// Copyright (C) 2013 Patryk Nadrowski // Heavily based on the OpenGL driver implemented by Nikolaus Gebhardt // OpenGL ES driver implemented by Christian Stehno and first OpenGL ES 2.0 // driver implemented by Amundis. // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in Irrlicht.h #include "COGLES2Driver.h" // needed here also because of the create methods' parameters #include "CNullDriver.h" #ifdef _IRR_COMPILE_WITH_OGLES2_ #include "COGLES2Texture.h" #include "COGLES2MaterialRenderer.h" #include "COGLES2FixedPipelineRenderer.h" #include "COGLES2NormalMapRenderer.h" #include "COGLES2ParallaxMapRenderer.h" #include "COGLES2Renderer2D.h" #include "CContextEGL.h" #include "CImage.h" #include "os.h" #include "IrrlichtDevice.h" #ifdef IOS_STK #include #include #else #include #endif #ifdef _IRR_COMPILE_WITH_WAYLAND_DEVICE_ #include "CIrrDeviceWayland.h" #endif #ifdef _IRR_COMPILE_WITH_SDL_DEVICE_ #include "CIrrDeviceSDL.h" #endif namespace irr { namespace video { bool useCoreContext = true; //! constructor and init code #if defined(_IRR_COMPILE_WITH_X11_DEVICE_) || defined(_IRR_WINDOWS_API_) || defined(_IRR_COMPILE_WITH_ANDROID_DEVICE_) COGLES2Driver::COGLES2Driver(const SIrrlichtCreationParameters& params, const SExposedVideoData& data, io::IFileSystem* io, IrrlichtDevice* device) : CNullDriver(io, params.WindowSize), COGLES2ExtensionHandler(), BridgeCalls(0), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), RenderTargetTexture(0), CurrentRendertargetSize(0, 0), ColorFormat(ECF_R8G8B8) #if defined(_IRR_COMPILE_WITH_EGL_) , EglContext(0) , EglContextExternal(false) #endif #if defined(_IRR_COMPILE_WITH_WINDOWS_DEVICE_) , HDc(0) #endif , Params(params) { #ifdef _DEBUG setDebugName("COGLES2Driver"); #endif ExposedData = data; #if defined(_IRR_COMPILE_WITH_EGL_) EglContext = new ContextManagerEGL(); ContextEGLParams egl_params; egl_params.opengl_api = CEGL_API_OPENGL_ES; egl_params.surface_type = CEGL_SURFACE_WINDOW; egl_params.handle_srgb = Params.HandleSRGB; egl_params.force_legacy_device = Params.ForceLegacyDevice; egl_params.with_alpha_channel = Params.WithAlphaChannel; egl_params.swap_interval = Params.SwapInterval; #if defined(_IRR_COMPILE_WITH_WINDOWS_DEVICE_) egl_params.window = (EGLNativeWindowType)(data.OpenGLWin32.HWnd); HDc = GetDC(data.OpenGLWin32.HWnd); egl_params.display = (NativeDisplayType)(HDc); #elif defined(_IRR_COMPILE_WITH_X11_DEVICE_) egl_params.platform = CEGL_PLATFORM_X11; egl_params.window = (EGLNativeWindowType)(data.OpenGLLinux.X11Window); egl_params.display = (EGLNativeDisplayType)(data.OpenGLLinux.X11Display); #elif defined(_IRR_COMPILE_WITH_ANDROID_DEVICE_) egl_params.platform = CEGL_PLATFORM_DEFAULT; egl_params.window = ((struct android_app *)(params.PrivateData))->window; egl_params.display = NULL; #endif EglContext->init(egl_params); useCoreContext = !EglContext->isLegacyDevice(); genericDriverInit(params.WindowSize, params.Stencilbuffer); #ifdef _IRR_COMPILE_WITH_ANDROID_DEVICE_ int width = 0; int height = 0; EglContext->getSurfaceDimensions(&width, &height); CNullDriver::ScreenSize = core::dimension2d(width, height); #endif #endif m_device = device; } #endif #ifdef _IRR_COMPILE_WITH_WAYLAND_DEVICE_ COGLES2Driver::COGLES2Driver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceWayland* device) : CNullDriver(io, params.WindowSize), COGLES2ExtensionHandler(), BridgeCalls(0), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), RenderTargetTexture(0), CurrentRendertargetSize(0, 0), ColorFormat(ECF_R8G8B8), EglContext(0), EglContextExternal(false), Params(params) { EglContext = device->getEGLContext(); EglContextExternal = true; genericDriverInit(params.WindowSize, params.Stencilbuffer); m_device = device; } #endif //! destructor COGLES2Driver::~COGLES2Driver() { deleteMaterialRenders(); delete MaterialRenderer2D; deleteAllTextures(); if (BridgeCalls) delete BridgeCalls; #if defined(_IRR_COMPILE_WITH_EGL_) if (!EglContextExternal) delete EglContext; #if defined(_IRR_COMPILE_WITH_WINDOWS_DEVICE_) if (HDc) ReleaseDC((ExposedData.OpenGLWin32.HWnd, HDc); #endif #endif } #ifdef _IRR_COMPILE_WITH_SDL_DEVICE_ COGLES2Driver::COGLES2Driver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceSDL* device, u32 default_fb) : CNullDriver(io, params.WindowSize), COGLES2ExtensionHandler(), BridgeCalls(0), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), RenderTargetTexture(0), CurrentRendertargetSize(0, 0), ColorFormat(ECF_R8G8B8), Params(params) { genericDriverInit(params.WindowSize, params.Stencilbuffer); m_device = device; m_default_fb = default_fb; } #endif // ----------------------------------------------------------------------- // METHODS // ----------------------------------------------------------------------- bool COGLES2Driver::genericDriverInit(const core::dimension2d& screenSize, bool stencilBuffer) { Name = glGetString(GL_VERSION); printVersion(); // print renderer information vendorName = glGetString(GL_VENDOR); os::Printer::log(vendorName.c_str(), ELL_INFORMATION); u32 i; for (i = 0; i < MATERIAL_MAX_TEXTURES; ++i) CurrentTexture[i] = 0; // load extensions initExtensions(this, stencilBuffer); if (!BridgeCalls) BridgeCalls = new COGLES2CallBridge(this); StencilBuffer = stencilBuffer; DriverAttributes->setAttribute("MaxTextures", MaxTextureUnits); DriverAttributes->setAttribute("MaxSupportedTextures", MaxSupportedTextures); // DriverAttributes->setAttribute("MaxLights", MaxLights); DriverAttributes->setAttribute("MaxAnisotropy", MaxAnisotropy); // DriverAttributes->setAttribute("MaxUserClipPlanes", MaxUserClipPlanes); // DriverAttributes->setAttribute("MaxAuxBuffers", MaxAuxBuffers); // DriverAttributes->setAttribute("MaxMultipleRenderTargets", MaxMultipleRenderTargets); DriverAttributes->setAttribute("MaxIndices", (s32)MaxIndices); DriverAttributes->setAttribute("MaxTextureSize", (s32)MaxTextureSize); DriverAttributes->setAttribute("MaxTextureLODBias", MaxTextureLODBias); DriverAttributes->setAttribute("Version", Version); DriverAttributes->setAttribute("AntiAlias", AntiAlias); glPixelStorei(GL_PACK_ALIGNMENT, 1); // Reset The Current Viewport BridgeCalls->setViewport(core::rect(0, 0, screenSize.Width, screenSize.Height)); UserClipPlane.reallocate(0); setAmbientLight(SColorf(0.0f, 0.0f, 0.0f, 0.0f)); glClearDepthf(1.0f); //TODO : OpenGL ES 2.0 Port : GL_PERSPECTIVE_CORRECTION_HINT //glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST); glHint(GL_GENERATE_MIPMAP_HINT, GL_FASTEST); glDepthFunc(GL_LEQUAL); glFrontFace(GL_CW); // create material renderers createMaterialRenderers(); // set the renderstates setRenderStates3DMode(); // set fog mode setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog); // create matrix for flipping textures TextureFlipMatrix.buildTextureTransform(0.0f, core::vector2df(0, 0), core::vector2df(0, 1.0f), core::vector2df(1.0f, -1.0f)); // We need to reset once more at the beginning of the first rendering. // This fixes problems with intermediate changes to the material during texture load. ResetRenderStates = true; testGLError(); return true; } void COGLES2Driver::createMaterialRenderers() { // Load shaders from files (in future shaders will be merged with source code). // Fixed pipeline. core::stringc shaders_path = IRR_OGLES2_SHADER_PATH; if (Params.ShadersPath.size() > 0) shaders_path = Params.ShadersPath; core::stringc FPVSPath = shaders_path; FPVSPath += "COGLES2FixedPipeline.vsh"; core::stringc FPFSPath = shaders_path; FPFSPath += "COGLES2FixedPipeline.fsh"; io::IReadFile* FPVSFile = FileSystem->createAndOpenFile(FPVSPath); io::IReadFile* FPFSFile = FileSystem->createAndOpenFile(FPFSPath); c8* FPVSData = 0; c8* FPFSData = 0; long Size = FPVSFile ? FPVSFile->getSize() : 0; if (Size) { FPVSData = new c8[Size+1]; FPVSFile->read(FPVSData, Size); FPVSData[Size] = 0; } Size = FPFSFile ? FPFSFile->getSize() : 0; if (Size) { // if both handles are the same we must reset the file if (FPFSFile == FPVSFile) FPFSFile->seek(0); FPFSData = new c8[Size+1]; FPFSFile->read(FPFSData, Size); FPFSData[Size] = 0; } if (FPVSFile) FPVSFile->drop(); if (FPFSFile) FPFSFile->drop(); // Normal Mapping. core::stringc NMVSPath = shaders_path; NMVSPath += "COGLES2NormalMap.vsh"; core::stringc NMFSPath = shaders_path; NMFSPath += "COGLES2NormalMap.fsh"; io::IReadFile* NMVSFile = FileSystem->createAndOpenFile(NMVSPath); io::IReadFile* NMFSFile = FileSystem->createAndOpenFile(NMFSPath); c8* NMVSData = 0; c8* NMFSData = 0; Size = NMVSFile ? NMVSFile->getSize() : 0; if (Size) { NMVSData = new c8[Size+1]; NMVSFile->read(NMVSData, Size); NMVSData[Size] = 0; } Size = NMFSFile ? NMFSFile->getSize() : 0; if (Size) { // if both handles are the same we must reset the file if (NMFSFile == NMVSFile) NMFSFile->seek(0); NMFSData = new c8[Size+1]; NMFSFile->read(NMFSData, Size); NMFSData[Size] = 0; } if (NMVSFile) NMVSFile->drop(); if (NMFSFile) NMFSFile->drop(); // Parallax Mapping. core::stringc PMVSPath = shaders_path; PMVSPath += "COGLES2ParallaxMap.vsh"; core::stringc PMFSPath = shaders_path; PMFSPath += "COGLES2ParallaxMap.fsh"; io::IReadFile* PMVSFile = FileSystem->createAndOpenFile(FPVSPath); io::IReadFile* PMFSFile = FileSystem->createAndOpenFile(FPFSPath); c8* PMVSData = 0; c8* PMFSData = 0; Size = PMVSFile ? PMVSFile->getSize() : 0; if (Size) { PMVSData = new c8[Size+1]; PMVSFile->read(PMVSData, Size); PMVSData[Size] = 0; } Size = PMFSFile ? PMFSFile->getSize() : 0; if (Size) { // if both handles are the same we must reset the file if (PMFSFile == PMVSFile) PMFSFile->seek(0); PMFSData = new c8[Size+1]; PMFSFile->read(PMFSData, Size); PMFSData[Size] = 0; } if (PMVSFile) PMVSFile->drop(); if (PMFSFile) PMFSFile->drop(); // Create materials. addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_SOLID, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_SOLID_2_LAYER, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_LIGHTMAP, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_LIGHTMAP_ADD, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_LIGHTMAP_M2, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_LIGHTMAP_M4, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_LIGHTMAP_LIGHTING, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_LIGHTMAP_LIGHTING_M2, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_LIGHTMAP_LIGHTING_M4, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_DETAIL_MAP, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_SPHERE_MAP, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_REFLECTION_2_LAYER, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_TRANSPARENT_ADD_COLOR, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_TRANSPARENT_ALPHA_CHANNEL, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_TRANSPARENT_ALPHA_CHANNEL_REF, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_TRANSPARENT_VERTEX_ALPHA, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_TRANSPARENT_REFLECTION_2_LAYER, this)); if (!useCoreContext) { addAndDropMaterialRenderer(new COGLES2NormalMapRenderer(NMVSData, NMFSData, EMT_NORMAL_MAP_SOLID, this)); addAndDropMaterialRenderer(new COGLES2NormalMapRenderer(NMVSData, NMFSData, EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR, this)); addAndDropMaterialRenderer(new COGLES2NormalMapRenderer(NMVSData, NMFSData, EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA, this)); } addAndDropMaterialRenderer(new COGLES2ParallaxMapRenderer(PMVSData, PMFSData, EMT_PARALLAX_MAP_SOLID, this)); addAndDropMaterialRenderer(new COGLES2ParallaxMapRenderer(PMVSData, PMFSData, EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR, this)); addAndDropMaterialRenderer(new COGLES2ParallaxMapRenderer(PMVSData, PMFSData, EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_ONETEXTURE_BLEND, this)); addAndDropMaterialRenderer(new COGLES2FixedPipelineRenderer(FPVSData, FPFSData, EMT_STK_GRASS, this)); delete[] FPVSData; delete[] FPFSData; delete[] NMVSData; delete[] NMFSData; delete[] PMVSData; delete[] PMFSData; // Create 2D material renderer. core::stringc R2DVSPath = shaders_path; R2DVSPath += "COGLES2Renderer2D.vsh"; core::stringc R2DFSPath = shaders_path; R2DFSPath += "COGLES2Renderer2D.fsh"; io::IReadFile* R2DVSFile = FileSystem->createAndOpenFile(R2DVSPath); io::IReadFile* R2DFSFile = FileSystem->createAndOpenFile(R2DFSPath); c8* R2DVSData = 0; c8* R2DFSData = 0; Size = R2DVSFile ? R2DVSFile->getSize() : 0; if (Size) { R2DVSData = new c8[Size+1]; R2DVSFile->read(R2DVSData, Size); R2DVSData[Size] = 0; } Size = R2DFSFile ? R2DFSFile->getSize() : 0; if (Size) { // if both handles are the same we must reset the file if (R2DFSFile == PMVSFile) R2DFSFile->seek(0); R2DFSData = new c8[Size+1]; R2DFSFile->read(R2DFSData, Size); R2DFSData[Size] = 0; } if (R2DVSFile) R2DVSFile->drop(); if (R2DFSFile) R2DFSFile->drop(); MaterialRenderer2D = new COGLES2Renderer2D(R2DVSData, R2DFSData, this); delete[] R2DVSData; delete[] R2DFSData; } //! presents the rendered scene on the screen, returns false if failed bool COGLES2Driver::endScene() { CNullDriver::endScene(); #if defined(_IRR_COMPILE_WITH_EGL_) bool res = EglContext->swapBuffers(); if (!res) { os::Printer::log("Could not swap buffers for OpenGL-ES2 driver."); return false; } #elif defined(_IRR_COMPILE_WITH_SDL_DEVICE_) SDL_GL_SwapWindow(static_cast(m_device)->getWindow()); #endif return true; } //! clears the zbuffer bool COGLES2Driver::beginScene(bool backBuffer, bool zBuffer, SColor color, const SExposedVideoData& videoData, core::rect* sourceRect) { CNullDriver::beginScene(backBuffer, zBuffer, color); #ifdef IOS_STK CIrrDeviceSDL* sdl = static_cast(m_device); const SDL_SysWMinfo& info = sdl->getWMInfo(); glBindRenderbuffer(GL_RENDERBUFFER, info.info.uikit.framebuffer); #endif GLbitfield mask = 0; if (backBuffer) { const f32 inv = 1.0f / 255.0f; glClearColor(color.getRed() * inv, color.getGreen() * inv, color.getBlue() * inv, color.getAlpha() * inv); mask |= GL_COLOR_BUFFER_BIT; } if (zBuffer) { glDepthMask(GL_TRUE); LastMaterial.ZWriteEnable = true; mask |= GL_DEPTH_BUFFER_BIT; } glClear(mask); testGLError(); return true; } //! Returns the transformation set by setTransform const core::matrix4& COGLES2Driver::getTransform(E_TRANSFORMATION_STATE state) const { return Matrices[state]; } //! sets transformation void COGLES2Driver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) { Matrices[state] = mat; Transformation3DChanged = true; } bool COGLES2Driver::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer) { if (!HWBuffer) return false; const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const void* vertices = mb->getVertices(); const u32 vertexCount = mb->getVertexCount(); const E_VERTEX_TYPE vType = mb->getVertexType(); const u32 vertexSize = getVertexPitchFromType(vType); //buffer vertex data, and convert colours... core::array buffer(vertexSize * vertexCount); memcpy(buffer.pointer(), vertices, vertexSize * vertexCount); //get or create buffer bool newBuffer = false; if (!HWBuffer->vbo_verticesID) { glGenBuffers(1, &HWBuffer->vbo_verticesID); if (!HWBuffer->vbo_verticesID) return false; newBuffer = true; } else if (HWBuffer->vbo_verticesSize < vertexCount*vertexSize) { newBuffer = true; } glBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID); //copy data to graphics card glGetError(); // clear error storage if (!newBuffer) glBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * vertexSize, buffer.const_pointer()); else { HWBuffer->vbo_verticesSize = vertexCount * vertexSize; if (HWBuffer->Mapped_Vertex == scene::EHM_STATIC) glBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_STATIC_DRAW); else glBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_DYNAMIC_DRAW); } glBindBuffer(GL_ARRAY_BUFFER, 0); return (glGetError() == GL_NO_ERROR); } bool COGLES2Driver::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer) { if (!HWBuffer) return false; const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const void* indices = mb->getIndices(); u32 indexCount = mb->getIndexCount(); GLenum indexSize; switch (mb->getIndexType()) { case(EIT_16BIT): { indexSize = sizeof(u16); break; } case(EIT_32BIT): { indexSize = sizeof(u32); break; } default: { return false; } } //get or create buffer bool newBuffer = false; if (!HWBuffer->vbo_indicesID) { glGenBuffers(1, &HWBuffer->vbo_indicesID); if (!HWBuffer->vbo_indicesID) return false; newBuffer = true; } else if (HWBuffer->vbo_indicesSize < indexCount*indexSize) { newBuffer = true; } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID); //copy data to graphics card glGetError(); // clear error storage if (!newBuffer) glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, indexCount * indexSize, indices); else { HWBuffer->vbo_indicesSize = indexCount * indexSize; if (HWBuffer->Mapped_Index == scene::EHM_STATIC) glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STATIC_DRAW); else glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_DYNAMIC_DRAW); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); return (glGetError() == GL_NO_ERROR); } //! updates hardware buffer if needed bool COGLES2Driver::updateHardwareBuffer(SHWBufferLink *HWBuffer) { if (!HWBuffer) return false; if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) { if (HWBuffer->ChangedID_Vertex != HWBuffer->MeshBuffer->getChangedID_Vertex() || !((SHWBufferLink_opengl*)HWBuffer)->vbo_verticesID) { HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex(); if (!updateVertexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer)) return false; } } if (HWBuffer->Mapped_Index != scene::EHM_NEVER) { if (HWBuffer->ChangedID_Index != HWBuffer->MeshBuffer->getChangedID_Index() || !