo() == 0) return false; if (dataType.GetTypeInfo()->name != "$func") return false; if (dataType.IsFuncdef()) return false; return true; } void asCExprValue::SetNullConstant() { Set(asCDataType::CreateNullHandle()); isConstant = true; isExplicitHandle = false; qwordValue = 0; isLValue = false; } bool asCExprValue::IsNullConstant() const { // We can't check the actual object type, because the null constant may have been cast to another type if (isConstant && dataType.IsObjectHandle() && qwordValue == 0) return true; return false; } void asCExprValue::SetVoid() { Set(asCDataType::CreatePrimitive(ttVoid, false)); isLValue = false; isConstant = true; } bool asCExprValue::IsVoid() const { if (dataType.GetTokenType() == ttVoid) return true; return false; } void asCExprValue::SetDummy() { SetConstantDW(asCDataType::CreatePrimitive(ttInt, true), 0); } //////////////////////////////////////////////////////////////////////////////////////////////// asCExprContext::asCExprContext(asCScriptEngine *engine) : bc(engine) { property_arg = 0; Clear(); } asCExprContext::~asCExprContext() { if (property_arg) asDELETE(property_arg, asCExprContext); } void asCExprContext::Clear() { bc.ClearAll(); type.Set(asCDataType()); deferredParams.SetLength(0); if (property_arg) asDELETE(property_arg, asCExprContext); property_arg = 0; exprNode = 0; origExpr = 0; property_get = 0; property_set = 0; property_const = false; property_handle = false; property_ref = false; methodName = ""; enumValue = ""; isVoidExpression = false; isCleanArg = false; isAnonymousInitList = false; } bool asCExprContext::IsClassMethod() const { if (type.dataType.GetTypeInfo() == 0) return false; if (methodName == "") return false; if (type.dataType.GetTypeInfo() == &type.dataType.GetTypeInfo()->engine->functionBehaviours) return false; if (isAnonymousInitList) return false; return true; } bool asCExprContext::IsGlobalFunc() const { if (type.dataType.GetTypeInfo() == 0) return false; if (methodName == "") return false; if (type.dataType.GetTypeInfo() != &type.dataType.GetTypeInfo()->engine->functionBehaviours) return false; if (isAnonymousInitList) return false; return true; } void asCExprContext::SetLambda(asCScriptNode *funcDecl) { asASSERT(funcDecl && funcDecl->nodeType == snFunction); asASSERT(bc.GetLastInstr() == -1); Clear(); type.SetUndefinedFuncHandle(bc.GetEngine()); exprNode = funcDecl; } bool asCExprContext::IsLambda() const { if (type.IsUndefinedFuncHandle() && exprNode && exprNode->nodeType == snFunction) return true; return false; } void asCExprContext::SetVoidExpression() { Clear(); type.SetVoid(); isVoidExpression = true; } bool asCExprContext::IsVoidExpression() const { if (isVoidExpression && type.IsVoid() && exprNode == 0) return true; return false; } void asCExprContext::SetAnonymousInitList(asCScriptNode *initList) { Clear(); exprNode = initList; isAnonymousInitList = true; } bool asCExprContext::IsAnonymousInitList() const { if (isAnonymousInitList && exprNode && exprNode->nodeType == snInitList) return true; return false; } void asCExprContext::Merge(asCExprContext *after) { type = after->type; property_get = after->property_get; property_set = after->property_set; property_const = after->property_const; property_handle = after->property_handle; property_ref = after->property_ref; property_arg = after->property_arg; exprNode = after->exprNode; methodName = after->methodName; enumValue = after->enumValue; isVoidExpression = after->isVoidExpression; isCleanArg = after->isCleanArg; isAnonymousInitList = after->isAnonymousInitList; after->property_arg = 0; // Do not copy the origExpr member } END_AS_NAMESPACE #endif // AS_NO_COMPILER