#ifndef __VULKAN_DRIVER_INCLUDED__ #define __VULKAN_DRIVER_INCLUDED__ #include "IrrCompileConfig.h" #ifdef _IRR_COMPILE_WITH_VULKAN_ #include "vulkan_wrapper.h" #include "SDL_video.h" #include "../source/Irrlicht/CNullDriver.h" #include "SIrrCreationParameters.h" #include "SColor.h" #include #include #include #include #include using namespace irr; using namespace video; namespace GE { class GEVulkanDepthTexture; class GEVulkanMeshCache; enum GEVulkanSampler : unsigned { GVS_MIN = 0, GVS_NEAREST = GVS_MIN, GVS_2D_RENDER, GVS_COUNT, }; class GEVulkanDriver : public video::CNullDriver { public: //! constructor GEVulkanDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, SDL_Window* window, IrrlichtDevice* device); //! destructor virtual ~GEVulkanDriver(); //! applications must call this method before performing any rendering. returns false if failed. virtual bool beginScene(bool backBuffer=true, bool zBuffer=true, SColor color=SColor(255,0,0,0), const SExposedVideoData& videoData=SExposedVideoData(), core::rect* sourceRect=0); //! applications must call this method after performing any rendering. returns false if failed. virtual bool endScene(); //! queries the features of the driver, returns true if feature is available virtual bool queryFeature(E_VIDEO_DRIVER_FEATURE feature) const { return true; } //! sets transformation virtual void setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) {} //! sets a material virtual void setMaterial(const SMaterial& material) { Material = material; } //! sets a render target virtual bool setRenderTarget(video::ITexture* texture, bool clearBackBuffer=true, bool clearZBuffer=true, SColor color=video::SColor(0,0,0,0)) { return true; } //! Sets multiple render targets virtual bool setRenderTarget(const core::array& texture, bool clearBackBuffer=true, bool clearZBuffer=true, SColor color=video::SColor(0,0,0,0)) { return true; } //! sets a viewport virtual void setViewPort(const core::rect& area); //! gets the area of the current viewport virtual const core::rect& getViewPort() const { return m_viewport; } //! updates hardware buffer if needed virtual bool updateHardwareBuffer(SHWBufferLink *HWBuffer) { return false; } //! Create hardware buffer from mesh virtual SHWBufferLink *createHardwareBuffer(const scene::IMeshBuffer* mb) { return NULL; } //! Delete hardware buffer (only some drivers can) virtual void deleteHardwareBuffer(SHWBufferLink *HWBuffer) {} //! Draw hardware buffer virtual void drawHardwareBuffer(SHWBufferLink *HWBuffer) {} //! Create occlusion query. /** Use node for identification and mesh for occlusion test. */ virtual void addOcclusionQuery(scene::ISceneNode* node, const scene::IMesh* mesh=0) {} //! Remove occlusion query. virtual void removeOcclusionQuery(scene::ISceneNode* node) {} //! Run occlusion query. Draws mesh stored in query. /** If the mesh shall not be rendered visible, use overrideMaterial to disable the color and depth buffer. */ virtual void runOcclusionQuery(scene::ISceneNode* node, bool visible=false) {} //! Update occlusion query. Retrieves results from GPU. /** If the query shall not block, set the flag to false. Update might not occur in this case, though */ virtual void updateOcclusionQuery(scene::ISceneNode* node, bool block=true) {} //! Return query result. /** Return value is the number of visible pixels/fragments. The value is a safe approximation, i.e. can be larger then the actual value of pixels. */ virtual u32 getOcclusionQueryResult(scene::ISceneNode* node) const { return 0; } //! draws a vertex primitive list virtual void drawVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) {} //! draws a vertex primitive list in 2d virtual void draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType); //! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted. virtual void draw2DImage(const video::ITexture* texture, const core::position2d& destPos, const core::rect& sourceRect, const core::rect* clipRect = 0, SColor color=SColor(255,255,255,255), bool useAlphaChannelOfTexture=false); //! Draws a part of the texture into the rectangle. virtual void draw2DImage(const video::ITexture* texture, const core::rect& destRect, const core::rect& sourceRect, const core::rect* clipRect = 0, const video::SColor* const colors=0, bool useAlphaChannelOfTexture=false); //! Draws a set of 2d images, using a color and the alpha channel of the texture. virtual void draw2DImageBatch(const video::ITexture* texture, const core::array >& positions, const core::array >& sourceRects, const core::rect* clipRect=0, SColor color=SColor(255,255,255,255), bool useAlphaChannelOfTexture=false); //!Draws an 2d rectangle with a gradient. virtual void draw2DRectangle(const core::rect& pos, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect* clip) { SColor color[4] = { colorLeftUp, colorLeftDown, colorRightDown, colorRightUp }; draw2DImage(m_white_texture, pos, core::recti(0, 0, 2, 2), clip, color, true); } //! Draws a 2d line. virtual void draw2DLine(const core::position2d& start, const core::position2d& end, SColor color=SColor(255,255,255,255)) {} //! Draws a pixel. virtual void drawPixel(u32 x, u32 y, const SColor & color) {} //! Draws a 3d line. virtual void draw3DLine(const core::vector3df& start, const core::vector3df& end, SColor color = SColor(255,255,255,255)) {} //! \return Returns the name of the video driver. Example: In case of the DIRECT3D8 //! driver, it would return "Direct3D8.1". virtual const wchar_t* getName() const { return L""; } //! deletes all dynamic lights there are virtual void deleteAllDynamicLights() {} //! adds a dynamic light, returning an index to the light //! \param light: the light data to use to create the light //! \return An index to the light, or -1 if an error occurs virtual s32 addDynamicLight(const SLight& light) { return -1; } //! Turns a dynamic light on or off //! \param lightIndex: the index returned by addDynamicLight //! \param turnOn: true to turn the light on, false to turn it off virtual void turnLightOn(s32 lightIndex, bool turnOn) {} //! returns the maximal amount of dynamic lights the device can handle virtual u32 getMaximalDynamicLightAmount() const { return (u32)-1; } //! Sets the dynamic ambient light color. The default color is //! (0,0,0,0) which means it is dark. //! \param color: New color of the ambient light. virtual void setAmbientLight(const SColorf& color) {} //! Draws a shadow volume into the stencil buffer. virtual void drawStencilShadowVolume(const core::array& triangles, bool zfail=true, u32 debugDataVisible=0) {} //! Fills the stencil shadow with color. virtual void drawStencilShadow(bool clearStencilBuffer=false, video::SColor leftUpEdge = video::SColor(0,0,0,0), video::SColor rightUpEdge = video::SColor(0,0,0,0), video::SColor leftDownEdge = video::SColor(0,0,0,0), video::SColor rightDownEdge = video::SColor(0,0,0,0)) {} //! Returns the maximum amount of primitives (mostly vertices) which //! the device is able to render with one drawIndexedTriangleList //! call. virtual u32 getMaximalPrimitiveCount() const { return (u32)-1; } //! Enables or disables a texture creation flag. virtual void setTextureCreationFlag(E_TEXTURE_CREATION_FLAG flag, bool enabled) {} //! Sets the fog mode. virtual void setFog(SColor color, E_FOG_TYPE fogType, f32 start, f32 end, f32 density, bool pixelFog, bool rangeFog) {} //! Only used by the internal engine. Used to notify the driver that //! the window was resized. virtual void OnResize(const core::dimension2d& size); //! Returns type of video driver virtual E_DRIVER_TYPE getDriverType() const { return video::EDT_VULKAN; } //! Returns the transformation set by setTransform virtual const core::matrix4& getTransform(E_TRANSFORMATION_STATE state) const { static core::matrix4 unused; return unused; } //! Creates a render target texture. virtual ITexture* addRenderTargetTexture(const core::dimension2d& size, const io::path& name, const ECOLOR_FORMAT format = ECF_UNKNOWN, const bool useStencil = false) { return NULL; } //! Clears the ZBuffer. virtual void clearZBuffer() {} //! Returns an image created from the last rendered frame. virtual IImage* createScreenShot(video::ECOLOR_FORMAT format=video::ECF_UNKNOWN, video::E_RENDER_TARGET target=video::ERT_FRAME_BUFFER) { return NULL; } //! Set/unset a clipping plane. virtual bool setClipPlane(u32 index, const core::plane3df& plane, bool enable=false) { return true; } //! Enable/disable a clipping plane. virtual void enableClipPlane(u32 index, bool enable) {} //! Returns the graphics card vendor name. virtual core::stringc