((SHWBufferLink_opengl*)HWBuffer)->vbo_indicesID) { HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index(); if (!updateIndexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer)) return false; } } return true; } //! Create hardware buffer from meshbuffer COGLES2Driver::SHWBufferLink *COGLES2Driver::createHardwareBuffer(const scene::IMeshBuffer* mb) { if (!mb || (mb->getHardwareMappingHint_Index() == scene::EHM_NEVER && mb->getHardwareMappingHint_Vertex() == scene::EHM_NEVER)) return 0; SHWBufferLink_opengl *HWBuffer = new SHWBufferLink_opengl(mb); //add to map HWBufferMap.insert(HWBuffer->MeshBuffer, HWBuffer); HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex(); HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index(); HWBuffer->Mapped_Vertex = mb->getHardwareMappingHint_Vertex(); HWBuffer->Mapped_Index = mb->getHardwareMappingHint_Index(); HWBuffer->LastUsed = 0; HWBuffer->vbo_verticesID = 0; HWBuffer->vbo_indicesID = 0; HWBuffer->vbo_verticesSize = 0; HWBuffer->vbo_indicesSize = 0; if (!updateHardwareBuffer(HWBuffer)) { deleteHardwareBuffer(HWBuffer); return 0; } return HWBuffer; } void COGLES2Driver::deleteHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; SHWBufferLink_opengl *HWBuffer = (SHWBufferLink_opengl*)_HWBuffer; if (HWBuffer->vbo_verticesID) { glDeleteBuffers(1, &HWBuffer->vbo_verticesID); HWBuffer->vbo_verticesID = 0; } if (HWBuffer->vbo_indicesID) { glDeleteBuffers(1, &HWBuffer->vbo_indicesID); HWBuffer->vbo_indicesID = 0; } CNullDriver::deleteHardwareBuffer(_HWBuffer); } //! Draw hardware buffer void COGLES2Driver::drawHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; SHWBufferLink_opengl *HWBuffer = (SHWBufferLink_opengl*)_HWBuffer; updateHardwareBuffer(HWBuffer); //check if update is needed HWBuffer->LastUsed = 0;//reset count const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const void *vertices = mb->getVertices(); const void *indexList = mb->getIndices(); if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) { glBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID); vertices = 0; } if (HWBuffer->Mapped_Index != scene::EHM_NEVER) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID); indexList = 0; } drawVertexPrimitiveList(vertices, mb->getVertexCount(), indexList, mb->getIndexCount() / 3, mb->getVertexType(), scene::EPT_TRIANGLES, mb->getIndexType()); if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) glBindBuffer(GL_ARRAY_BUFFER, 0); if (HWBuffer->Mapped_Index != scene::EHM_NEVER) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } // small helper function to create vertex buffer object adress offsets static inline u8* buffer_offset(const long offset) { return ((u8*)0 + offset); } //! draws a vertex primitive list void COGLES2Driver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { testGLError(); if (!checkPrimitiveCount(primitiveCount)) return; setRenderStates3DMode(); drawVertexPrimitiveList2d3d(vertices, vertexCount, (const u16*)indexList, primitiveCount, vType, pType, iType); } void COGLES2Driver::draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { testGLError(); if (!checkPrimitiveCount(primitiveCount)) return; setRenderStates2DMode(Material.MaterialType==EMT_TRANSPARENT_VERTEX_ALPHA, (Material.getTexture(0) != 0), Material.MaterialType==EMT_TRANSPARENT_ALPHA_CHANNEL); drawVertexPrimitiveList2d3d(vertices, vertexCount, (const u16*)indexList, primitiveCount, vType, pType, iType, false); } void COGLES2Driver::drawVertexPrimitiveList2d3d(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType, bool threed) { if (!primitiveCount || !vertexCount) return; if (!threed && !checkPrimitiveCount(primitiveCount)) return; CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); //TODO: treat #ifdef GL_OES_point_size_array outside this if { glEnableVertexAttribArray(EVA_COLOR); glEnableVertexAttribArray(EVA_POSITION); if ((pType != scene::EPT_POINTS) && (pType != scene::EPT_POINT_SPRITES)) { glEnableVertexAttribArray(EVA_TCOORD0); } #ifdef GL_OES_point_size_array else if (FeatureAvailable[IRR_OES_point_size_array] && (Material.Thickness == 0.0f)) glEnableClientState(GL_POINT_SIZE_ARRAY_OES); #endif if (threed && (pType != scene::EPT_POINTS) && (pType != scene::EPT_POINT_SPRITES)) { glEnableVertexAttribArray(EVA_NORMAL); } switch (vType) { case EVT_STANDARD: if (vertices) { #ifdef GL_OES_point_size_array if ((pType == scene::EPT_POINTS) || (pType == scene::EPT_POINT_SPRITES)) { if (FeatureAvailable[IRR_OES_point_size_array] && (Material.Thickness == 0.0f)) glPointSizePointerOES(GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].Normal.X); } else #endif glVertexAttribPointer(EVA_POSITION, (threed ? 3 : 2), GL_FLOAT, false, sizeof(S3DVertex), &(static_cast(vertices))[0].Pos); if (threed) glVertexAttribPointer(EVA_NORMAL, 3, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast(vertices))[0].Normal); glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &(static_cast(vertices))[0].Color); glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast(vertices))[0].TCoords); } else { glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), 0); glVertexAttribPointer(EVA_NORMAL, 3, GL_FLOAT, false, sizeof(S3DVertex), buffer_offset(12)); glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), buffer_offset(24)); glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex), buffer_offset(28)); } //if (CurrentTexture[1]) //{ // // There must be some optimisation here as it uses the same texture coord ! // glEnableVertexAttribArray(EVA_TCOORD1); // if (vertices) // glVertexAttribPointer(EVA_TCOORD1, 2, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast(vertices))[0].TCoords); // else // glVertexAttribPointer(EVA_TCOORD1, 2, GL_FLOAT, false, sizeof(S3DVertex), buffer_offset(28)); //} break; case EVT_2TCOORDS: //glEnableVertexAttribArray(EVA_TCOORD1); if (vertices) { glVertexAttribPointer(EVA_POSITION, (threed ? 3 : 2), GL_FLOAT, false, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].Pos); if (threed) glVertexAttribPointer(EVA_NORMAL, 3, GL_FLOAT, false, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].Normal); glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].Color); glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].TCoords); //glVertexAttribPointer(EVA_TCOORD1, 2, GL_FLOAT, false, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].TCoords2); } else { glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex2TCoords), buffer_offset(0)); glVertexAttribPointer(EVA_NORMAL, 3, GL_FLOAT, false, sizeof(S3DVertex2TCoords), buffer_offset(12)); glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex2TCoords), buffer_offset(24)); glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex2TCoords), buffer_offset(28)); //glVertexAttribPointer(EVA_TCOORD1, 2, GL_FLOAT, false, sizeof(S3DVertex2TCoords), buffer_offset(36)); } break; case EVT_TANGENTS: glEnableVertexAttribArray(EVA_TANGENT); glEnableVertexAttribArray(EVA_BINORMAL); if (vertices) { glVertexAttribPointer(EVA_POSITION, (threed ? 3 : 2), GL_FLOAT, false, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Pos); if (threed) glVertexAttribPointer(EVA_NORMAL, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Normal); glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Color); glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].TCoords); glVertexAttribPointer(EVA_TANGENT, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Tangent); glVertexAttribPointer(EVA_BINORMAL, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Binormal); } else { glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), buffer_offset(0)); glVertexAttribPointer(EVA_NORMAL, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), buffer_offset(12)); glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertexTangents), buffer_offset(24)); glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertexTangents), buffer_offset(28)); glVertexAttribPointer(EVA_TANGENT, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), buffer_offset(36)); glVertexAttribPointer(EVA_BINORMAL, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), buffer_offset(48)); } break; default: break; } } // draw everything GLenum indexSize = 0; switch (iType) { case(EIT_16BIT): { indexSize = GL_UNSIGNED_SHORT; break; } case(EIT_32BIT): { #ifdef GL_OES_element_index_uint #ifndef GL_UNSIGNED_INT #define GL_UNSIGNED_INT 0x1405 #endif if (FeatureAvailable[IRR_OES_element_index_uint]) indexSize = GL_UNSIGNED_INT; else #endif indexSize = GL_UNSIGNED_SHORT; break; } } switch (pType) { case scene::EPT_POINTS: case scene::EPT_POINT_SPRITES: { #ifdef GL_OES_point_sprite if (pType == scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_OES_point_sprite]) glEnable(GL_POINT_SPRITE_OES); #endif // if ==0 we use the point size array if (Material.Thickness != 0.f) { // float quadratic[] = {0.0f, 0.0f, 10.01f}; //TODO : OpenGL ES 2.0 Port GL_POINT_DISTANCE_ATTENUATION //glPointParameterfv(GL_POINT_DISTANCE_ATTENUATION, quadratic); // float maxParticleSize = 1.0f; //TODO : OpenGL ES 2.0 Port GL_POINT_SIZE_MAX //glGetFloatv(GL_POINT_SIZE_MAX, &maxParticleSize); // maxParticleSize=maxParticleSize& pos, const core::rect& sourceRect, const core::rect* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; if (!sourceRect.isValid()) return; core::position2d targetPos(pos); core::position2d sourcePos(sourceRect.UpperLeftCorner); core::dimension2d sourceSize(sourceRect.getSize()); if (clipRect) { if (targetPos.X < clipRect->UpperLeftCorner.X) { sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X; if (sourceSize.Width <= 0) return; sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X; targetPos.X = clipRect->UpperLeftCorner.X; } if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X; if (sourceSize.Width <= 0) return; } if (targetPos.Y < clipRect->UpperLeftCorner.Y) { sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y; if (sourceSize.Height <= 0) return; sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y; targetPos.Y = clipRect->UpperLeftCorner.Y; } if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y; if (sourceSize.Height <= 0) return; } } // clip these coordinates if (targetPos.X < 0) { sourceSize.Width += targetPos.X; if (sourceSize.Width <= 0) return; sourcePos.X -= targetPos.X; targetPos.X = 0; } const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width; if (sourceSize.Width <= 0) return; } if (targetPos.Y < 0) { sourceSize.Height += targetPos.Y; if (sourceSize.Height <= 0) return; sourcePos.Y -= targetPos.Y; targetPos.Y = 0; } if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height; if (sourceSize.Height <= 0) return; } // ok, we've clipped everything. // now draw it. // texcoords need to be flipped horizontally for RTTs const bool isRTT = texture->isRenderTarget(); const core::dimension2d& ss = texture->getSize(); const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); const core::rect tcoords( sourcePos.X * invW, (isRTT ? (sourcePos.Y + sourceSize.Height) : sourcePos.Y) * invH, (sourcePos.X + sourceSize.Width) * invW, (isRTT ? sourcePos.Y : (sourcePos.Y + sourceSize.Height)) * invH); const core::rect poss(targetPos, sourceSize); disableTextures(1); if (!setActiveTexture(0, texture)) return; setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture); u16 indices[] = {0, 1, 2, 3}; S3DVertex vertices[4]; vertices[0] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); vertices[1] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); vertices[2] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); vertices[3] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false); } void COGLES2Driver::draw2DImageBatch(const video::ITexture* texture, const core::array >& positions, const core::array >& sourceRects, const core::rect* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; if (!setActiveTexture(0, const_cast(texture))) return; const irr::u32 drawCount = core::min_(positions.size(), sourceRects.size()); core::array vtx(drawCount * 4); core::array indices(drawCount * 6); for (u32 i = 0; i < drawCount; i++) { core::position2d targetPos = positions[i]; core::position2d sourcePos = sourceRects[i].UpperLeftCorner; // This needs to be signed as it may go negative. core::dimension2d sourceSize(sourceRects[i].getSize()); if (clipRect) { if (targetPos.X < clipRect->UpperLeftCorner.X) { sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X; if (sourceSize.Width <= 0) continue; sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X; targetPos.X = clipRect->UpperLeftCorner.X; } if (targetPos.X + (s32)sourceSize.Width > clipRect->LowerRightCorner.X) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X; if (sourceSize.Width <= 0) continue; } if (targetPos.Y < clipRect->UpperLeftCorner.Y) { sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y; if (sourceSize.Height <= 0) continue; sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y; targetPos.Y = clipRect->UpperLeftCorner.Y; } if (targetPos.Y + (s32)sourceSize.Height > clipRect->LowerRightCorner.Y) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y; if (sourceSize.Height <= 0) continue; } } // clip these coordinates if (targetPos.X < 0) { sourceSize.Width += targetPos.X; if (sourceSize.Width <= 0) continue; sourcePos.X -= targetPos.X; targetPos.X = 0; } const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width; if (sourceSize.Width <= 0) continue; } if (targetPos.Y < 0) { sourceSize.Height += targetPos.Y; if (sourceSize.Height <= 0) continue; sourcePos.Y -= targetPos.Y; targetPos.Y = 0; } if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height; if (sourceSize.Height <= 0) continue; } // ok, we've clipped everything. // now draw it. core::rect tcoords; tcoords.UpperLeftCorner.X = (((f32)sourcePos.X)) / texture->getSize().Width ; tcoords.UpperLeftCorner.Y = (((f32)sourcePos.Y)) / texture->getSize().Height; tcoords.LowerRightCorner.X = tcoords.UpperLeftCorner.X + ((f32)(sourceSize.Width) / texture->getSize().Width); tcoords.LowerRightCorner.Y = tcoords.UpperLeftCorner.Y + ((f32)(sourceSize.Height) / texture->getSize().Height); const core::rect poss(targetPos, sourceSize); setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture); vtx.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y)); vtx.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y)); vtx.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y)); vtx.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y)); const u32 curPos = vtx.size() - 4; indices.push_back(0 + curPos); indices.push_back(1 + curPos); indices.push_back(2 + curPos); indices.push_back(0 + curPos); indices.push_back(2 + curPos); indices.push_back(3 + curPos); } if (vtx.size()) { drawVertexPrimitiveList2d3d(vtx.pointer(), vtx.size(), indices.pointer(), indices.size() / 3, EVT_STANDARD, scene::EPT_TRIANGLES, EIT_16BIT, false); } } //! The same, but with a four element array of colors, one for each vertex void COGLES2Driver::draw2DImage(const video::ITexture* texture, const core::rect& destRect, const core::rect& sourceRect, const core::rect* clipRect, const video::SColor* const colors, bool useAlphaChannelOfTexture) { if (!texture) return; // texcoords need to be flipped horizontally for RTTs const bool isRTT = texture->isRenderTarget(); const core::dimension2du& ss = texture->getSize(); const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); const core::rect tcoords( sourceRect.UpperLeftCorner.X * invW, (isRTT ? sourceRect.LowerRightCorner.Y : sourceRect.UpperLeftCorner.Y) * invH, sourceRect.LowerRightCorner.X * invW, (isRTT ? sourceRect.UpperLeftCorner.Y : sourceRect.LowerRightCorner.Y) *invH); const video::SColor temp[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; const video::SColor* const useColor = colors ? colors : temp; disableTextures(1); setActiveTexture(0, texture); setRenderStates2DMode(useColor[0].getAlpha() < 255 || useColor[1].getAlpha() < 255 || useColor[2].getAlpha() < 255 || useColor[3].getAlpha() < 255, true, useAlphaChannelOfTexture); if (clipRect) { if (!clipRect->isValid()) return; glEnable(GL_SCISSOR_TEST); const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); glScissor(clipRect->UpperLeftCorner.X, (s32)renderTargetSize.Height - clipRect->LowerRightCorner.Y + m_device->getMovedHeight(), clipRect->getWidth(), clipRect->getHeight()); } u16 indices[] = {0, 1, 2, 3}; S3DVertex vertices[4]; vertices[0] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.UpperLeftCorner.Y, 0, 0, 0, 1, useColor[0], tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); vertices[1] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.UpperLeftCorner.Y, 0, 0, 0, 1, useColor[3], tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); vertices[2] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.LowerRightCorner.Y, 0, 0, 0, 1, useColor[2], tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); vertices[3] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.LowerRightCorner.Y, 0, 0, 0, 1, useColor[1], tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false); if (clipRect) glDisable(GL_SCISSOR_TEST); testGLError(); } //! draws a set of 2d images, using a color and the alpha channel void COGLES2Driver::draw2DImageBatch(const video::ITexture* texture, const core::position2d& pos, const core::array >& sourceRects, const core::array& indices, s32 kerningWidth, const core::rect* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; disableTextures(1); if (!setActiveTexture(0, texture)) return; setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture); if (clipRect) { if (!clipRect->isValid()) return; glEnable(GL_SCISSOR_TEST); const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); glScissor(clipRect->UpperLeftCorner.X, (s32)renderTargetSize.Height - clipRect->LowerRightCorner.Y + m_device->getMovedHeight(), clipRect->getWidth(), clipRect->getHeight()); } const core::dimension2du& ss = texture->getSize(); core::position2d targetPos(pos); // texcoords need to be flipped horizontally for RTTs const bool isRTT = texture->isRenderTarget(); const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); core::array vertices; core::array quadIndices; vertices.reallocate(indices.size()*4); quadIndices.reallocate(indices.size()*3); for (u32 i = 0; i < indices.size(); ++i) { const s32 currentIndex = indices[i]; if (!sourceRects[currentIndex].isValid()) break; const core::rect tcoords( sourceRects[currentIndex].UpperLeftCorner.X * invW, (isRTT ? sourceRects[currentIndex].LowerRightCorner.Y : sourceRects[currentIndex].UpperLeftCorner.Y) * invH, sourceRects[currentIndex].LowerRightCorner.X * invW, (isRTT ? sourceRects[currentIndex].UpperLeftCorner.Y : sourceRects[currentIndex].LowerRightCorner.Y) * invH); const core::rect poss(targetPos, sourceRects[currentIndex].getSize()); const u32 vstart = vertices.size(); vertices.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y)); vertices.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y)); vertices.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y)); vertices.