getVendorInfo() { switch (m_properties.vendorID) { case 0x1002: return "AMD"; case 0x1010: return "ImgTec"; case 0x106B: return "Apple"; case 0x10DE: return "NVIDIA"; case 0x13B5: return "ARM"; case 0x14e4: return "Broadcom"; case 0x5143: return "Qualcomm"; case 0x8086: return "INTEL"; // llvmpipe case 0x10005: return "Mesa"; default: return "Unknown"; } } //! Enable the 2d override material virtual void enableMaterial2D(bool enable=true) {} //! Check if the driver was recently reset. virtual bool checkDriverReset() { return false; } //! Get the current color format of the color buffer /** \return Color format of the color buffer. */ virtual ECOLOR_FORMAT getColorFormat() const { return ECF_A8R8G8B8; } //! Returns the maximum texture size supported. virtual core::dimension2du getMaxTextureSize() const { return core::dimension2du(16384, 16384); } virtual void enableScissorTest(const core::rect& r) { m_clip = r; } core::rect getFullscreenClip() const { return core::rect(0, 0, ScreenSize.Width, ScreenSize.Height); } virtual void disableScissorTest() { m_clip = getFullscreenClip(); } virtual const core::dimension2d& getCurrentRenderTargetSize() const { return ScreenSize; } VkSampler getSampler(GEVulkanSampler s) const { if (s >= GVS_COUNT) return VK_NULL_HANDLE; return m_vk->samplers[s]; } VkDevice getDevice() const { return m_vk->device; } void destroyVulkan(); bool createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, VkBuffer& buffer, VkDeviceMemory& buffer_memory); VkPhysicalDevice getPhysicalDevice() const { return m_physical_device; } const VkPhysicalDeviceFeatures& getPhysicalDeviceFeatures() const { return m_features; } const VkPhysicalDeviceProperties& getPhysicalDeviceProperties() const { return m_properties; } VkExtent2D getSwapChainExtent() const { return m_swap_chain_extent; } size_t getSwapChainImagesCount() const { return m_vk->swap_chain_images.size(); } VkRenderPass getRenderPass() const { return m_vk->render_pass; } void copyBuffer(VkBuffer src_buffer, VkBuffer dst_buffer, VkDeviceSize size); VkCommandBuffer getCurrentCommandBuffer() { return m_vk->command_buffers[m_current_frame]; } std::vector& getSwapChainImages() { return m_vk->swap_chain_images; } std::vector& getSwapChainFramebuffers() { return m_vk->swap_chain_framebuffers; } unsigned int getCurrentFrame() const { return m_current_frame; } unsigned int getCurrentImageIndex() const { return m_image_index; } constexpr static unsigned getMaxFrameInFlight() { return 2; } video::SColor getClearColor() const { return m_clear_color; } const core::rect& getCurrentClip() const { return m_clip; } video::ITexture* getWhiteTexture() const { return m_white_texture; } video::ITexture* getTransparentTexture() const { return m_transparent_texture; } void getRotatedRect2D(VkRect2D* rect); void getRotatedViewport(VkViewport* vp); const core::matrix4& getPreRotationMatrix() { return m_pre_rotation_matrix; } virtual void pauseRendering(); virtual void unpauseRendering(); void updateSwapInterval(int value) { if (m_params.SwapInterval == value) return; m_params.SwapInterval = value; destroySwapChainRelated(false/*handle_surface*/); createSwapChainRelated(false/*handle_surface*/); } uint32_t getGraphicsFamily() const { return m_graphics_family; } unsigned getGraphicsQueueCount() const { return m_graphics_queue_count; } std::unique_lock getGraphicsQueue(VkQueue* queue) const; void waitIdle(); void setDisableWaitIdle(bool val) { m_disable_wait_idle = val; } IrrlichtDevice* getIrrlichtDevice() const { return m_irrlicht_device; } GEVulkanDepthTexture* getDepthTexture() const { return m_depth_texture; } VkFormat findSupportedFormat(const std::vector& candidates, VkImageTiling tiling, VkFormatFeatureFlags features); private: struct SwapChainSupportDetails { VkSurfaceCapabilitiesKHR capabilities; std::vector formats; std::vector presentModes; }; //! returns a device dependent texture from a software surface (IImage) //! THIS METHOD HAS TO BE OVERRIDDEN BY DERIVED DRIVERS WITH OWN TEXTURES virtual video::ITexture* createDeviceDependentTexture(IImage* surface, const io::path& name, void* mipmapData=0) { return NULL; } //! Adds a new material renderer to the VideoDriver, based on a high level shading //! language. virtual s32 addHighLevelShaderMaterial( const