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y)); quadIndices.push_back(vstart); quadIndices.push_back(vstart+1); quadIndices.push_back(vstart+2); quadIndices.push_back(vstart); quadIndices.push_back(vstart+2); quadIndices.push_back(vstart+3); targetPos.X += sourceRects[currentIndex].getWidth(); } if (vertices.size()) drawVertexPrimitiveList2d3d(vertices.pointer(), vertices.size(), quadIndices.pointer(), vertices.size()/2, video::EVT_STANDARD, scene::EPT_TRIANGLES, EIT_16BIT, false); if (clipRect) glDisable(GL_SCISSOR_TEST); testGLError(); } //! draw a 2d rectangle void COGLES2Driver::draw2DRectangle(SColor color, const core::rect& position, const core::rect* clip) { disableTextures(); setRenderStates2DMode(color.getAlpha() < 255, false, false); core::rect pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; u16 indices[] = {0, 1, 2, 3}; S3DVertex vertices[4]; vertices[0] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0, 0, 1, color, 0, 0); vertices[1] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0, 0, 1, color, 0, 0); vertices[2] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0, 0, 1, color, 0, 0); vertices[3] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0, 0, 1, color, 0, 0); drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false); } //! draw an 2d rectangle void COGLES2Driver::draw2DRectangle(const core::rect& position, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect* clip) { core::rect pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; disableTextures(); setRenderStates2DMode(colorLeftUp.getAlpha() < 255 || colorRightUp.getAlpha() < 255 || colorLeftDown.getAlpha() < 255 || colorRightDown.getAlpha() < 255, false, false); u16 indices[] = {0, 1, 2, 3}; S3DVertex vertices[4]; vertices[0] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0, 0, 1, colorLeftUp, 0, 0); vertices[1] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0, 0, 1, colorRightUp, 0, 0); vertices[2] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0, 0, 1, colorRightDown, 0, 0); vertices[3] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0, 0, 1, colorLeftDown, 0, 0); drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false); } //! Draws a 2d line. void COGLES2Driver::draw2DLine(const core::position2d& start, const core::position2d& end, SColor color) { disableTextures(); setRenderStates2DMode(color.getAlpha() < 255, false, false); u16 indices[] = {0, 1}; S3DVertex vertices[2]; vertices[0] = S3DVertex((f32)start.X, (f32)start.Y, 0, 0, 0, 1, color, 0, 0); vertices[1] = S3DVertex((f32)end.X, (f32)end.Y, 0, 0, 0, 1, color, 1, 1); drawVertexPrimitiveList2d3d(vertices, 2, indices, 1, video::EVT_STANDARD, scene::EPT_LINES, EIT_16BIT, false); } //! Draws a pixel void COGLES2Driver::drawPixel(u32 x, u32 y, const SColor &color) { const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); if (x > (u32)renderTargetSize.Width || y > (u32)renderTargetSize.Height) return; disableTextures(); setRenderStates2DMode(color.getAlpha() < 255, false, false); u16 indices[] = {0}; S3DVertex vertices[1]; vertices[0] = S3DVertex((f32)x, (f32)y, 0, 0, 0, 1, color, 0, 0); drawVertexPrimitiveList2d3d(vertices, 1, indices, 1, video::EVT_STANDARD, scene::EPT_POINTS, EIT_16BIT, false); } bool COGLES2Driver::setActiveTexture(u32 stage, const video::ITexture* texture) { if (stage >= MaxSupportedTextures) return false; if (CurrentTexture[stage]==texture) return true; CurrentTexture[stage] = texture; if (!texture) return true; else if (texture->getDriverType() != EDT_OGLES2) { CurrentTexture[stage] = 0; os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR); return false; } return true; } bool COGLES2Driver::isActiveTexture(u32 stage) { return (CurrentTexture[stage]) ? true : false; } //! disables all textures beginning with the optional fromStage parameter. bool COGLES2Driver::disableTextures(u32 fromStage) { bool result = true; for (u32 i = fromStage; i < MaxTextureUnits; ++i) result &= setActiveTexture(i, 0); return result; } //! creates a matrix in supplied GLfloat array to pass to OGLES1 inline void COGLES2Driver::createGLMatrix(float gl_matrix[16], const core::matrix4& m) { memcpy(gl_matrix, m.pointer(), 16 * sizeof(f32)); } //! creates a opengltexturematrix from a D3D style texture matrix inline void COGLES2Driver::createGLTextureMatrix(float *o, const core::matrix4& m) { o[0] = m[0]; o[1] = m[1]; o[2] = 0.f; o[3] = 0.f; o[4] = m[4]; o[5] = m[5]; o[6] = 0.f; o[7] = 0.f; o[8] = 0.f; o[9] = 0.f; o[10] = 1.f; o[11] = 0.f; o[12] = m[8]; o[13] = m[9]; o[14] = 0.f; o[15] = 1.f; } //! returns a device dependent texture from a software surface (IImage) video::ITexture* COGLES2Driver::createDeviceDependentTexture(IImage* surface, const io::path& name, void* mipmapData) { return new COGLES2Texture(surface, name, mipmapData, this); } //! Sets a material. void COGLES2Driver::setMaterial(const SMaterial& material) { Material = material; OverrideMaterial.apply(Material); for (u32 i = 0; i < MaxTextureUnits; ++i) setActiveTexture(i, material.getTexture(i)); } //! prints error if an error happened. bool COGLES2Driver::testGLError() { #ifdef _DEBUG GLenum g = glGetError(); switch (g) { case GL_NO_ERROR: return false; case GL_INVALID_ENUM: os::Printer::log("GL_INVALID_ENUM", ELL_ERROR); break; case GL_INVALID_VALUE: os::Printer::log("GL_INVALID_VALUE", ELL_ERROR); break; case GL_INVALID_OPERATION: os::Printer::log("GL_INVALID_OPERATION", ELL_ERROR); break; case GL_OUT_OF_MEMORY: os::Printer::log("GL_OUT_OF_MEMORY", ELL_ERROR); break; }; return true; #else return false; #endif } void COGLES2Driver::setRenderStates3DMode() { if (useCoreContext) return; if (CurrentRenderMode != ERM_3D) { // Reset Texture Stages BridgeCalls->setBlend(false); BridgeCalls->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); ResetRenderStates = true; } if (ResetRenderStates || LastMaterial != Material) { // unset old material // unset last 3d material if (CurrentRenderMode == ERM_2D) MaterialRenderer2D->OnUnsetMaterial(); else if (LastMaterial.MaterialType != Material.MaterialType && static_cast(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); // set new material. if (static_cast(Material.MaterialType) < MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial( Material, LastMaterial, ResetRenderStates, this); LastMaterial = Material; ResetRenderStates = false; } if (static_cast(Material.MaterialType) < MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD); CurrentRenderMode = ERM_3D; } //! Can be called by an IMaterialRenderer to make its work easier. void COGLES2Driver::setBasicRenderStates(const SMaterial& material, const SMaterial& lastmaterial, bool resetAllRenderStates) { if (useCoreContext) return; // ZBuffer if (resetAllRenderStates || lastmaterial.ZBuffer != material.ZBuffer) { switch (material.ZBuffer) { case ECFN_NEVER: // it will be ECFN_DISABLED after merge BridgeCalls->setDepthTest(false); break; case ECFN_LESSEQUAL: BridgeCalls->setDepthTest(true); BridgeCalls->setDepthFunc(GL_LEQUAL); break; case ECFN_EQUAL: BridgeCalls->setDepthTest(true); BridgeCalls->setDepthFunc(GL_EQUAL); break; case ECFN_LESS: BridgeCalls->setDepthTest(true); BridgeCalls->setDepthFunc(GL_LESS); break; case ECFN_NOTEQUAL: BridgeCalls->setDepthTest(true); BridgeCalls->setDepthFunc(GL_NOTEQUAL); break; case ECFN_GREATEREQUAL: BridgeCalls->setDepthTest(true); BridgeCalls->setDepthFunc(GL_GEQUAL); break; case ECFN_GREATER: BridgeCalls->setDepthTest(true); BridgeCalls->setDepthFunc(GL_GREATER); break; case ECFN_ALWAYS: BridgeCalls->setDepthTest(true); BridgeCalls->setDepthFunc(GL_ALWAYS); break; /*case ECFN_NEVER: BridgeCalls->setDepthTest(true); BridgeCalls->setDepthFunc(GL_NEVER); break;*/ } } // ZWrite // if (resetAllRenderStates || lastmaterial.ZWriteEnable != material.ZWriteEnable) { if (material.ZWriteEnable && (AllowZWriteOnTransparent || !material.isTransparent())) BridgeCalls->setDepthMask(true); else BridgeCalls->setDepthMask(false); } // Back face culling if (resetAllRenderStates || (lastmaterial.FrontfaceCulling != material.FrontfaceCulling) || (lastmaterial.BackfaceCulling != material.BackfaceCulling)) { if ((material.FrontfaceCulling) && (material.BackfaceCulling)) { BridgeCalls->setCullFaceFunc(GL_FRONT_AND_BACK); BridgeCalls->setCullFace(true); } else if (material.BackfaceCulling) { BridgeCalls->setCullFaceFunc(GL_BACK); BridgeCalls->setCullFace(true); } else if (material.FrontfaceCulling) { BridgeCalls->setCullFaceFunc(GL_FRONT); BridgeCalls->setCullFace(true); } else BridgeCalls->setCullFace(false); } // Color Mask if (resetAllRenderStates || lastmaterial.ColorMask != material.ColorMask) { glColorMask( (material.ColorMask & ECP_RED)?GL_TRUE:GL_FALSE, (material.ColorMask & ECP_GREEN)?GL_TRUE:GL_FALSE, (material.ColorMask & ECP_BLUE)?GL_TRUE:GL_FALSE, (material.ColorMask & ECP_ALPHA)?GL_TRUE:GL_FALSE); } // Blend operation if (resetAllRenderStates|| lastmaterial.BlendOperation != material.BlendOperation) { if (material.BlendOperation==EBO_NONE) BridgeCalls->setBlend(false); else { BridgeCalls->setBlend(true); switch (material.BlendOperation) { case EBO_ADD: glBlendEquation(GL_FUNC_ADD); break; case EBO_SUBTRACT: glBlendEquation(GL_FUNC_SUBTRACT); break; case EBO_REVSUBTRACT: glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); break; default: break; } } } // Anti aliasing if (resetAllRenderStates || lastmaterial.AntiAliasing != material.AntiAliasing) { if (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE) glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE); else if (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE) glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE); } // Texture parameters setTextureRenderStates(material, resetAllRenderStates); } //! Compare in SMaterial doesn't check texture parameters, so we should call this on each OnRender call. void COGLES2Driver::setTextureRenderStates(const SMaterial& material, bool resetAllRenderstates) { if (useCoreContext) return; // Set textures to TU/TIU and apply filters to them for (s32 i = MaxTextureUnits-1; i>= 0; --i) { const COGLES2Texture* tmpTexture = static_cast(CurrentTexture[i]); if (CurrentTexture[i]) BridgeCalls->setTexture(i); else continue; // This code causes issues on some devices with legacy pipeline // and also mipmaps should be handled in STK texture manager, // so just disable this part of code continue; if(resetAllRenderstates) tmpTexture->getStatesCache().IsCached = false; if(!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].BilinearFilter != tmpTexture->getStatesCache().BilinearFilter || material.TextureLayer[i].TrilinearFilter != tmpTexture->getStatesCache().TrilinearFilter) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, (material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST); tmpTexture->getStatesCache().BilinearFilter = material.TextureLayer[i].BilinearFilter; tmpTexture->getStatesCache().TrilinearFilter = material.TextureLayer[i].TrilinearFilter; } if (material.UseMipMaps && CurrentTexture[i]->hasMipMaps()) { if(!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].BilinearFilter != tmpTexture->getStatesCache().BilinearFilter || material.TextureLayer[i].TrilinearFilter != tmpTexture->getStatesCache().TrilinearFilter || !tmpTexture->getStatesCache().MipMapStatus) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, material.TextureLayer[i].TrilinearFilter ? GL_LINEAR_MIPMAP_LINEAR : material.TextureLayer[i].BilinearFilter ? GL_LINEAR_MIPMAP_NEAREST : GL_NEAREST_MIPMAP_NEAREST); tmpTexture->getStatesCache().BilinearFilter = material.TextureLayer[i].BilinearFilter; tmpTexture->getStatesCache().TrilinearFilter = material.TextureLayer[i].TrilinearFilter; tmpTexture->getStatesCache().MipMapStatus = true; } } else { if(!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].BilinearFilter != tmpTexture->getStatesCache().BilinearFilter || material.TextureLayer[i].TrilinearFilter != tmpTexture->getStatesCache().TrilinearFilter || tmpTexture->getStatesCache().MipMapStatus) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, (material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST); tmpTexture->getStatesCache().BilinearFilter = material.TextureLayer[i].BilinearFilter; tmpTexture->getStatesCache().TrilinearFilter = material.TextureLayer[i].TrilinearFilter; tmpTexture->getStatesCache().MipMapStatus = false; } } #ifdef GL_EXT_texture_filter_anisotropic if (FeatureAvailable[IRR_EXT_texture_filter_anisotropic] && (!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].AnisotropicFilter != tmpTexture->getStatesCache().AnisotropicFilter)) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, material.TextureLayer[i].AnisotropicFilter>1 ? core::min_(MaxAnisotropy, material.TextureLayer[i].AnisotropicFilter) : 1); tmpTexture->getStatesCache().AnisotropicFilter = material.TextureLayer[i].AnisotropicFilter; } #endif if(!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].TextureWrapU != tmpTexture->getStatesCache().WrapU) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, getTextureWrapMode(material.TextureLayer[i].TextureWrapU)); tmpTexture->getStatesCache().WrapU = material.TextureLayer[i].TextureWrapU; } if(!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].TextureWrapV != tmpTexture->getStatesCache().WrapV) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, getTextureWrapMode(material.TextureLayer[i].TextureWrapV)); tmpTexture->getStatesCache().WrapV = material.TextureLayer[i].TextureWrapV; } tmpTexture->getStatesCache().IsCached = true; } } // Get OpenGL ES2.0 texture wrap mode from Irrlicht wrap mode. GLint COGLES2Driver::getTextureWrapMode(u8 clamp) const { switch (clamp) { case ETC_CLAMP: case ETC_CLAMP_TO_EDGE: case ETC_CLAMP_TO_BORDER: return GL_CLAMP_TO_EDGE; case ETC_MIRROR: return GL_REPEAT; default: return GL_REPEAT; } } //! sets the needed renderstates void COGLES2Driver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel) { if (useCoreContext) return; if (CurrentRenderMode != ERM_2D) { // unset last 3d material if (CurrentRenderMode == ERM_3D) { if (static_cast(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); } CurrentRenderMode = ERM_2D; } if (!OverrideMaterial2DEnabled) Material = InitMaterial2D; if (OverrideMaterial2DEnabled) { OverrideMaterial2D.Lighting=false; OverrideMaterial2D.ZWriteEnable=false; OverrideMaterial2D.ZBuffer=ECFN_NEVER; // it will be ECFN_DISABLED after merge OverrideMaterial2D.Lighting=false; Material = OverrideMaterial2D; } if (texture) MaterialRenderer2D->setTexture(CurrentTexture[0]); else MaterialRenderer2D->setTexture(0); MaterialRenderer2D->OnSetMaterial(Material, LastMaterial, true, 0); LastMaterial = Material; // no alphaChannel without texture alphaChannel &= texture; if (alphaChannel || alpha) { BridgeCalls->setBlend(true); BridgeCalls->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } else BridgeCalls->setBlend(false); MaterialRenderer2D->OnRender(this, video::EVT_STANDARD); } //! \return Returns the name of the video driver. const wchar_t* COGLES2Driver::getName() const { return Name.c_str(); } //! deletes all dynamic lights there are void COGLES2Driver::deleteAllDynamicLights() { RequestedLights.clear(); CNullDriver::deleteAllDynamicLights(); } //! adds a dynamic light s32 COGLES2Driver::addDynamicLight(const SLight& light) { CNullDriver::addDynamicLight(light); RequestedLights.push_back(RequestedLight(light)); u32 newLightIndex = RequestedLights.size() - 1; return (s32)newLightIndex; } //! Turns a dynamic light on or off //! \param lightIndex: the index returned by addDynamicLight //! \param turnOn: true to turn the light on, false to turn it off void COGLES2Driver::turnLightOn(s32 lightIndex, bool turnOn) { if (lightIndex < 0 || lightIndex >= (s32)RequestedLights.size()) return; RequestedLight & requestedLight = RequestedLights[lightIndex]; requestedLight.DesireToBeOn = turnOn; } //! returns the maximal amount of dynamic lights the device can handle u32 COGLES2Driver::getMaximalDynamicLightAmount() const { return 8; } //! Sets the dynamic ambient light color. void COGLES2Driver::setAmbientLight(const SColorf& color) { AmbientLight = color; } //! returns the dynamic ambient light color. const SColorf& COGLES2Driver::getAmbientLight() const { return AmbientLight; } // this code was sent in by Oliver Klems, thank you void COGLES2Driver::setViewPort(const core::rect& area) { core::rect vp = area; core::rect rendert(0, 0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height); vp.clipAgainst(rendert); if (vp.getHeight() > 0 && vp.getWidth() > 0) BridgeCalls->setViewport(core::rect(vp.UpperLeftCorner.X, getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(), vp.getWidth(), vp.getHeight())); ViewPort = vp; testGLError(); } //! Draws a shadow volume into the stencil buffer. void COGLES2Driver::drawStencilShadowVolume(const core::vector3df* triangles, s32 count, bool zfail) { if (!StencilBuffer || !count) return; // unset last 3d material if (CurrentRenderMode == ERM_3D && static_cast(Material.MaterialType) < MaterialRenderers.size()) { MaterialRenderers[Material.MaterialType].Renderer->OnUnsetMaterial(); ResetRenderStates = true; } // store current OGLES state const GLboolean cullFaceEnabled = glIsEnabled(GL_CULL_FACE); GLint cullFaceMode; glGetIntegerv(GL_CULL_FACE_MODE, &cullFaceMode); GLint depthFunc; glGetIntegerv(GL_DEPTH_FUNC, &depthFunc); GLboolean depthMask; glGetBooleanv(GL_DEPTH_WRITEMASK, &depthMask); glDepthFunc(GL_LEQUAL); glDepthMask(GL_FALSE); // no depth buffer writing glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); // no color buffer drawing glEnable(GL_STENCIL_TEST); glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(0.0f, 1.0f); glEnableVertexAttribArray(EVA_POSITION); glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(core::vector3df), &triangles[0]); glStencilMask(~0); glStencilFunc(GL_ALWAYS, 0, ~0); GLenum decr = GL_DECR; GLenum incr = GL_INCR; #if defined(GL_OES_stencil_wrap) if (FeatureAvailable[IRR_OES_stencil_wrap]) { decr = GL_DECR_WRAP_OES; incr = GL_INCR_WRAP_OES; } #endif glEnable(GL_CULL_FACE); if (!zfail) { // ZPASS Method glCullFace(GL_BACK); glStencilOp(GL_KEEP, GL_KEEP, incr); glDrawArrays(GL_TRIANGLES, 0, count); glCullFace(GL_FRONT); glStencilOp(GL_KEEP, GL_KEEP, decr); glDrawArrays(GL_TRIANGLES, 0, count); } else { // ZFAIL Method glStencilOp(GL_KEEP, incr, GL_KEEP); glCullFace(GL_FRONT); glDrawArrays(GL_TRIANGLES, 