c8* vertexShaderProgram, const c8* vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, const c8* pixelShaderProgram, const c8* pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, const c8* geometryShaderProgram, const c8* geometryShaderEntryPointName = "main", E_GEOMETRY_SHADER_TYPE gsCompileTarget = EGST_GS_4_0, scene::E_PRIMITIVE_TYPE inType = scene::EPT_TRIANGLES, scene::E_PRIMITIVE_TYPE outType = scene::EPT_TRIANGLE_STRIP, u32 verticesOut = 0, IShaderConstantSetCallBack* callback = 0, E_MATERIAL_TYPE baseMaterial = video::EMT_SOLID, s32 userData = 0, E_GPU_SHADING_LANGUAGE shadingLang = EGSL_DEFAULT) { return 0; } SIrrlichtCreationParameters m_params; SMaterial Material; // RAII to auto cleanup struct VK { VkInstance instance; VkDebugUtilsMessengerEXT debug; VkSurfaceKHR surface; VkDevice device; VkSwapchainKHR swap_chain; std::vector swap_chain_images; std::vector swap_chain_image_views; std::vector image_available_semaphores; std::vector render_finished_semaphores; std::vector in_flight_fences; std::vector command_buffers; std::array samplers; VkRenderPass render_pass; std::vector swap_chain_framebuffers; VK() { instance = VK_NULL_HANDLE; debug = VK_NULL_HANDLE; surface = VK_NULL_HANDLE; device = VK_NULL_HANDLE; swap_chain = VK_NULL_HANDLE; samplers = {{}}; render_pass = VK_NULL_HANDLE; } ~VK() { for (VkFramebuffer& framebuffer : swap_chain_framebuffers) vkDestroyFramebuffer(device, framebuffer, NULL); if (render_pass != VK_NULL_HANDLE) vkDestroyRenderPass(device, render_pass, NULL); for (unsigned i = 0; i < GVS_COUNT; i++) vkDestroySampler(device, samplers[i], NULL); for (VkSemaphore& semaphore : image_available_semaphores) vkDestroySemaphore(device, semaphore, NULL); for (VkSemaphore& semaphore : render_finished_semaphores) vkDestroySemaphore(device, semaphore, NULL); for (VkFence& fence : in_flight_fences) vkDestroyFence(device, fence, NULL); for (VkImageView& image_view : swap_chain_image_views) vkDestroyImageView(device, image_view, NULL); if (swap_chain != VK_NULL_HANDLE) vkDestroySwapchainKHR(device, swap_chain, NULL); if (device != VK_NULL_HANDLE) vkDestroyDevice(device, NULL); if (surface != VK_NULL_HANDLE) vkDestroySurfaceKHR(instance, surface, NULL); if (vkDestroyDebugUtilsMessengerEXT && debug != VK_NULL_HANDLE) vkDestroyDebugUtilsMessengerEXT(instance, debug, NULL); if (instance != VK_NULL_HANDLE) vkDestroyInstance(instance, NULL); } }; std::unique_ptr m_vk; VkFormat m_swap_chain_image_format; VkExtent2D m_swap_chain_extent; VkPhysicalDevice m_physical_device; std::vector m_device_extensions; VkSurfaceCapabilitiesKHR m_surface_capabilities; std::vector m_surface_formats; std::vector m_present_modes; std::vector m_graphics_queue; VkQueue m_present_queue; mutable std::vector m_graphics_queue_mutexes; uint32_t m_graphics_family; uint32_t m_present_family; unsigned m_graphics_queue_count; VkPhysicalDeviceProperties m_properties; VkPhysicalDeviceFeatures m_features; unsigned int m_current_frame; uint32_t m_image_index; video::SColor m_clear_color; core::rect m_clip; core::rect m_viewport; core::matrix4 m_pre_rotation_matrix; video::ITexture* m_white_texture; video::ITexture* m_transparent_texture; SDL_Window* m_window; bool m_disable_wait_idle; IrrlichtDevice* m_irrlicht_device; GEVulkanDepthTexture* m_depth_texture; void createInstance(SDL_Window* window); void findPhysicalDevice(); bool checkDeviceExtensions(VkPhysicalDevice device); bool findQueueFamilies(VkPhysicalDevice device, uint32_t* graphics_family, unsigned* graphics_queue_count, uint32_t* present_family); bool updateSurfaceInformation(VkPhysicalDevice device, VkSurfaceCapabilitiesKHR* surface_capabilities, std::vector* surface_formats, std::vector* present_modes); void createDevice(); void createSwapChain(); void createSyncObjects(); void createCommandBuffers(); void createSamplers(); void createRenderPass(); void createFramebuffers(); void createUnicolorTextures(); void initPreRotationMatrix(); std::string getVulkanVersionString() const; std::string getDriverVersionString() const; void destroySwapChainRelated(bool handle_surface); void createSwapChainRelated(bool handle_surface); GEVulkanMeshCache* getVulkanMeshCache() const; void buildCommandBuffers(); }; } #endif // _IRR_COMPILE_WITH_VULKAN_ #endif // __VULKAN_DRIVER_INCLUDED__