0, count); glStencilOp(GL_KEEP, decr, GL_KEEP); glCullFace(GL_BACK); glDrawArrays(GL_TRIANGLES, 0, count); } glDisableVertexAttribArray(EVA_POSITION); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glDisable(GL_STENCIL_TEST); if (cullFaceEnabled) glEnable(GL_CULL_FACE); else glDisable(GL_CULL_FACE); glCullFace(cullFaceMode); glDepthFunc(depthFunc); glDepthMask(depthMask); testGLError(); } void COGLES2Driver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge, video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge) { if (!StencilBuffer) return; disableTextures(); // store attributes GLboolean depthMask; glGetBooleanv(GL_DEPTH_WRITEMASK, &depthMask); // GLint shadeModel; //TODO : OpenGL ES 2.0 Port glGetIntegerv //glGetIntegerv(GL_SHADE_MODEL, &shadeModel); glDepthMask(GL_FALSE); //TODO : OpenGL ES 2.0 Port glShadeModel //glShadeModel(GL_FLAT); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glEnable(GL_STENCIL_TEST); glStencilFunc(GL_NOTEQUAL, 0, ~0); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // draw a shadow rectangle covering the entire screen using stencil buffer //Wrapper->glMatrixMode(GL_MODELVIEW); //TODO : OpenGL ES 2.0 Port glPushMatrix //glPushMatrix(); //Wrapper->glLoadIdentity(); //Wrapper->glMatrixMode(GL_PROJECTION); //TODO : OpenGL ES 2.0 Port glPushMatrix //glPushMatrix(); //Wrapper->glLoadIdentity(); u16 indices[] = {0, 1, 2, 3}; S3DVertex vertices[4]; vertices[0] = S3DVertex(-1.f, -1.f, 0.9f, 0, 0, 1, leftDownEdge, 0, 0); vertices[1] = S3DVertex(-1.f, 1.f, 0.9f, 0, 0, 1, leftUpEdge, 0, 0); vertices[2] = S3DVertex(1.f, 1.f, 0.9f, 0, 0, 1, rightUpEdge, 0, 0); vertices[3] = S3DVertex(1.f, -1.f, 0.9f, 0, 0, 1, rightDownEdge, 0, 0); drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false); if (clearStencilBuffer) glClear(GL_STENCIL_BUFFER_BIT); // restore settings //TODO : OpenGL ES 2.0 Port glPopMatrix //glPopMatrix(); //Wrapper->glMatrixMode(GL_MODELVIEW); //TODO : OpenGL ES 2.0 Port glPopMatrix //glPopMatrix(); glDisable(GL_STENCIL_TEST); glDepthMask(depthMask); //TODO : OpenGL ES 2.0 Port glShadeModel //glShadeModel(shadeModel); } //! Draws a 3d line. void COGLES2Driver::draw3DLine(const core::vector3df& start, const core::vector3df& end, SColor color) { setRenderStates3DMode(); u16 indices[] = {0, 1}; S3DVertex vertices[2]; vertices[0] = S3DVertex(start.X, start.Y, start.Z, 0, 0, 1, color, 0, 0); vertices[1] = S3DVertex(end.X, end.Y, end.Z, 0, 0, 1, color, 0, 0); drawVertexPrimitiveList2d3d(vertices, 2, indices, 1, video::EVT_STANDARD, scene::EPT_LINES); } //! Only used by the internal engine. Used to notify the driver that //! the window was resized. void COGLES2Driver::OnResize(const core::dimension2d& size) { CNullDriver::OnResize(size); BridgeCalls->setViewport(core::rect(0, 0, size.Width, size.Height)); testGLError(); } //! Returns type of video driver E_DRIVER_TYPE COGLES2Driver::getDriverType() const { return EDT_OGLES2; } //! returns color format ECOLOR_FORMAT COGLES2Driver::getColorFormat() const { return ColorFormat; } //! Get a vertex shader constant index. s32 COGLES2Driver::getVertexShaderConstantID(const c8* name) { return getPixelShaderConstantID(name); } //! Get a pixel shader constant index. s32 COGLES2Driver::getPixelShaderConstantID(const c8* name) { os::Printer::log("Error: Please call services->getPixelShaderConstantID(), not VideoDriver->getPixelShaderConstantID()."); return -1; } //! Sets a vertex shader constant. void COGLES2Driver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) { os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setPixelShaderConstant()."); } //! Sets a pixel shader constant. void COGLES2Driver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) { os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant()."); } //! Sets a constant for the vertex shader based on an index. bool COGLES2Driver::setVertexShaderConstant(s32 index, const f32* floats, int count) { //pass this along, as in GLSL the same routine is used for both vertex and fragment shaders return setPixelShaderConstant(index, floats, count); } //! Int interface for the above. bool COGLES2Driver::setVertexShaderConstant(s32 index, const s32* ints, int count) { return setPixelShaderConstant(index, ints, count); } //! Sets a constant for the pixel shader based on an index. bool COGLES2Driver::setPixelShaderConstant(s32 index, const f32* floats, int count) { os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant()."); return false; } //! Int interface for the above. bool COGLES2Driver::setPixelShaderConstant(s32 index, const s32* ints, int count) { os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant()."); return false; } //! Adds a new material renderer to the VideoDriver, using pixel and/or //! vertex shaders to render geometry. s32 COGLES2Driver::addShaderMaterial(const c8* vertexShaderProgram, const c8* pixelShaderProgram, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { os::Printer::log("No shader support."); return -1; } //! Adds a new material renderer to the VideoDriver, using GLSL to render geometry. s32 COGLES2Driver::addHighLevelShaderMaterial( const c8* vertexShaderProgram, const c8* vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, const c8* pixelShaderProgram, const c8* pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, const c8* geometryShaderProgram, const c8* geometryShaderEntryPointName, E_GEOMETRY_SHADER_TYPE gsCompileTarget, scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType, u32 verticesOut, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData, E_GPU_SHADING_LANGUAGE shadingLang) { s32 nr = -1; COGLES2MaterialRenderer* r = new COGLES2MaterialRenderer( this, nr, vertexShaderProgram, pixelShaderProgram, callback, baseMaterial, userData); r->drop(); return nr; } //! Returns a pointer to the IVideoDriver interface. (Implementation for //! IMaterialRendererServices) IVideoDriver* COGLES2Driver::getVideoDriver() { return this; } //! Returns pointer to the IGPUProgrammingServices interface. IGPUProgrammingServices* COGLES2Driver::getGPUProgrammingServices() { return this; } ITexture* COGLES2Driver::addRenderTargetTexture(const core::dimension2d& size, const io::path& name, const ECOLOR_FORMAT format, const bool useStencil) { //disable mip-mapping const bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS); setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false); video::ITexture* rtt = 0; rtt = new COGLES2FBOTexture(size, name, this, format); if (rtt) { bool success = false; addTexture(rtt); ITexture* tex = createDepthTexture(rtt); if (tex) { success = static_cast(tex)->attach(rtt); if (!success) { removeDepthTexture(tex); } tex->drop(); } rtt->drop(); if (!success) { removeTexture(rtt); rtt=0; } } //restore mip-mapping setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels); return rtt; } //! Returns the maximum amount of primitives u32 COGLES2Driver::getMaximalPrimitiveCount() const { return 65535; } //! set or reset render target bool COGLES2Driver::setRenderTarget(video::ITexture* texture, bool clearBackBuffer, bool clearZBuffer, SColor color) { // check for right driver type if (texture && texture->getDriverType() != EDT_OGLES2) { os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR); return false; } // check if we should set the previous RT back setActiveTexture(0, 0); ResetRenderStates = true; if (RenderTargetTexture != 0) { RenderTargetTexture->unbindRTT(); } if (texture) { // we want to set a new target. so do this. BridgeCalls->setViewport(core::rect(0, 0, texture->getSize().Width, texture->getSize().Height)); RenderTargetTexture = static_cast(texture); RenderTargetTexture->bindRTT(); CurrentRendertargetSize = texture->getSize(); } else { BridgeCalls->setViewport(core::rect(0, 0, ScreenSize.Width, ScreenSize.Height)); RenderTargetTexture = 0; CurrentRendertargetSize = core::dimension2d(0, 0); } GLbitfield mask = 0; if (clearBackBuffer) { const f32 inv = 1.0f / 255.0f; glClearColor(color.getRed() * inv, color.getGreen() * inv, color.getBlue() * inv, color.getAlpha() * inv); mask |= GL_COLOR_BUFFER_BIT; } if (clearZBuffer) { glDepthMask(GL_TRUE); LastMaterial.ZWriteEnable = true; mask |= GL_DEPTH_BUFFER_BIT; } glClear(mask); testGLError(); return true; } // returns the current size of the screen or rendertarget const core::dimension2d& COGLES2Driver::getCurrentRenderTargetSize() const { if (CurrentRendertargetSize.Width == 0) return ScreenSize; else return CurrentRendertargetSize; } //! Clears the ZBuffer. void COGLES2Driver::clearZBuffer() { GLboolean enabled = GL_TRUE; glGetBooleanv(GL_DEPTH_WRITEMASK, &enabled); glDepthMask(GL_TRUE); glClear(GL_DEPTH_BUFFER_BIT); glDepthMask(enabled); testGLError(); } //! Returns an image created from the last rendered frame. // We want to read the front buffer to get the latest render finished. // This is not possible under ogl-es, though, so one has to call this method // outside of the render loop only. IImage* COGLES2Driver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target) { if (target==video::ERT_MULTI_RENDER_TEXTURES || target==video::ERT_RENDER_TEXTURE || target==video::ERT_STEREO_BOTH_BUFFERS) return 0; GLint internalformat = GL_RGBA; GLint type = GL_UNSIGNED_BYTE; { // glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_FORMAT, &internalformat); // glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_TYPE, &type); // there's a format we don't support ATM if (GL_UNSIGNED_SHORT_4_4_4_4 == type) { internalformat = GL_RGBA; type = GL_UNSIGNED_BYTE; } } IImage* newImage = 0; if (GL_RGBA == internalformat) { if (GL_UNSIGNED_BYTE == type) newImage = new CImage(ECF_A8R8G8B8, ScreenSize); else newImage = new CImage(ECF_A1R5G5B5, ScreenSize); } else { if (GL_UNSIGNED_BYTE == type) newImage = new CImage(ECF_R8G8B8, ScreenSize); else newImage = new CImage(ECF_R5G6B5, ScreenSize); } if (!newImage) return 0; u8* pixels = static_cast(newImage->lock()); if (!pixels) { newImage->unlock(); newImage->drop(); return 0; } glReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, internalformat, type, pixels); testGLError(); // opengl images are horizontally flipped, so we have to fix that here. const s32 pitch = newImage->getPitch(); u8* p2 = pixels + (ScreenSize.Height - 1) * pitch; u8* tmpBuffer = new u8[pitch]; for (u32 i = 0; i < ScreenSize.Height; i += 2) { memcpy(tmpBuffer, pixels, pitch); memcpy(pixels, p2, pitch); memcpy(p2, tmpBuffer, pitch); pixels += pitch; p2 -= pitch; } delete [] tmpBuffer; newImage->unlock(); if (testGLError()) { newImage->drop(); return 0; } testGLError(); return newImage; } //! get depth texture for the given render target texture ITexture* COGLES2Driver::createDepthTexture(ITexture* texture, bool shared) { if ((texture->getDriverType() != EDT_OGLES2) || (!texture->isRenderTarget())) return 0; COGLES2Texture* tex = static_cast(texture); if (!tex->isFrameBufferObject()) return 0; if (shared) { for (u32 i = 0; i < DepthTextures.size(); ++i) { if (DepthTextures[i]->getSize() == texture->getSize()) { DepthTextures[i]->grab(); return DepthTextures[i]; } } DepthTextures.push_back(new COGLES2FBODepthTexture(texture->getSize(), "depth1", this)); return DepthTextures.getLast(); } return (new COGLES2FBODepthTexture(texture->getSize(), "depth1", this)); } void COGLES2Driver::removeDepthTexture(ITexture* texture) { for (u32 i = 0; i < DepthTextures.size(); ++i) { if (texture == DepthTextures[i]) { DepthTextures.erase(i); return; } } } void COGLES2Driver::deleteFramebuffers(s32 n, const u32 *framebuffers) { glDeleteFramebuffers(n, framebuffers); } void COGLES2Driver::deleteRenderbuffers(s32 n, const u32 *renderbuffers) { glDeleteRenderbuffers(n, renderbuffers); } //! Set/unset a clipping plane. bool COGLES2Driver::setClipPlane(u32 index, const core::plane3df& plane, bool enable) { if (index >= UserClipPlane.size()) UserClipPlane.push_back(SUserClipPlane()); UserClipPlane[index].Plane = plane; UserClipPlane[index].Enabled = enable; return true; } //! Enable/disable a clipping plane. void COGLES2Driver::enableClipPlane(u32 index, bool enable) { UserClipPlane[index].Enabled = enable; } //! Get the ClipPlane Count u32 COGLES2Driver::getClipPlaneCount() const { return UserClipPlane.size(); } const core::plane3df& COGLES2Driver::getClipPlane(irr::u32 index) const { if (index < UserClipPlane.size()) return UserClipPlane[index].Plane; else return *((core::plane3df*)0); } core::dimension2du COGLES2Driver::getMaxTextureSize() const { return core::dimension2du(MaxTextureSize, MaxTextureSize); } GLenum COGLES2Driver::getGLBlend(E_BLEND_FACTOR factor) const { GLenum r = 0; switch (factor) { case EBF_ZERO: r = GL_ZERO; break; case EBF_ONE: r = GL_ONE; break; case EBF_DST_COLOR: r = GL_DST_COLOR; break; case EBF_ONE_MINUS_DST_COLOR: r = GL_ONE_MINUS_DST_COLOR; break; case EBF_SRC_COLOR: r = GL_SRC_COLOR; break; case EBF_ONE_MINUS_SRC_COLOR: r = GL_ONE_MINUS_SRC_COLOR; break; case EBF_SRC_ALPHA: r = GL_SRC_ALPHA; break; case EBF_ONE_MINUS_SRC_ALPHA: r = GL_ONE_MINUS_SRC_ALPHA; break; case EBF_DST_ALPHA: r = GL_DST_ALPHA; break; case EBF_ONE_MINUS_DST_ALPHA: r = GL_ONE_MINUS_DST_ALPHA; break; case EBF_SRC_ALPHA_SATURATE: r = GL_SRC_ALPHA_SATURATE; break; } return r; } GLenum COGLES2Driver::getZBufferBits() const { /*#if defined(GL_OES_depth24) if (Driver->queryOpenGLFeature(COGLES2ExtensionHandler::IRR_OES_depth24)) InternalFormat = GL_DEPTH_COMPONENT24_OES; else #endif #if defined(GL_OES_depth32) if (Driver->queryOpenGLFeature(COGLES2ExtensionHandler::IRR_OES_depth32)) InternalFormat = GL_DEPTH_COMPONENT32_OES; else #endif*/ GLenum bits = GL_DEPTH_COMPONENT16;//0; /*switch (Params.ZBufferBits) { case 16: bits = GL_DEPTH_COMPONENT16; break; case 24: bits = GL_DEPTH_COMPONENT24; break; case 32: bits = GL_DEPTH_COMPONENT32; break; default: bits = GL_DEPTH_COMPONENT; break; }*/ return bits; } const SMaterial& COGLES2Driver::getCurrentMaterial() const { return Material; } COGLES2CallBridge* COGLES2Driver::getBridgeCalls() const { return BridgeCalls; } COGLES2CallBridge::COGLES2CallBridge(COGLES2Driver* driver) : Driver(driver), BlendSource(GL_ONE), BlendDestination(GL_ZERO), Blend(false), CullFaceMode(GL_BACK), CullFace(false), DepthFunc(GL_LESS), DepthMask(true), DepthTest(false), Program(0), ActiveTexture(GL_TEXTURE0), Viewport(core::rect(0, 0, 0, 0)) { // Initial OpenGL values from specification. for (u32 i = 0; i < MATERIAL_MAX_TEXTURES; ++i) Texture[i] = 0; glBlendFunc(GL_ONE, GL_ZERO); glDisable(GL_BLEND); glCullFace(GL_BACK); glDisable(GL_CULL_FACE); glDepthFunc(GL_LESS); glDepthMask(GL_TRUE); glDisable(GL_DEPTH_TEST); } void COGLES2CallBridge::setBlendFunc(GLenum source, GLenum destination) { //if(BlendSource != source || BlendDestination != destination) //{ glBlendFunc(source, destination); BlendSource = source; BlendDestination = destination; //} } void COGLES2CallBridge::setBlend(bool enable) { //if(Blend != enable) //{ if (enable) glEnable(GL_BLEND); else glDisable(GL_BLEND); Blend = enable; //} } void COGLES2CallBridge::setCullFaceFunc(GLenum mode) { if(CullFaceMode != mode) { glCullFace(mode); CullFaceMode = mode; } } void COGLES2CallBridge::setCullFace(bool enable) { if(CullFace != enable) { if (enable) glEnable(GL_CULL_FACE); else glDisable(GL_CULL_FACE); CullFace = enable; } } void COGLES2CallBridge::setDepthFunc(GLenum mode) { if(DepthFunc != mode) { glDepthFunc(mode); DepthFunc = mode; } } void COGLES2CallBridge::setDepthMask(bool enable) { if(DepthMask != enable) { if (enable) glDepthMask(GL_TRUE); else glDepthMask(GL_FALSE); DepthMask = enable; } } void COGLES2CallBridge::setDepthTest(bool enable) { if(DepthTest != enable) { if (enable) glEnable(GL_DEPTH_TEST); else glDisable(GL_DEPTH_TEST); DepthTest = enable; } } void COGLES2CallBridge::setProgram(GLuint program) { if (Program != program) { glUseProgram(program); Program = program; } } void COGLES2CallBridge::setActiveTexture(GLenum texture) { if (ActiveTexture != texture) { glActiveTexture(texture); ActiveTexture = texture; } } void COGLES2CallBridge::setTexture(u32 stage) { if (stage < MATERIAL_MAX_TEXTURES) { if(Texture[stage] != Driver->CurrentTexture[stage]) { setActiveTexture(GL_TEXTURE0 + stage); if(Driver->CurrentTexture[stage]) glBindTexture(GL_TEXTURE_2D, Driver->CurrentTexture[stage]->getOpenGLTextureName()); Texture[stage] = Driver->CurrentTexture[stage]; } } } void COGLES2CallBridge::setViewport(const core::rect& viewport) { if (Viewport != viewport) { glViewport(viewport.UpperLeftCorner.X, viewport.UpperLeftCorner.Y, viewport.LowerRightCorner.X, viewport.LowerRightCorner.Y); Viewport = viewport; } } } // end namespace } // end namespace #endif // _IRR_COMPILE_WITH_OGLES2_ namespace irr { namespace video { #if !defined(_IRR_COMPILE_WITH_IOS_DEVICE_) && (defined(_IRR_COMPILE_WITH_X11_DEVICE_) || defined(_IRR_COMPILE_WITH_WINDOWS_DEVICE_) || defined(_IRR_COMPILE_WITH_ANDROID_DEVICE_)) IVideoDriver* createOGLES2Driver(const SIrrlichtCreationParameters& params, video::SExposedVideoData& data, io::IFileSystem* io, IrrlichtDevice* device) { #ifdef _IRR_COMPILE_WITH_OGLES2_ return new COGLES2Driver(params, data, io, device); #else return 0; #endif // _IRR_COMPILE_WITH_OGLES2_ } #endif // ----------------------------------- // WAYLAND VERSION // ----------------------------------- #ifdef _IRR_COMPILE_WITH_WAYLAND_DEVICE_ IVideoDriver* createOGLES2Driver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceWayland* device) { #ifdef _IRR_COMPILE_WITH_OGLES2_ return new COGLES2Driver(params, io, device); #else return 0; #endif // _IRR_COMPILE_WITH_OGLES2_ } #endif // ----------------------------------- // MACOSX VERSION // ----------------------------------- #if defined(_IRR_COMPILE_WITH_OSX_DEVICE_) IVideoDriver* createOGLES2Driver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceMacOSX *device) { #ifdef _IRR_COMPILE_WITH_OGLES2_ return new COGLES2Driver(params, io, device); #else return 0; #endif // _IRR_COMPILE_WITH_OGLES2_ } #endif // _IRR_COMPILE_WITH_OSX_DEVICE_ // ----------------------------------- // SDL VERSION // ----------------------------------- #ifdef _IRR_COMPILE_WITH_SDL_DEVICE_ IVideoDriver* createOGLES2Driver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceSDL* device, u32 default_fb) { #ifdef _IRR_COMPILE_WITH_OGLES2_ return new COGLES2Driver(params, io, device, default_fb); #else return 0; #endif // _IRR_COMPILE_WITH_OGLES2_ } #endif } // end namespace } // end namespace